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The need for data assimilation

• Long time scales in land state variables (deeper soil water 
and temperature, snow): Forecast drifts are possible. A way 
of controlling model drift (initialisation of soil variables) is
needed

• Drifts due to errors in forcing (precipitation, radiation, BL 
humidity) or in the land-surface model/model fluxes
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Mackenzie river basin precipitation: era40 vs. observations
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What to initialise and how?

• There are no routine direct observations of soil state variables
• For an effective data assimilation, the state variables with longer timescales need 

to be initialised:
STATE VARIABLES OBSERVABLES

– Root zone soil moisture No direct observations globally (see below)
– Snow mass Snow depth

Snow cover from remote sensing
Snow mass from AMSR-E (saturates at higher 
values; does not work in forest areas)

– Above ground biomass (Indirectly) from remote sensing: vegetation 
indices, LAI/fAPAR

• Proxy observations for root zone soil water
– Screen level T and RH: Linked to Bowen ratio
– Rainfall rates
– Window channel brightness temperature: Early morning evolution is linked to 

evaporation
– Microwave (L-band, 1.4 GHz) radiances: Top soil moisture
– C-band passive and active systems: Top soil moisture

• State variables are non-linearly related (via the equations of the land-surface 
scheme) to observations: Complex observation operators
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Current practice at global centres
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depth obs
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BiomassSnow massSoil water

Land surface analysis lies, in terms of methods and data usage, 
far behind its atmospheric counterpart
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G(N/E)LDAS

• Global/North-American/European Land Data Assimilation 
Systems
– Running offline a land surface scheme, forced by near-surface 

meteorology, downwelling radiative fluxes and precipitation
– Best possible forcing, very often observation-based estimates 

hybridized with reanalysis
– Inexpensive, often run with several models and several versions of 

the forcing. Ideal tool to have a land-surface model climate

• In most cases (GLDAS, NLDAS) LDAS is a misleading 
name, because there is no data assimilation involved: It 
assumes that the forcing is correct.

• Global Soil Water Project (GSWP) is one version of 
“LDAS”, using best available forcing for 1986-1995
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Surface energy balance
(41º-50ºN 2ºW-16ºE)
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• Positive surface solar radiation anomalies since March, 
associated to anomalously low cloud

• The surface starts responding in June, with an increase in 
sensible heat flux followed by a decrease in evaporation in July
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Soil water index (SWI)
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•SWI=1: No restrictions to evapotranspiration due to soil water

•SWI=0: Evapotranspirations shuts

• Soil water anomalies from March onwards, peaking in August
• Summer anomalies not intense enough
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Soil water analysis increments
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Soil water: 2003 and climate
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Soil water assimilation reduces seasonal soil water amplitude
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Mean annual range of soil water 
(Dirmeyer et al 1994, JHM)

Fraction of 
saturation

• ERA-40 has the smallest mean seasonal amplitude
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Reanalyses soil water (shaded) and 
GSWP: ranked validation against obs

r2
era

r1

r2

r2

r2
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r1

r1

era

eraera

Monthly means Anomalies

Guo et al., 2006: QJRMS, accepted

• ERA-40 is the best reanalysis product, and better than many GSWP 
models
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Layout
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overfitting or aliasing

– What we can do: Use LDAS as a weak constraint

• Snow
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Soil water increments: June-July 2002

Accumulated 
increments

Variance of 
daily 
increments
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Impact of analysis increments on 
surface fluxes

Latent heat flux Sensible heat flux

Control

Open loop

-

Control
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Root zone soil moisture:
observables and caveats

Root zone
Soil moisture

BL T/RH

•Fair weather spring/summer 
conditions

•Low wind speed

What we do now
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Synergy of observations

• Screen level temperature and humidity are indirect linked to soil 
moisture through evaporative cooling.

