Scientific Recommendations Land-Atmosphere: Wildfires / Biomass Burning

J.W. Kaiser

contributions from:

R. Engelen, J.-M. Gregoire, A. Hollingsworth, M.G. Schultz, S. Serrar, M. Sofiev, C. Textor

3rd HALO workshop, 2006-12-4/5

Outline

- Introduction
- GEMS / GEOLAND Requirements
- Available Data
- Recommendation
- Summary

INTRODUCTION

3rd HALO workshop, 2006-12-4/5

What is Biomass Burning (BB)?

biomass:

green vegetation, wood, litter, soil organic matter, peat ignition:

lightning or human activity

visible from space by thermal radiation or burnt area gas flares etc. excluded from observations

function:

-

- natural cycle of ecosystem
- deforestation
- agriculture accident

a.k.a. "vegetation fires", "wildfires"

Annual Fire Emissions, averaged over 1997-2004

[Van der Werf et al., ACPD 2006]

Significance for Land Monitoring

Wildfires are an important sink mechanism for the terrestrial carbon pools in the global carbon cycle.

- wildfire emissions, typical global values: 1.5 4 Gt C / year
- fossil fuel emissions of Europe + North America: 3 Gt C / year
- Wildfire behaviour <u>characterises land cover</u> types with repeated fire events.
 - typical fire repeat period
 - typical fire intensity
 - typical fire seasonality
 - •••

Wildfires can <u>change the land cover</u> type reversibly

tropical deforestation

Atmosphere: Biomass Burning (BB) Emissions ...

AIR QUALITY:

- ... can dominate local and regional air quality with poisonous smoke
- ... can elevate background of atmospheric pollutant after long range transport [Stohl et al. 2001, Forster et al. 2001, Andreae et al. 2001]
 POLLUTION CONTROL:
- ... significantly contributes to global budgets of several gases
 - Kyoto, CLRTAP, ...
- **WEATHER:** (absorbing aerosols)
- influences the radiative energy budget [Konzelmann et al., JGR 1996]
- ... provides cloud condensation nuclei [Andreae et al., Science 2004]
- Heat release accelerates deep convection. [Damoah et al., ACP 2006] <u>REMOTE SENSING:</u>
- ... affects essential a priori information for remote sensing (AOD, profiles)

CHALLENGE:

... are highly variable on all time scales from hours to decades

GMES REQUIREMENTS

3rd HALO workshop, 2006-12-4/5

GEMS/GEOLAND BB PRODUCT REQUIREMENTS

	GEMS	GEOLAND				
	amounts of trace gases (CO2, CH4, CO, O3, NO2, SO2,) and aerosols emitted					
PRODUCTS		amount of biomass burnt				
		type of vegetation burnt				
	date, time, and location of fire	date and location of fire				
	injection height profiles					
COVERAGE	spatial:	global, consistent				
	temporal: > 8 years	> 10 years, consistently				
RESOLUTION	spatial: \approx 25 km ((1 km for GEOLAND-2)				
	temporal: 1-6 hours	1 day				
AVAILABILITY	near-real time					
	retrospectively					

