
ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Tools, Trends and
Techniques for Developing

Scientific Software

Tools, Trends and
Techniques for Developing

Scientific Software

Tom Clune - NASA GSFC
Brice Womack - NASA/NGC-TASC
Brian Foote - The Refactory, Inc.

Jeffrey Overbey - University of Illinois

Tom Clune - NASA GSFC
Brice Womack - NASA/NGC-TASC
Brian Foote - The Refactory, Inc.

Jeffrey Overbey - University of Illinois

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

ASTGASTG
Advanced Software Technology Group

Part of the Software Integration and Visualization
Office (SIVO) within Earth Science Division at NASA
Goddard Space Flight Center.
Not formally part of NASA HPC computing.
Assists NASA scientists is development, optimization,
and porting scientific models - primarily
climate/weather and atmospheric chemistry.
Primary clients include

Global Modeling and Assimilation Office - GEOS-5
Goddard Institute for Space Studies - modelE
Various atmospheric chemistry groups

How can the ASTG most effectively aid such a
wide variety of research teams/codes?

Interesting constraint: In most instances, ASTG does
not own/control source code.

Advanced Software Technology Group
Part of the Software Integration and Visualization
Office (SIVO) within Earth Science Division at NASA
Goddard Space Flight Center.
Not formally part of NASA HPC computing.
Assists NASA scientists is development, optimization,
and porting scientific models - primarily
climate/weather and atmospheric chemistry.
Primary clients include

Global Modeling and Assimilation Office - GEOS-5
Goddard Institute for Space Studies - modelE
Various atmospheric chemistry groups

How can the ASTG most effectively aid such a
wide variety of research teams/codes?

Interesting constraint: In most instances, ASTG does
not own/control source code.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

ASTG’s Support ActivitiesASTG’s Support Activities
ASTG is assisting modelers in modifying software
in a variety of manners:

Parallelization
Componentization (migration to ESMF)
Adopting new computational grids (cubed-sphere)
Exploring new/exotic architectures

Blue Gene/L ?
Cell processor ??
Field Programmable Gate Arrays ???

Common theme - potentially require large,
pervasive modifications throughout source code.

However - answers must not change
Legacy code is often difficult to modify without
introducing unintended errors.

ASTG is assisting modelers in modifying software
in a variety of manners:

Parallelization
Componentization (migration to ESMF)
Adopting new computational grids (cubed-sphere)
Exploring new/exotic architectures

Blue Gene/L ?
Cell processor ??
Field Programmable Gate Arrays ???

Common theme - potentially require large,
pervasive modifications throughout source code.

However - answers must not change
Legacy code is often difficult to modify without
introducing unintended errors.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Accruing Code DebtAccruing Code Debt
Expediency often conflicts with long-term software
development/maintenance issues.

“This is a temporary kludge …”
“We’ll use x set to -9999. to signal …”
“We’ll just add another argument to the routine …”
“We’ll just cut-and-paste the loop from over there …”

Scientific programmers are so accustomed to many bad
programming practices that we often forget why the
practices are bad!
“Code Debt” is an apt metaphor

Accrues interest - cost per change increases
Never goes away on its own
Can grow to unmanageable size

Code debt can seriously frustrate attempts to introduce
significant new capabilities in a legacy system.
Worth noting - code debt also increases startup costs
for new developers.

Expediency often conflicts with long-term software
development/maintenance issues.

“This is a temporary kludge …”
“We’ll use x set to -9999. to signal …”
“We’ll just add another argument to the routine …”
“We’ll just cut-and-paste the loop from over there …”

Scientific programmers are so accustomed to many bad
programming practices that we often forget why the
practices are bad!
“Code Debt” is an apt metaphor

Accrues interest - cost per change increases
Never goes away on its own
Can grow to unmanageable size

Code debt can seriously frustrate attempts to introduce
significant new capabilities in a legacy system.
Worth noting - code debt also increases startup costs
for new developers.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Getting Out of Code Debt?Getting Out of Code Debt?
Refactoring: intentionally modifying code so as
to improve quality without modifying behavior

Common examples:
Breaking large routine into smaller, more manageable
routines.
Replacing “magic” numbers with named constants.
Replacing common snippets of code with procedure call
Changing local variable into dummy argument.

