Variability and Predictability of the Ocean Thermohaline Circulation

Jochem Marotzke

Max Planck Institute for Meteorology (MPI-M)

With contributions by Johanna Baehr, Felix Landerer, Johann Jungclaus, Maria Paz Chidichimo (MPI-M), Stuart Cunningham, Joël Hirschi, Torsten Kanzow, Harry Bryden (NOCS, Southampton)

- 1. Setting the Scene
- 2. Decadal Climate Variability and Predictability
- 3. Observations of THC Change in the North Atlantic

1. Setting the Scene

Observed Sea Level (Surface Circulation)

Rio & Hernandez (2004)

Observed Global Ocean Circulation

U.S. National Research Council (NRC, 2002) Abrupt Climate Change – Inevitable Surprises

Sea Surface Temperature, 4 – 9 November 2002

Nomenclature

Gulf Stream:

- Narrow boundary current off North American coast (Florida)
- Pacific has counterpart (Kuro-shio)
- Gulf Stream cannot collapse, as long as winds blow, continents exist, and the Earth rotates
- Meridional Overturning Circulation (MOC): Total northward/southward flow, over latitude and depth
- Counterpart to MMC in the atmosphere
- Thermohaline Circulation (THC): Part of MOC driven by heat & water exchange with atmosphere
- MOC is observable quantity; THC an interpretation
- Often used synonymously, not rigorously correct
- Here: Use THC when confident of interpretation, MOC when rigour is required

Meridional Overturning Circulation (MOC)

Jayne & Marotzke 2001

2. Decadal Climate Variability and Predictability

Decadal Climate Variability and WCRP

- Decadal variability crucial for both main objectives of WCRP:
 - to determine the predictability of climate start decadal climate predictions as an initial-value problem (WCRP Strategic Framework)
 - to determine the effect of human activities on climate need to filter out natural decadal variability
- Arguably: Ocean processes enhance decadal predictability
 - Longer timescales: Large heat capacity (e.g., winter mixed layers)
 - Longer timescales: Slower dynamical processes
- Arguably: THC, rather than wind-driven circulation, enhances decadal climate predictability
 - THC more likely to be governed by slower oceanic processes
 - THC important for climatic influence and for predictability

Mechanisms of Decadal THC Variability

- Modelling THC variability far more mature than observations – worrisome!
- Still not clear whether coupled mode (Timmermann et al. 1998) or stochastically driven (Delworth et al. 1993), possibly enhanced by damped (Griffies and Tziperman 1995) or self-sustained (Marotzke 1990, Weaver and Sarachik 1991) ocean modes
 - Mainly heat flux-driven as a robust result?
- Effect of decadal THC variations on European climate seen in models (Pohlmann and Keenlyside 2004, Sutton and Hodson 2005) and observations (Czaja and Frankignoul 2002)

Simulated Atlantic MOC

Ice Age or Hothouse – Which Is It to Be?

Der Katastrophenfilm "The Day After

Klimeforschung

NAT DIFF.

Tomorrow zeichnet ein plausibles Horror-Szenario: Die Erde und fast alles, was darauf lebt; wird schockgeforen – als paradoze Folge der Erderwärmung. Aber stehen uns wirklich kalte Zeiten bevor?

AL 28, 10011

PM September 2004 Title

EXTERNET VIELTEN Volumente, Extra dara de la fonda d

Sileschin

Can We Predict a Possible THC Downturn?

- Are all important processes included in the models?
 - Influence of Greenland meltwater on THC stability (not included in the protocol for IPCC AR4 runs)
- Necessary for prediction: continuous observation of the very quantity that is to be predicted
 - Starting point of the proposal to UK NERC to establish the RAPID programme (Marotzke et al., 2000)

"Greenland Melts," MOC Strength

Jungclaus et al. (2006)

3. Observations of MOC Change in the North Atlantic

Sense of urgency: scientists on the Discovery deploy moorings that carry sensors to the ocean floor.