• Microwave brightness temperature contains more direct information of 
near surface soil moisture and is less dependent on atmospheric 
conditions.
– Penetration depth of μw Tb depends on:

• Soil texture
• Soil temperature profile
• Vegetation fraction
• Vegetation water content
• Surface roughness
• LSMEM (Land Surface Microwave Emissivity Model) for model equivalent of 

Tb
• Rate of change of thermal infrared brightness temperature contains 

information on soil moisture, but
– Clear sky data only;
– Model Tskin is very sensitive to aerodynamical resistance (surface 

roughness) 
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Root zone soil moisture:
observables and caveats

Root zone
Soil moisture

BL T/RH Vegetation state
(NDVI)

w Tbμ
L- and C- band

(d=1-5 cm)

•Fair weather spring/summer 
conditions

•Low wind speed

•Clear-sky data

•Saturation of LAI=f(NDVI)

•Low water on vegetation

•C-band limited to non-forest 
areas

What we should do
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ECMWF experimental soil moisture 
analysis system

• Extended Kalman filter
• Assimilation of two-metre temperature and relative 

humidity and microwaveTb
• Updated forecast errors
• System is forced with observed estimates of precipitation 

and downward SW and LW surface radiation, where 
available



ECMWF, Reading, Jul 2006

Assimilation of mw Tb: Performance 
of 2T/RH
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OBS
CTRL
KTR
KTRB
KB

Corr Bias RMS
0.57 -10.70 8.93
0.57   -5.67 7.18
0.58   -4.71 7.03
0.56   -7.41 8.37

2T

2RH

SGP97

•The control simulation (indeed, all simulations) are too warm and too dry. 
Model day-to-day variability of humidity exceeds observations.
•Assimilation of screen-level parameters decrease the warm/dry bias by 30-
40%.
•Assimilation of mw Tb, on top of screen-level parameters, slightly deteriorates 
the fit to screen-level observations.
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Surface soil moisture and Tb 
(SGP97)
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•All assimilation configurations improve the fit to top soil 
moisture, in particular those using Tb.



ECMWF, Reading, Jul 2006

Root zone soil moisture (SGP97)

Soil
moisture

• On its own, Tb gives a very good simulation for the root layer.
• The use of screen-level parameters, w/ or w/o Tb, brings the 

simulation away from observations
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Evaporative fraction (SGP97)

Evapor.
fraction

• Evaporative fraction [EF=LE/(H+LE)], the relevant quantity 
for the surface impact on the atmosphere, is underestimated by 
the control simulation (cf. dry/warm bias).

• μw Tb, on its own, is not effective enough to change EF.
• EF is clearly improved when screen-level parameters are used.
• The synergy of all 3 observations is again visible.
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Problem 1: Matching vertical resolution of in-situ, 
remote sensing, and model soil moisture

0    10   20   30   40   50

7

28

100

vol. soil moisture

de
pt

h 
[c

m
]

MW observation

in-situ observation

NWP model

Matthias Drusch



ECMWF, Reading, Jul 2006

Joint and marginal pdf
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Problem 2: Bias corrections of 
remote sensing data

Matthias Drusch

Oklahoma data sets 2002
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CDF matching

x x’

CDFECM(x’) = CDFTMI(x)

(Reichle and Koster, 2004)

Cumulative 
Distribution
Function 

TMI
ECMWF
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TMI soil moisture transformation
transfer funcion
03/2002-10/2002

Bias: -11.67 %

Bias: -0.35 %

r2 = 0.18 r2 = 0.69

• CDF matching reduces systematic errors:
The bias has been removed and the dynamic 
range has been adjusted.

Matthias Drusch
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Transferred TMI images
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Model development at ECMWF

• The use of LAI information requires model developments
– In order to perform data assimilation the model has to look like the 

observations
• At present, LAI is time-invariant in the ECMWF
• Current development (monthly LAI climatology)
• In preparation (carbon/biomass) (w/ KNMI)

– Photosynthesis-based evaporation formulation (from ISBA-Ags), linking 
water and carbon cycles

– Spin-off: (natural) Land carbon fluxes
– Vegetation: Biomass evolves according to parameterized growth and 

mortality functions
• Data assimilation of biomass using LAI retrievals (at Meteo-France)

– Biomass to LAI observation operator
– Variational approach minimizing the difference to background and 

observations
– State variables: Biomass and soil moisture
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SMOSREX (Toulouse) site: Biomass only

• Analysis of Biomass using LAI 
observations (10 days analysis
period)

• Good LAI correction

• Overall good Biomass analysis
(particularly in 2002)