The challenge is to reduce the cost and risk of
refactoring such that developers can and will
refactor on a regular basis.

Risks - unintentionally altering behavior
Costs - changes often involve deeply rooted
constructs throughout code.

Refactoring: intentionally modifying code so as
to improve quality without modifying behavior

Common examples:
Breaking large routine into smaller, more manageable
routines.
Replacing “magic” numbers with named constants.
Replacing common snippets of code with procedure call
Changing local variable into dummy argument.

The challenge is to reduce the cost and risk of
refactoring such that developers can and will
refactor on a regular basis.

Risks - unintentionally altering behavior
Costs - changes often involve deeply rooted
constructs throughout code.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Trends in IT industryTrends in IT industry

Agile software processes
Short development cycles (1-2 week
iterations)
Adapts to customer’s changing
requirements
Test Driven Development(TDD)

Implement, build and verify cycle

Relies on new generation of tools to
allow/encourage fast, repeatable
testing of code

Agile software processes
Short development cycles (1-2 week
iterations)
Adapts to customer’s changing
requirements
Test Driven Development(TDD)

Implement, build and verify cycle

Relies on new generation of tools to
allow/encourage fast, repeatable
testing of code

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Test harnessTest harness

A test harness is a system which
verifies (tests) some aspects of
behavior for an existing system.

Used to identify unintended changes
in behavior.

Discover it now, not later!

Improves developer confidence -
compare to a net used to catch
trapeze artists when they practice
new stunts.

A test harness is a system which
verifies (tests) some aspects of
behavior for an existing system.

Used to identify unintended changes
in behavior.

Discover it now, not later!

Improves developer confidence -
compare to a net used to catch
trapeze artists when they practice
new stunts.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Software Time ScaleSoftware Time Scale

Both development and maintenance can be
characterized by the above cycle.
Long cycles are undesirable

Developers tend to make many/larger changes before
verification.
More difficult to isolate cause of defects.
Bugs are discovered when developer’s memory is stale.

Many teams work with cycle times in hours,
days, or even weeks.

Common practice for agile software developers are in
the 1-10 minute range.

Both development and maintenance can be
characterized by the above cycle.
Long cycles are undesirable

Developers tend to make many/larger changes before
verification.
More difficult to isolate cause of defects.
Bugs are discovered when developer’s memory is stale.

Many teams work with cycle times in hours,
days, or even weeks.

Common practice for agile software developers are in
the 1-10 minute range.

implement

buildverify

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Test Driven DevelopmentTest Driven Development
TDD - very fast cycle

Write test for new behavior
Write code to pass test
Remove redundancy

Advantages
Early detection and fast isolation of defects
Reduced development and maintenance costs
Large degree of confidence!
Always ready for release.
Better design!?

Costs
2-3x more lines of source code
Requires discipline and adequate support from tools.

How applicable is this to numerical routines?

Early detection and fast isolation of defects
Reduced development and maintenance costs
Large degree of confidence!
Always ready for release.
Better design!?

TDD - very fast cycle
Write test for new behavior
Write code to pass test
Remove redundancy

Advantages

Costs
2-3x more lines of source code
Requires discipline and adequate support from tools.

How applicable is this to numerical routines?

?

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Testing FrameworksTesting Frameworks
Enables developer to easily create, group, and execute
collection of tests.

Support for many languages: JUnit, cppUnit, pyUnit, …

New psychology of development: “Green Bar” addiction

Enables developer to easily create, group, and execute
collection of tests.

Support for many languages: JUnit, cppUnit, pyUnit, …

New psychology of development: “Green Bar” addiction

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Refactoring ToolsRefactoring Tools
Provide high-level, semantic, and safe
transformations of source code

Examples include
Rename
Extract method

Best if used in conjunction with testing harness.

