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Summary

= Future focus on

= A consistent microphysical representation between
the LEM, large-scale microphysics and convective
parametrlzatlon microphysics

" Improving warm-rain microphysics and its link to
turbulence, aerosols and subgrid-scale structure

= Model evaluation with new data sources

* Including sufficiently accurate ice microphysics for
high-resolution modelling and climate-change
studies

© Crown copyright 2006 Page 2



Contents

= Introduction
= Why include microphysics in a large-scale model?
= [ntroduction to current microphysics representations

= Future challenges: Parametrization and Evaluation
= Convective microphysics
= Aerosols
= \Warm rain processes
» Droplet settling
» Drizzle production
= Turbulence

= Summary

© Crown copyright 2006 Page 3



Why do we need cloud microphysics in a large-

scale model?
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Unified Model microphysics approach

| arge-scale scheme Convection scheme
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and transfers, especially to the ice phase - Condensate

effectively an LEM

But missing crucial information about
processes: aerosols, turbulence, vertical
velocities, history etc.
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Convective microphysics

= Shallow convection
» RICO observations and large-eddy modelling

=Deep convection
= Condensate detrainment
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LEM data constrained by observations
can start to be used to inform
development of convective cloud
microphysics representations. The
challenge is to write a simple
parametrization that does not lose sight
of the small-scale microphysics. Pae



Deep convection microphysics: diurnal cycle ==
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Aerosols

» Aerosol schemes are getting more complex

*Need to exploit this information as well as
possible in linking to cloud properties:

= Liquid cloud feedbacks: Effect on autoconversion
ought to be understandable, but also dynamic
Impacts.

" |ce cloud feedbacks — dust aerosol species could be
used to guide ice nuclel parametrizations

=Crucial to development is the representation of
subgrid-scale vertical velocities.
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Aerosols to microphysics: 2" indirect effect
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Subgrid-scale history
The dry aerosol
chemistry has had

much recent work.
Although Kéhler theory
is well know, how do
we apply it to a large
gridbox? How do we
upscale collision- le-B e les e et Jed o a0
coalescence theory?
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VOCALS

VOCALS _—
VAMOS Ocean-Cloud-Atmosphere-Land Study ==

An opportunity to study a
potentially complex cloud sheet
strongly influenced by aerosols
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Warm rain processes: Droplet settling

=Traditionally droplet settling is not a process
that is included in large-scale microphysics
schemes

=|s its effect significant?

*How many processes should large-scale
microphysics schemes include?
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Fog: Droplet settling
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Warm rain processes: Drizzle

=Drizzle Is a heavily parametrized process in
models

» Unified model overpredicts drizzle

*How do we best use observations to inform
development of autoconversion schemes?

= Collision / coalescence will vary considerably on the
subgrid-scale
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CloudSat Simulator: preliminary case study ""'
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Drizzle in the model

Liquid water flux comparison for met—office—mescscale—6—11 model
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Turbulence

=Turbulence is becoming recognized as an
Important factor influencing cloud properties

= Recent theoretical work on how this can influence
the collision / coalescence mechanism

= Observational evidence not clear cut

= Should this be introduced to large-scale
parametrizations? How?
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Turbulence

*|ncreasing understanding of the link between
turbulence and autoconversion

1. Increase in fall speed — more
sweepout of smaller particles

2. Same size particles can collide

3. Clustering of particles away
from the turbulent cores

4. A Maxwellian like distribution
of particle velocities in high
turbulence
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Summary

= Future focus on

= A consistent microphysical representation between
the LEM, large-scale microphysics and convective
parametrlzatlon microphysics

" Improving warm-rain microphysics and its link to
turbulence, aerosols and subgrid-scale structure

= Model evaluation with new data sources

* Including sufficiently accurate ice microphysics for
high-resolution modelling and climate-change
studies
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Key impacts of convective cloud

parametrization

More detrainment of vapour < ;

leads to more cloud

Detrainment of
C . condensate leads to
* % more rapid anvil

* precipitation and hence ?
reduced cloud, radiative
cooling and convective New convection

activity can trigger in
hotter spots

Use of a diagnostic convective cloud
can give very bright on-off cloud
behaviour
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Height (km)

CloudNet: Radar/lidar/radiometer retrievals
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Excessive prediction of drizzle?

Large regions of very light
rain in high pressure
regions represent
drizzling stratocumulus
cloud. But is this really
excessive?
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PC2 tropical performance.

Meaon Error Control, T+120 Mean Error; PC2:61 Contral, FD Ei‘i'wiE. T+120
UMK I‘~.'J'.-".'N STASH CODE 1!;:;.»_'UH _I.,n‘fDE. UNKNOWN STASH CODE 16203, JJASO3
[}
100 | 100
2000 Y 200
R, __ 2o0f *
iu 400 i: 400 *‘-.
w500 . e . oo f I ‘
m 600 | ¥ 7 600
o ]
LS 700 4 {4 700 |
8OO & | BOO
L
l.|'_'||'_]P /‘\ | Q00 = *
1|:||:||:|._ - , _ , , | 1000 NN B ORI . N ! il
G0N 0k o %05 505 g0 QM BN 30 0 305 G605 g0
Lotitude Unite: K Letitude Linits: K
-3 5 17 —1 1 —0.5 .1 a.7 1.5 1a 0.9 0.6 0.3 ] 0.3 0.6 0.9
Temperature bias in T+120 control T+120 Temperature: PC2-control

forecasts

PC2 improves the upper tropical
tropospheric temperatures through the
radiative interaction of cloud changes

© Crown copyright 2006 Page 24



PC2 tropical performance: LW cloud forcing

Longwave cloud forcing / W m™

Zonal mean longwave cloud forcing
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6) Active anvils
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maintained all
night
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3) Sudden and large
impact of diagnostic
convective cloud in
HadGAMla

4) More gradual build
up of cloud in PC2
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A Cloud Inhomogeneity & Overlap

Parametrisation for Radiatio

The radiative effect of unresolved cloud 8

within a model grid box can be studied
using CRM data

- Increased condensate variance gives
reduced albedo

« Can parametrize by scaling the mean
water content

*A better method is to parametrise the
variability by sampling a generated
cloud field.

How do we define the variance?
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