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1 Introduction

Unlike the typical design of data assimilation for numerical weather forecasting, initial value optimi-
sation by chemical data assimilation for air quality simulations were often considered as unessential,
as errors in initial values were regarded as of vanishing impact. Rather, air surface interactions, espe-
cially emissions are a driving forcing factor, while, at the same time, of insufficient knowledge. This
fact necessitates to generalise the air quality data assimilation problem to an inversion problem, which
calls for a spatio–temporal, that is, model based technique. The paper presents a four–dimensional
variational data assimilation implementation, along with a variety of assimilation examples.

2 Objectives of air quality data assimilation

The overarching aim of air quality data assimilation is to find a best estimate of the control parameters
for those processes of the atmosphere, which govern the chemical evolution of biospherically relevant
height levels. As in general data assimilation, where only sparse observations are available, we have to
resort to modelled fields, in order to complement our lack of knowledge, where numerical models also
serve as system constraints. In artificial intelligence parlance, system evolution constraints as induced
by adopted formulation of differential equations is sometimes referred to as procedural knowledge
(a model must be run), while model forecasts, as well as observations, are termed as ‘declarative
knowledge’.

As this does not differ from the problem of meteorological data assimilation, developments of similar
methods are on the agenda of various research groups. Techniques range from attempts to use nudg-
ing to spatiotemporal methods like the four-dimensional variational data assimilation and Kalman
filtering, the latter with different methods for complexity reduction.

However, there are a variety of aspects to be considered, which differ considerably from traditional
atmospheric data assimilation. These include:

� The number of parameters per gridpoint: while there are 4 - 10 in meteorology, (depending on
how complete the states of water are resolved by microphysical processes,) a state of the art air
quality model prognoses more than 50 constituents in gas phase only. If aerosol dynamics and
chemistry is included, this number is easily doubled.
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� The completeness problem: with the above mentioned figures only the presumably most im-
portant constituents are enclosed. Especially hydrocarbons, referred to a volatile organic com-
pounds (VOC) occur in a variety which cannot be accounted for in a complete way. Further,
aerosol particles are even more different in size, shape, chemical composition and complexity
of reactions.

� The spatial scale problem: generally, local air quality is forced by local emissions. This in-
cludes vertical transport as well. As a consequence, a scale gap should be bridged from simu-
lating long range, even intercontinental transport of pollutants, down to a proper representation
of emissions effectuated by point and line sources like stacks and streets. In practice, differ-
ent chemical regimes prevail on short spatial scales. Sinks are acting by surface uptake from
soil and vegetation, again imposing a much finer pattern as mesoscale meteorological features
typically show.

� The surface interaction problem: emissions are not only a problem of scale, but also an issue of
both impact on model results and paucity of knowledge. Consequently, emission rates must be
considered as optimisation parameter. By the like arguments, deposition velocities could also
be considered as optimisation quantity.

� The observation suite problem: in routine operation, legacy surface in situ observations are
sparse and hampered by the representativity problem in populated areas. Anisotropic and
heterogeneous formulations of the radii of influence are highly advisable (Hoelzemann et al.,
2001). Ozone radiosonde network is even much sparser. Tropospheric satellite data are lim-
ited to very few species and often only given in terms of tropospheric columns. Available are
nitrogen dioxide, elevated levels of sulphur dioxide and formaldehyde, mostly retrieved from
GOME (ERS2 platform) or SCIAMACHY (ENVISAT) (e.g Eskes and Boersma, 2003, Heue
et al., 2005). Also carbon monoxide soundings from MOPITT sensors are given (Deeter et al.,
2003). First attempts of neural network retrieved ozone profiles are available (Müller et al.,
2003). Finally, in situ observations made on board of commercial aircraft, for example in the
frame of the MOZAIC activity (Thouret et al., 2000) can be assimilated. Other data sources are
mainly restricted to spatially and temporally limited campaigns.

We seek for a data assimilation algorithm, which is able to combine the suit of heterogeneous ob-
servations, scattered in space and time, having variable spatial and temporal representativity with
a sufficiently resolving air quality model system. This invokes the application space-time data as-
similation algorithms preserving the BLUE property (Best Linear Unbiased Estimator) (Talagrand,
1998).