Combining with TDD total development time is
significantly reduced for legacy applications:

Fewer development cycles due to larger changes
within a cycle with minimal risk.
Faster, reliable cycles from TDD�

Eclipse - popular open source IDE
Provides powerful refactorings for JAVA and C++

Provide high-level, semantic, and safe
transformations of source code

Examples include
Rename
Extract method

Best if used in conjunction with testing harness.

Combining with TDD total development time is
significantly reduced for legacy applications:

Fewer development cycles due to larger changes
within a cycle with minimal risk.
Faster, reliable cycles from TDD�

Eclipse - popular open source IDE
Provides powerful refactorings for JAVA and C++

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Tools for FortranTools for Fortran
Testing frameworks

More difficult to develop in Fortran due to
relatively limited abstraction capabilities.
Nonetheless several have been developed:

pFUnit - full featured, includes support for MPI
Funit - full featured, built using Ruby
FRUIT - Limited features, primarily an Assert
package

These Fortran testing frameworks are well
suited for many development efforts, but
provide no effective capabilities for dealing
with most legacy software.��

Testing frameworks
More difficult to develop in Fortran due to
relatively limited abstraction capabilities.
Nonetheless several have been developed:

pFUnit - full featured, includes support for MPI
Funit - full featured, built using Ruby
FRUIT - Limited features, primarily an Assert
package

These Fortran testing frameworks are well
suited for many development efforts, but
provide no effective capabilities for dealing
with most legacy software.��

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

pfUnit - Parallel Fortran
Testing Framework

pfUnit - Parallel Fortran
Testing Framework

Developed at NASA GSFC (Clune & Womack)
Used internally by ASTG for several projects
Recently released under NASA open source license

http://sourceforge.net/projects/pfunit
User documentation and useful examples are still being
created.

Bootstrap development via TDD
Bundled with self tests.
F95 based implementation
Augmented with minimal amount of C

Supports HPC unique test cases
Parallel MPI unit tests
Extensive Assert library for floating point
Parameterized unit tests

Developed at NASA GSFC (Clune & Womack)
Used internally by ASTG for several projects
Recently released under NASA open source license

http://sourceforge.net/projects/pfunit
User documentation and useful examples are still being
created.

Bootstrap development via TDD
Bundled with self tests.
F95 based implementation
Augmented with minimal amount of C

Supports HPC unique test cases
Parallel MPI unit tests
Extensive Assert library for floating point
Parameterized unit tests

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Other Tools for FortranOther Tools for Fortran
Photran - Refactoring tool for Fortran

Provided as plug-in for Eclipse
Integrated with CVS
View outline of file
Jump to source line for error

Refactoring capabilities under development
Rename: “a2s” -> “convertToString”
Extract Subprogram: replace section of code with call to
new subroutine. Tool prompts user for information -
dummy args, routine name, etc.

Future refactorings - which should be highest priority?
Replace Common, Add Argument, Move Subprogram,
Remove Continue, …
Each new refactoring requires nontrivial development
effort to make automatic and robust. I.e. need more
funding.

Photran - Refactoring tool for Fortran
Provided as plug-in for Eclipse

Integrated with CVS
View outline of file
Jump to source line for error

Refactoring capabilities under development
Rename: “a2s” -> “convertToString”
Extract Subprogram: replace section of code with call to
new subroutine. Tool prompts user for information -
dummy args, routine name, etc.

Future refactorings - which should be highest priority?
Replace Common, Add Argument, Move Subprogram,
Remove Continue, …
Each new refactoring requires nontrivial development
effort to make automatic and robust. I.e. need more
funding.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

Legacy Software?Legacy Software?
By themselves, testing frameworks are inadequate for
applying TDD to legacy software.

Difficult to bootstrap:
Need tests to make changes
Need changes to make testable

Quite often the only available tests are to check that
original behavior is preserved.

Typical fortran legacy applications involve additional
difficulties:

Data not passed through formal interface:
Vars in common blocks, module variables
SAVE’d local variables

Conditional compilation and deeply nested conditional
blocks limit test coverage.
Large routines (1000+ lines) are difficult beasts to
engage: Where do you start?

By themselves, testing frameworks are inadequate for
applying TDD to legacy software.