AVAILABLE DATA

3rd HALO workshop, 2006-12-4/5

OBSERVATIONS

Two types of fire products accessible from Earth obs. systems

Observation System: Current Fire Products

NAME	DEEEDENCE	SENSOR(S)	COVERAGE		RESOLUTION		AVAILABILITY	STATUS	
NAME	REFERENCE		spatial	temporal	spatial	temporal		STATUS	
Active Fire Products (no quantitative information)									
MODIS active fire	http://modis-fire.umd.edu/products.asp Justice et al. [2002]	Aqua/Terra-MODIS	global	2001 – present	1 km	1 day	NRT	operational	
World Fire Atlas (WFA-algo1)	http://dup.esrin.esa.int/ionia/wfa	ERS2-ATSR2, Envisat-AATSR	global	1995 - present	1 km	1 day	NRT	operational	
Active Fire Monitoring (FIR)	http://www.eumetsat.int/idcplg?ldcService =SS_GET_PAGE&nodeId=522	Meteosat-SEVIRI	Africa & Europe		3 km	15 min	NRT	operational	
IGBP-GFP	http://www-tem.jrc.it/ Dwyer et al. [2000]	NOAA-AVHRR	global	1992-1993	1 km	1 day	retrospectively	finished	
TRMM	http://earthobservatory.nasa.gov/ Observatory/Datasets/fires.trmm.html Giglio et al. [2000]	TRMM-VIRS	40°N - 40°S	1988-2002	2 km / 0.5° (sensor/ product)	1 month	retrospectively	finished	
		ucts with quantitative i	nformation						
WF_ABBA, Dozier method	http://cimss.ssec.wisc.edu/goes/burn/ detection.html Prins et al. [2001, 2004]	GOES-E/W	N/S- America	1995- present	4 km	30 min	NRT	operational	
WF_ABBA, Dozier method	Prins et al. [2001, 2004]	several GEO satellites	global		4 km	30 min	NRT	in planning	
MODIS FRP	http://modis-fire.umd.edu/products.asp Justice et al. [2002]	MODIS	global	2001- present	1 km	1 day	NRT	operational	
SEVIRI FRP	http://www.eumetsat.int/idcplg?ldcService =SS_GET_PAGE&nodeId=522	Meteosat-SEVIRI	Africa & Europe		3 km	15 min	NRT	under development	
global FRP from GEOs	M. Wooster, private comm	several GEO satellites	global		4 km	30 min	NRT	in planning	
	B	urnt Area Products				- 			
GBA1982-1999	http://www-tem.jrc.it/ Carmona-Moreno et al.[2005]	NOAA-AVHRR	global	1982-1999	8 km	1 week	retrospectively	finished	
GBA2000	http://www-tem.jrc.it/fire/gba2000 Tansey et al.[2004a, 2004b]	SPOT-VGT	global	Nov1999- Dec2000	1 km	1 month	retrospectively	finished	
GLOBSCAR	http://dup.esrin.esa.int/ionia/projects/ summaryp24.asp Simon <i>et al.</i> [2004]	ERS2-ATSR2	global	2000	1 km	1 month	retrospectively	existing	
MODIS Fire Affected Area	http://modis-fire.umd.edu/products.asp#8	Aquaa/Terra-MODIS	global	2001- present	500 m	1 day	retrospectively	under development	
Global Daily Burnt Area (GDBAv1)	GDBA partnership: Leicester Univ.(UK), Louvain-La- Neuve Univ.(B), Tropical Res. Inst.(P), JRC (EC)	SPOT-VGT	global	2000-2005	1 km	1 day	retrospectively	under development	
Burnt Area for GEOLAND (BAG)	http://www-gvm.jrc.it/tem/ Restricted access (GEOLAND)	SPOT-VGT	Africa & Eurasia	1998-2003	1 km	10 days	retrospectively	under development	
VGT4Africa	http://www-gvm.jrc.it/tem/	SPOT-VGT	global	2005- present	1 km	1 day	NRT	under development	
GLOBCARBON	http://dup.esrin.esa.it/projects/ summaryp43.asp	ERS2-ATSR2, Envisat-AATSR, Envisat-MERIS, SPOT-VGT	global	1998-2007	8 km	1 month	retrospectively	under development	
3 rd HALO workshop, 2006-12-4/5 Kaiser, Biomass Burning, 12									

3rd HALO workshop, 2006-12-4/5 [Kaiser et al. 2006]

OBSERVATIONS:

Calculating Emission Amounts

Fire Radiative Power (FRP):

M(X) = FRP * time * scaling factor * emission factor(X)

Current NRT Fire Emission Monitoring Systems

RAMS model at INPE/CPTEC

Assimilation of WF ABBA

Delivers CO and aerosol

product from GEOS satellites

emissions over the Americas

200

150 120

90

60 30

20 15

12

NRL/NAAPS aerosol model in the FLAMBE project

- Additionally assimilates the MODIS active fire product
- Delivers global aerosol emissions

3rd HALO workshop, 2006-12-4/5

Global Fire Activities in GEMS @ ECMWF

CO2 and aerosol fire emission from inventory GFEDv2

[van der Werf et al., ACP 2006]

- hot spot fire observations from satellite-borne MODIS
- available fuel load from CASA vegetation model
- no near-real time availability
- time resolution: 8 days
- Can be used as dummy for future fire monitoring system in reanalyses.
- "global" GEO FRP
 - participation in 2 new projects as user

Fire CO2 Emission on 20 Aug 2003 [g / m2 / day] (GFEDv2_8day, re-gridded to T159)

CO2 Model Field with Fires @ 500hPa [ppm]

3rd HALO workshop, 2006-12-4/5

Excess CO2 due to Fires I [ppm]

3rd HALO workshop, 2006-12-4/5

Excess CO2 due to Fires II [ppm]