3 Theory

The problem description given above has clear implications for the data assimilation methodology
to be selected. Chemistry–transport models (CTMs) do not passively accept external 3–dimensional
state analyses, where no care is taken of chemical balance or naturally forced imbalances. The ef-
fect is to engender spurious relaxations toward some other chemical state. As a solution, models
can contribute with their chemical kinetics as constraint to estimate both a balanced and most prob-
able state or parameter values, at least theoretically providing for the BLUE property. Using data
assimilation algorithms with the BLUE property, allow for hypothesis testing. There are two families
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Figure 1: Diurnal profiles applied in the emission module for six of the 19 emitted species, the
amplitude of which is taken as emission factor for optimisation.

of algorithms with this property in a spatio–temporal context: the four-dimensional variational data
assimilation (4D–var), and Kalman filtering. Examples for spacio-temporal BLUEs applied in tropo-
spheric chemistry in the case of 4D–var include Elbern and Schmidt (1999, 2001), with the EURAD
model and Issartel and Baverel (2003) with POLAIR. Practical Kalman filtering can only be made
with drastic complexity reduction measures. Most prominent techniques here are ensemble Kalman
filtering and Reduced Rank SQuare root Kalman Filtering. Pioneering examples are given in van
Loon et al,(2000) and Hanea et al., (2004).

It should be noted that 3–dimensional BLUE algorithm analyses like those from Optimal Interpola-
tion, repeatedly ingested into a model, do not result in a four–dimensional BLUE analysis.

This can be formulated as follows: Deviations of the background chemical state x�t0�� xb � δx�t0�
and the emission inventory e�t0��eb � δe�t0� may be combined to define an incremental formulation
of a cost function, objective function or distance function� as follows (see for example Elbern et
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Figure 2: Nested integration domains with observation sites for the BERLIOZ case.

al, 2000 for a more detailed description):
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where� is a scalar functional defined on the time interval t0 � t � tN dependent on the vector valued
state variable x�t�. d�t� :� y�t��H�t�δxb�t� is the observation minus model discrepancy at time t,
when first guess initial values and emission inventory values are taken. The error covariance matrices
are defined as follows: for the first guess or background values B � �N�N with N number of model
variables, for the emission factors K � �

E�E with E number of emitting grid points times emitted
species, and of observation errors are denoted R � �

M�t��M�t�, with M�t� the number of available
observations at time t. Operator H�t� calculates the model equivalent to each observation.

We want to determine the gradient of� with respect to the joint chemical state and emission rate
variable z � �δx�δe�T , and find as gradient ∂� �∂ �δx�δe�T . The gradient of the cost function�
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then reads
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where MT �t0� t� denotes the adjoint (= transposed T) model operator, formally integration from time
t backward in time to the initial time t0. This optimisation problem can be solved by some quasi–
Newton minimisation procedure, like L–BFGS.

Figure 3: Assimilation results and performance at the ozone measurement site Eggegebirge for
August 7 and 8, 1997. Black crosses: observations, left of vertical line at August 7, 20:00 taken
for assimilation, later observations for forecast verification only. Reference forecast: black dotted
line, initial value optimisation only: green dashed line, emission rate optimisation: blue dash-
dotted line, joint emission rate / initial value optimisation: red bold line.

4 Implementation of a chemical 4D-var system

Model description
The EURAD CTM2 used in the following exposition is a comprehensive tropospheric Eulerian model
operating on continental to local scale (Jakobs et al., 2005), presently also in an hemispheric mode
(www.eurad.uni-koeln.de). The chemistry transport model calculates the transport, diffusion, and
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gas phase transformation of about 60 chemical species with 158 reactions. The associated adjoint
operators include the gas phase mechanism, the transport schemes and an implicit vertical diffusion
scheme. The emission data in this study are taken from EMEP (co-operative programme for monitor-
ing and evaluation of the long range transmission of air pollutants in Europe) and further processed
as presented in Memmesheimer et al. (1995).

4D–var implementation
The variational chemistry data assimilation algorithm is composed by four components: (1) the for-
ward model, (2) the adjoint of its tangent linear version, (3) the background error covariance matrix,
and (4) the minimisation routine. Ozone records of about 400 surface observation sites were available
for each day, most of which concentrated on a central European domain (Figure 2). Estimated obser-
vation accuracy, to be included in the observation error covariance matrix, is about 10% or at least 2
ppbv for ozone. An additional portion of the error is assumed to be due to the poor spatial representa-
tiveness as implied by a horizontal resolution of 54 km. This is a special problem for the use of urban
and suburban measurement sites, although observations close to areas with elevated traffic load were
omitted. (For more details see Elbern et al., 2000, and Elbern and Schmidt, 1999, 2001).