Difficult to bootstrap:
Need tests to make changes
Need changes to make testable

Quite often the only available tests are to check that
original behavior is preserved.

Typical fortran legacy applications involve additional
difficulties:

Data not passed through formal interface:
Vars in common blocks, module variables
SAVE’d local variables

Conditional compilation and deeply nested conditional
blocks limit test coverage.
Large routines (1000+ lines) are difficult beasts to
engage: Where do you start?

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

FFTTFFTT
Fast Fortran Transformation Toolkit

Toolkit to assist placing test harness around legacy code.
General approach:

Provide methods to capture existing (empirical) behavior for
legacy routines.

Store state of subsystem before and after procedure call.
Create tests based upon stored behavior and incorporate
them into test suites.
Rely on OO capabilities in F2003 to maximize flexibility and
power. (Will not require F2003 for actual user application!)

Timeline for development:
Conceptual design is complete
Prototype/demonstration in legacy applications ~ April 2007.

(Will be developed using TDD methodology.)
Open-source release ~ October 2007.

Fast Fortran Transformation Toolkit
Toolkit to assist placing test harness around legacy code.

General approach:
Provide methods to capture existing (empirical) behavior for
legacy routines.

Store state of subsystem before and after procedure call.
Create tests based upon stored behavior and incorporate
them into test suites.
Rely on OO capabilities in F2003 to maximize flexibility and
power. (Will not require F2003 for actual user application!)

Timeline for development:
Conceptual design is complete
Prototype/demonstration in legacy applications ~ April 2007.

(Will be developed using TDD methodology.)
Open-source release ~ October 2007.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

SummarySummary
Important to remain aware of capabilities in
general software development community.

Investments in scientific development are dwarfed
by the investments made in other software areas.

Opportunities for significant long-term
productivity gains will be missed unless
appropriate investment are made in
tools/training for developers of technical
software.
Some minimal capabilities are on the near-
term horizon.

Important to remain aware of capabilities in
general software development community.

Investments in scientific development are dwarfed
by the investments made in other software areas.

Opportunities for significant long-term
productivity gains will be missed unless
appropriate investment are made in
tools/training for developers of technical
software.
Some minimal capabilities are on the near-
term horizon.

ECMWF - Nov. 2, 2006ECMWF - Nov. 2, 2006

ReferencesReferences

Testing Frameworks:
JUnit - Erich Gamma and Kent Beck

http://www.junit.org/index.htm
pFUnit - Tom Clune and Brice Womack

http://opensource.gsfc.nasa.gov/projects/funit/pfunit.php
http://sourceforge.net/projects/pfunit

Funit - Bil Kleb et al
http://funit.rubyforge.org

FRUIT - Andrew Chen
http://sourceforge.net/projects/fortranxunit

IDE’s
Eclipse - IBM et al

http://www.eclipse.org
Photran - Jeffrey Overbey et al

http://www.eclipse.org/photran

Books
Test Driven Development - by Example - Kent Beck
Refactoring - Martin Fowler

Testing Frameworks:
JUnit - Erich Gamma and Kent Beck

http://www.junit.org/index.htm
pFUnit - Tom Clune and Brice Womack

http://opensource.gsfc.nasa.gov/projects/funit/pfunit.php
http://sourceforge.net/projects/pfunit

Funit - Bil Kleb et al
http://funit.rubyforge.org

FRUIT - Andrew Chen
http://sourceforge.net/projects/fortranxunit

IDE’s
Eclipse - IBM et al

http://www.eclipse.org
Photran - Jeffrey Overbey et al

http://www.eclipse.org/photran

Books
Test Driven Development - by Example - Kent Beck
Refactoring - Martin Fowler

	Tools, Trends and Techniques for Developing Scientific Software
	ASTG
	ASTG’s Support Activities
	Accruing Code Debt
	Getting Out of Code Debt?
	Trends in IT industry
	Test harness
	Software Time Scale
	Test Driven Development
	Testing Frameworks
	Refactoring Tools
	Tools for Fortran
	pfUnit - Parallel Fortran Testing Framework
	Other Tools for Fortran
	Legacy Software?
	FFTT
	Summary
	References