• Strong (negative) impact of 
root zone soil moisture, w2, 
(different LAI different root
water extraction and
transpiration rates)

Lionel Jarlan
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SMOSREX site: Biomass and soil moisture

•Analysis of Biomass and w2
using LAI observations (10 day 
analysis period) + non 
stationary covariance matrix

• Good LAI correction

• Overall good Biomass analysis

•… but w2 better in agreement 
with observations during high
water stress period

Lionel Jarlan
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Iberian LDAS

• Running TESSEL (land surface model of ERA-40) offline, 
forced by ERA-40
– TESSEL results without land assimilation

Emanuel Dutra
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Standardized Precipitation Index 
(SPI): ERA-40 vs observations

Emanuel Dutra
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Drought indicators

• AAS – Normalized soil water anomaly
• SPI: Standardized precipitation index
• PDSI: Palmer Drought Stress Index (Official drought 

indicator in Portugal)

Emanuel Dutra
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SPI and normalized soil water anomaly

Emanuel Dutra

Offline 
TESSEL

ERA-40 
soil water
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Correlation of SPI and 
normalized soil water anomaly

Emanuel Dutra

Offline TESSEL

ERA-40 soil water
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Root zone soil moisture:
observables and caveats

Root zone
Soil moisture

BL T/RH

•Fair weather spring/summer 
conditions

•Low wind speed

What we can do

•Run the surface model 
offline, forced by 24-48 hour 
precipitation

•Use output soil water as a 
weak constraint to OI soil 
water analysis
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Layout

• Introduction: Imperfect models and inaccurate data
• Land surface in ERA-40; Strengths and weaknesses
• Soil moisture
• Snow

– Large analysis increments
– Snow cover vs. snow depth
– Model problems: Density and melting

• Conclusions
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Mackenzie river basin era40:
Surface water and snow budget

•Surface analysis increments are of the same order of the 
seasonal evolution of the soil water and snow mass budget

[ ]1 sF Ea aS Sn MSn = + ++ Δ− −∑[ ]1 l
a a
n n P M E Yη η η+ − −+ + Δ=+ ∑
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ECMWF snow depth and snow cover 
analysis

• Background (modified short term forecast)
• Observation operator uses model snow density to go from 

model snow mass to snow depth
• Snow depth (conventional observations)
• NOAA/NESDIS snow cover, ScNESDIS product is used

– ScNESDIS=0 is unambiguous information
• This information is presented as an observation

– ScNESDIS > 0 and Scbackground=0 is ambiguous information
• This information is used to modify the short term forecast, assigning a 

small value to these points

• In the following, we will compare analysed snow mass with 
MODIS snow extent and a high-resolution (1 km), high-
quality US snow analysis product (SNODAS); both fields 
are upscaled to model resolution
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Comparison with MODIS

March 2002 May 2002

Analysis w/o
ScNESDIS

Full analysis

Frequency of days where ScMODIS=0 and snow_massanalysis > 0

Matthias Drusch
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Comparison with SNODAS: snow 
mass
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Matthias Drusch
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Conclusions

• Land surface data assimilation is necessary to correct drifts in slow components
of the land system, caused by deficiencies in the forcing or inaccurate (surface) 
model physics

• Surface analysis still lags behind its atmospheric counterpart
• New methods allow the use of more observations

– A more complete sampling of soil water in physical space: Evaporative feedback to 
the atmosphere (two-metre temperature and humidity), hydrology (1.4 and 6.4 GHz 
microwave Tb), and vegetation state (vegetation indices, lead area index, …)

– Sinergy of 3 observation types reduces the risk of overfitting and/or aliasing
• Non-linear transfer functions to match model and observation space

– Bias correction will always be necessary
• In case of contradictory information between screen-level parameters and mw 

Tb on soil moisture, NWP centres will tend to tune the assimilation to fit the 
evaporative fraction, since that is the quantity impacting on the atmosphere.

• In practice, the output of LDAS can be used to provide a penalty term to soil 
assimilation

• Snow
– Check the observations beforehand (snow)
– Need snow cover for whole reanalysis period (it exists since 1966)
– Optimal ingestion of special observations (Russia and Canada)?