Figure 4: Time series for selected NOx stations (upper panel NO, lower panel NO2) on nest 2. Red
crosses: observations, black line: no assimilation, green line: N1 assimilation (18 km resolution),
blue line: N2 (6 km resolution) assimilation, grey shading: assimilation interval with assimilated
observations, others: forecasted.
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Figure 5: Optimised emission factors for the nest 3 area for SO2�CO2�NO2, and xylene. Red
areas indicate the emission inventory to be increased, blue to be diminished by the colour coded
factors. Coloured squares indicate the different nest levels of optimisation.

5 Some Example Results

The 4D–var technique allows for the assimilation of a wide variety of data types, a cursory demonstra-
tion of which will be given. A careful estimation of the error of (spatial) representativity is however
prerequisite for success. Specifically, model grid resolutions of about 50 km, widely used for con-
tinental scale integration domains, admit only for a limited number of species to be assimilated by
point measurements. For example, quickly oxidizing point and line source emitted NOx � �NO�NO2�
should only be assimilated by, rarely available, observation sites situated at background locations. In
practice, gaseous constituent assimilation in coarse grid models mostly rests on ozone observations.

The selected coarse grid case study features a long lasting episode of elevated ozone levels over central
Europe, which took place from 3 to 20 August 1997. The mesoscale meteorological simulations of
this time span are made by MM5 which is restarted every 48 hours starting from August 1, 0000
GMT to August 20, 2400 GMT. Meteorological initial and boundary values were taken from ECMWF
analyses. The model grid encompasses a greater European area, with 54 km horizontal grid resolution.
The assimilation interval is selected to span the time from 06 to 20 UTC.
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A coarse grid example
To demonstrate the feature of joint emission rate – initial value inversion, the semi–rural observation
site “Eggegebirge” is presented, where both parameter types are of like importance for a two day fore-
cast: the site has minor emission sources in its vicinity, but polluted air can be advected from within
some 100 km distance. Figure 3 displays an unsatisfying skill of a prediction without assimilation,
while pure initial value optimisation exhibits a good performance during the time of the assimila-
tion window, the ensuing forecast on the second day relaxes toward the forecast without assimilation,
clearly demonstrating a short “chemical memory” of the system. On the other hand, pure emission
rate optimisation exhibits a clear positive impact at the second day, without significant improvements
during the assimilation interval. This is due to the fact that the local emission rates are low, but also
due to the delay caused by the oxidation time from precursors for ozone production. A joint emission
rate – initial value inversion combines both positive impacts and clearly leads to the desired effect of
forecast skill improvement.

Figure 6: Time series for CONTRACE flight on Nov 14, 2001; measurements (red points), first
guess (black dash-dotted line) and analysis (solid blue line). The green line, together with the
right ordinate, indicates flight heights.

Nested application of 4D–var
As a matter of representativity of observations on coarse grids, for a reactive emitted species like
NO2 a success similar to ozone cannot be demonstrated. In order to also exploit measurements of
those species, a nesting technique is implemented for adjoint modelling and applied to the 1998
urban plume campaign BERLIOZ around the metropolitan area of Berlin, Germany (Volz–Thomas
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et al., 2003). Assimilated species are O3�NO�NO2�CO and SO2 within an assimilation window of
14 hours, from 06 UTC to 20 UTC on July 20, 1998. The nesting procedure included a coarse grid
simulation with horizontal grid size of 54 km and three recursively nested grids with a nesting ratio
of three. Hence, there is a 2 km final resolution. The assimilation of NOx surface observations proves
difficult, as usually point and line emission sources imply only a small spacial scale of validity. Figure
4 demonstrates the assimilation performance for 4 measurement stations mostly within the greater
Berlin area, as achieved by a 18 km resolution grid (nest 1) and a further nested 6 km resolution
grid (nest 2) with joint emission rate and initial value optimisation. Clearly, a significantly improved
performance of the forecast can be seen for nest 2, with observations beyond the assimilation interval.
It can be concluded, that, under conditions given, a 6 km horizontal resolution allows for a satisfying
exploitation of the suburban NOx observation sites.

Figure 7: Assimilation of NO2 tropospheric columns at 3.8.1997 (top panel). Simulation without
assimilation for 10:30 UTC (top right panel), and post assimilation forecast for the same time
and started at 06:00 UTC, Units are number of molecules/cm2.

Emission rate estimates
As a unique feature, the adjoint calculus has the potential to optimise initial values as well as emission
rates.