Gulf Stream probed for early warnings of system failure

North Atlantic Circulation

Observations of Change Related to the MOC

- Dickson et al. (2002), Curry et al. (2003): Freshening in northern North Atlantic over last 4 decades (hydrography)
- Hansen et al. (2001): Reduction in overflows (hydrography + hydraulic control theory)
- Häkkinen and Rhines (2004): Slowdown of subpolar gyre surface circulation, 1992-2003 (altimetry)
- All high-profile papers (*Nature*, *Science*); public discussion seemed to imply a corresponding weakening of MOC
- BUT: No indication these measures are valid proxies of MOC – on the contrary (HadCM3; ECHAM5/MPI-OM):
 - Wu et al. (2004): Freshening coincides with stronger MOC
 - Landerer et al. (2006): No correlation subpolar gyre strength-MOC

Control (Grey) & IPCC 20C + A1B Simulations (Blue)

Landerer et al. (2006)

WAX-PLANCK-GESELLSCH

Nature, 1. December 2005 LETTERS

Slowing of the Atlantic meridional overturning circulation at 25° N

Harry L. Bryden¹, Hannah R. Longworth¹ & Stuart A. Cunningham¹

- Bryden et al. (2005): Weakening of MOC at 25°N by 30%, 2004 relative to 1957 (and relative to 1992)
- But: No changes in boundary currents, whether in subtropical (Baringer and Larsen 2001) or subpolar gyre (Schott et al. 2006)
- But: Why was the 1°C cooling expected with such an MOC slowdown (R. Wood, in Kerr 2005) not observed?
 - But: Do 5 "snapshots" (Oct 1957, Jul/Aug 1981, Jul/Aug 1992, Feb 1998, April 2004) allow us to distinguish between trend and variability?

Simulated Atlantic MOC at 26°N

Observed vs. modelled variability

Baehr et al. (2006)

Detecting Modelled MOC Change

Baehr et al. (2006)

Observed vs. modelled variability

Baehr et al. (2006)

Feb. 2004: Continuous Observations Started

Sense of urgency: scientists on the Discovery deploy moorings that carry sensors to the ocean floor.

Gulf Stream probed for early warnings of system failure

Schiermeier (2004)

- Near Atlantic heat transport maximum captures total heat transport convergence into North Atlantic
- South of area of intense heat loss from ocean to atmosphere over Gulf Stream extension
- MOC dominates heat transport (Hall & Bryden '82)
- Heat transport variability dominated by velocity fluctuations (Jayne & Marotzke, 2001)
- Florida Strait transport monitored for >20 years (now: Johns, Baringer, Meinen & Beal, Miami, collaborators)
- 5 modern hydrographic sections ('57, '81, '92, '98, '04)

Monitoring the Atlantic MOC at 26.5°N

(Marotzke, Cunningham, Bryden, Kanzow, Hirschi, Johns, Baringer, Meinen, Beal)

Monitoring the Atlantic MOC at 26.5°N

(Marotzke, Cunningham, Bryden, Kanzow, Hirschi, Johns, Baringer, Meinen, Beal)

CD170 2005 cruise track and mooring stations

Monitoring the Atlantic MOC at 26.5°N

(Marotzke, Cunningham, Bryden, Kanzow, Hirschi, Johns, Baringer, Meinen, Beal)

Waterfall Plot of Potential Density from Moored Profiler

Contributions to Integrated Transport Variability

Mid-Ocean Geostrophic Transport Variability

Conclusions

Greenland meltwater only moderately destabilising for THC during the next two centuries

No valid proxy for MOC has yet been identified

- Continuous observing system of Atlantic MOC has been put in place at 26.5°N.
- Observations show surprisingly strong highfrequency variability of the MOC
- "Observations" of MOC slowdown likely to be artefact of temporal subsampling of noisy system

Outlook

MOC time series needs to be continued

- Alternative observing systems? Cheaper technologies (obviate moorings? Full-depth gliders?)
- Transfer to operational agencies after (likely) RAPID-WATCH phase ends in 2014
- Complementary locations (northern North Atlantic? South Atlantic?)
- Development of MOC proxies
 - Simple proxies (e.g., SST, Latif et al. 2004)
 - Multiproxies (ultimate multiproxy: ocean re-analysis)

Outlook

Decadal predictability of MOC and climate

- Move decadal predictability studies from pure modelling exercises into initialisation of global coupled models with observations, including global data assimilation (ocean & coupled re-analysis)
- Measurements of MOC, MOC proxies, quantities influenced by MOC crucial
- Mechanisms of interdecadal MOC variability
 - Picture still very unclear, but many groups work on it
 - Too much focussed on pure modelling studies?
 - Learn from ENSO theory to consider superposition of effects?