Cross section of co2 20030820 00 step 12 Expver esvu

3rd HALO workshop, 2006-12-4/5

Kaiser, Biomass Burning, 19

ECMWF

No fire emissions

With fire emissions

No

3rd HALO workshop, 2006-12-4/5

RECOMMENDATION: Global Fire Assimilation System (HALO-GFAS)

3rd HALO workshop, 2006-12-4/5

Benefits of Near-real-Time fire information for GEMS & GEOLAND

- GEMS would benefit from near-real time fire information, but currently uses climatological fire information.
- Biosphere carbon monitoring in GEOLAND-2 would benefit from an accurate burnt biomass product, but the existing products have limited accuracy.
- A future service, HALO-GFAS, could use complementary satellite fire observations, plus a fire model, to provide
 - Emissions
 - Profiles of emission injection heights
 - Pyro-change in biomass
- GEMS would benefit through more realistic and timely fire emission information.
- GEOLAND would benefit through estimates of change in carbon stocks.
- GFAS would benefit from fuel estimates provided by GEOLAND-2 as experience develops.

ECMWF

HALO-GFAS serves GEMS and GEOLAND.

3rd HALO workshop, 2006-12-4/5

Global Fire Assimilation System (HALO-GFAS)

A GFAS is needed to provide the required fire input for the GMES land and atmosphere monitoring systems.

 Assimilation of the best available satellite products into a numerical model of the global fire activity including information on atmospheric conditions and land cover

Additional HALO-GFAS Benefits

- single, consistent, operational fire processing for all GMES systems
 - global and regional
- GEOLAND will benefit from improved land cover characterisation and land cover change detection.
- Numerical Weather Prediction will benefit from fire heat release product for driving the convection.
- A multi-parameter inversion of the observed fire plumes will yield
 - improved fire emission fluxes (GEMS)
 - information on the fire properties
 - improvement of the fire model to be used by
 - HALO-GFAS
 - climate models
- Collaboration of space agencies, satellite retrieval experts, biosphere & atmosphere modellers, and other users
- "Expression of Interest" formulated (March 2006)
 - supported by 30+ scientist from 30+ institutions in Europe
- Funding needed!

ECMWF

SUMMARY

- GEOLAND-2, GEMS/GAS, will need global Biomass Burning modelling in near-real time and consistent multi-year time series.
- No single suitable EO product or monitoring service is available.
- We recommend to develop a Global Fire Assimilation System (HALO-GFAS) to serve the GMES requirements. It should combine:
 - fire EO products
 - meteorological conditions
 - Iand cover: ecosystem, biomass incl. all carbon stocks
 - numerical model of fire activity
- The recommended HALO-GFAS is widely supported in the European science community.
- HALO-GFAS needs funding and a host.

MORE INFORMATION

- www.ecmwf.int/research/EU_projects/HALO
- www.ecmwf.int/research/EU_projects/GEMS
- www.gmes-geoland.info
- j.kaiser@ecmwf.int

ACKNOWLEDGMENTS

This work has been funded by the European Commission through the FP6 projects HALO, GEMS, and GEOLAND.

SCIENCE DISCUSSION

3rd HALO workshop, 2006-12-4/5

Issues in implementing/developing MERSEA, GEOLAND, GEMS in the period 2008-2013

<u>OCEAN</u>

- Current Ocean-Atmosphere set-up looks OK for 2008-2013
- Ocean-Land issues look difficult
 - little can be done before 2013

LAND-ATMOSPHERE

The main issue is how to quantify better the land-atmosphere interactions

- biomass exchange of H2O, CO2, CH4
- (GEOLAND-2) (GFAS)
- Burnt biomass & emissions

GEOLAND-2

- Will assimilate satellite data on LAI, fAPAR..,
 - either online in the IFS, or offline from the IFS
- Will improve C- TESSEL through extensive validation
- Will generate improved estimates of soil organic matter and forest biomass through modelling
- Could generate surface flux estimates offline from IFS, from several SVATS including ORCHIDEE
- GFAS will use biomass estimates and satellite data to provide
 - improved estimates of burnt biomass
- GEMS/GAS can use GEOLAND-2 products in several ways
 - Use C-TESSEL inline in IFS, and assimilate LAI data
 - Use offline GEOLAND-2 fluxes as additional information sources in an ensemble of synthesis inversions
 - The best utilisation can only be determined by experimentation
- GFAS needs funding and a host.

ECMWF