The impact of emission rate optimisation is demonstrated by Figure 5, which exhibits SO2�CO�NO2,
and xylene optimisation factors over the integration domain of the finest (2km resolution) grid. The
inversion process at each grid level hands over the result to the next finer grid, allowing for an in-
creasingly better resolved emission estimate, provided the necessary observational density is given.
As Berlin is mostly a large urban island within a more rural environment, sulfur emissions are confined
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to the greater metropolitan area. The upper left panel of Figure 5 clearly indicates a nearly overall re-
duced emission rate over the densely populated area, probably indicating a moderately larger success
of reduction efforts than estimated by the emission inventory. In the case of CO similar effects can
only be claimed for the area east of Berlin.

While the effects vary moderately for NO2, xylene, with an amplification factor of about 1.2, appears
to be underestimated by the emission inventory. In all exhibited cases, the inversion results remain
well within the error limits of the inventory. Emission rate optimisation of SO2 and CO is based on
concentration observations of these species. In the case of other emissions, which are rarely observed,
inference can only rest on measured product constituents, most prominently ozone. This is the case
for emission factor estimates of xylene, establishing an ill–posed problem. In this context it should
be noted that short campaigns like BERLIOZ may be insufficient to build up reliable quantitative
statistics for emission inversion, as underlying error covariance statistics need longer estimation times,
with varying meteorological conditions.

Air borne data assimilation
The assimilation of air borne data can provide better evidence of the origin of air masses, especially
the cleansing off polluted boundary layer air by cyclonic dynamics. The focus of the free troposphere
CONTRACE flight campaign (Lawrence et al., 2003) is placed on updraft processes. The first CON-
TRACE episode with a special flight from Corsica to Munich, Germany, on Nov 14, 2001 has been
selected for middle tropospheric assimilation, with warm conveyor belt features induced by cyclone
dynamics. The vertical grid structure has been refined for the relevant height region, having now 26
layers. Horizontal grid size is 25 km. Assimilated observations of species aloft are O3�NO�H2O2 and
CO, while NO2 and SO2 at the surface only. Figure 6 shows forecast improvements for the data of the
flight during the afternoon of Nov 14. Initial values have been optimised for midnight (00:00 UTC) to
ensure a consistent chemical model state evolution over the day. Especially ozone and CO show very
good performance results due to assimilation, while all assimilated species are improved. In the case
of NO, occasional strong observation spikes indicate local lightning induced elevated concentration
levels, which are neither simulated nor reproduced by the assimilation. The key difficulty here is to
place strong convective clouds with lightning at the very correct position. The assimilation based
analysis of the H2O2 radical exhibits comparably good results as well.

Tropospheric satellite data assimilation
Satellite retrievals from tropospheric height levels are an emerging issue in earth observation, although
there is a limited number of species like SO2�NO2 and formaldehyde, which is presently amenable
for retrieval. Moreover, in these cases data are presented in terms of tropospheric columns.

The conceptual flexibility of the variational technique must be invoked, where data, like tropospheric
columns, are ingested, which do not have a direct correspondence to a model parameter. In the case
of tropospheric columns, data are given in terms of molecules per cm2. The model correspondence
(operator H in the cost function) can then be calculated, along with its adjoint, and included in the
algorithm. Observing some technical details of preconditioning (see Elbern and Schmidt, 2001), the
optimisation procedure of the assimilation adapts the model column to the retrieval in consistency
with the model. Figure 7 gives an example of the assimilation of NO2 tropospheric columns ob-
tained from IFE, University Bremen. Spain and Tunisia are areas with visible discrepancies between
retrievals and model, prior to assimilation. The final analysis then finds the differences largely re-
moved.
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6 Summary

The 4D–var data assimilation method proves useful for applications in air quality simulations. Look-
ing for analogies with meteorological weather forecasting, problems resemble the challenges asso-
ciated with low level humidity assimilation: strictly nonisotropic and inhomogeneous correlation
lengths, especially in the boundary layer, frequent violation of the assumption of the tangent linear
approximation, and significant violation of the perfect model assumption due to deficiencies in the
knowledge of meteorological parameters. In addition, emission rates are at least as important as initial
values, and henceforth to be included as optimisation parameter. For many regions, the deposition
rates are also to be taken as optimisation parameter. With an enhanced set of optimisation parameters,
the optimisation problem becomes more ill–posed and enhanced precision of estimates of the error
covariance matrices is the only possibility to account for this problem. The most obvious way to ac-
count for this is operational run of the assimilation system, which allows for compilation of relevant
statistics.
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