Contrast in ice cloud microphysics between the Tropics and Midlatitudes and its representation in models

Paul Field

Andrew Heymsfield Aaron Bansemer

Anvils and Stratiform ice cloud

Paul Lawson, JAS'99

434

Mason POC

Emerald2
Paul Connolly
UMIST

Carl Schmitt, CRYSTAL

Real and modelled aggregates

CPI Model Westbrook et al. GRL 2004 **500** μm Mass ~ D² T=-46°C (independent of monomer habit)

Aggregates

- Emergent self similarity
- Similar power laws for:

Mass-dimension

Fallspeed-dimension

Capacitance

 Independent of monomer habit – and hence regime

Tropics and Midlatitudes

(anvil)

'a'=(tropics 'a' + midlat 'a') 'b'=(tropics 'b' + midlat 'b')

Aircraft data

Problem with measuring small particles.
 Only look at particles D>100μm

Computing moments (truncated)

$$M_{n} = \sum_{D=100 \, \mu m}^{\infty} D^{n} N_{D}$$

Time period for averaging ? (10 s ~ 1 km)

Moment histograms

 M_0

Concentration for D>100µm

Tropical

Midlat

Moment histograms

 M_2

Proportional to IWC for D>100μm

Tropical

--- Midlat

Moment histograms

 L_{23}

Characteristic size M_3/M_2 D>100 μ m

Tropical

Midlat

Time averaging

2nd Moment

____ -10C

-30C

_____ -50C

..... Midlat

Rescaling particle size distributions

$$N(D) = M_2^4 M_3^{-3} \phi_{23}(x)$$

$$Measured PSD$$
Rescaled Distribution

Dimensionless size

$$x = D\left(\frac{M_2}{M_3}\right)$$

Measure ice particle size distributions

D [μm]

Rescaled size distributions: M₂, M₃

Field et al.2005

Properties of fit to rescaled distribution

 All moments of fitted rescaled distribution (n≥0) should be finite

Large x behaviour should be exponential

• 2nd and 3rd moments of fit to rescaled distribution=1

PSD Rescaling

Aggregation in E-fields

Tan et al. 2000 Phys Rev E

Saunders and Wahab 1975

The nature of ice particles

Aggregates

• $M=aD^b$ (b~2)

• $V=cD^d$ (d~0.4)

NWP requirements

Forecasting

•	Sedimentation	(Precip	rate)	$M_{2.4}$
---	---------------	---------	-------	-----------

Diffusional growth
 M₁ to M_{1.7}

• Riming M_{2.4}

• IWC M₂

Moments 1 to 2.4 need to be estimated

Radar assimilation – higher moments

Moment estimation param.

 $M_n = A(n) \exp[B(n)T] M_2^{C(n)}$

Field et al. 05 used $M_n=a(n,T)M_2^{b(n,T)}$

Quadratic fits to A(n),B(n),C (n)

 $M_n = A(n) \exp[B(n)T] M_2^{C(n)}$

Testing the parameterization

One parameterization?

 Tropical and midlatitude rescaled distributions are different

$$M_n = M_2^p M_3^q \int x^n \phi_{23} dx$$

	n	0	1	2	3	4	5
$\int x^n \phi_{23} dx$	tropical	20	2.3	1.0	1.0	1.7	3.7
J **	midlat	19	1.8	1.0	1.0	1.3	2.0

AMSU-B Ch20(180GHz) BT

Application to WRF/MM5

- Currently (for snow)
- Change to

- Exponential size distributions
- N₀(T)
- Spherical geometry
- Constant snow density

- Obs. based PSDs
- $N_0^*(T,IWC)$
- Non-spherical geometry
- Density varies with size

Freezing rain – W. Virginia 4 Feb 1998

Old New Modified MM5/WRF microphysics, 20km (Thompson et al. 2007)

Cleveland supercooled Sc – 30 Jan 1998

Old

New

Implementation of moment scheme

- Deep snow clouds –
 REDUCED
 embedded SLWC
- Deep snow clouds –
 REDUCED RHice
- Shallow layer clouds
 INCREASED
 SLWC

One moment or two?

- Lin et al. (2002, JAS) show factor
 25 in N_{ice} from hom freezing
- Uncertainty in Nice prediction needs to be better than ±factor ~2

Summary

- Use aggregate geometry for snow
- Rescaled PSDs are different for midlat and tropical ice cloud....
- But, one moment estimation parameterization based on T, IWC works for midlat and tropical ice cloud works well
- For NWP, do we need two moment snow schemes?