
Flexible Coupling
for Performance

Chris Armstrong 
Rupert Ford
Graham Riley



ECMWF Workshop
11th October 2006

Overview

• Introduction

• Deployment flexibility (BFG1)

• Argument Passing (BFG2)

• GENIE results

• Conclusions



ECMWF Workshop
11th October 2006

Introduction

• Flexible Coupling Approach: metadata describing individual models (e.g. 
subroutines or methods), their composition into a coupled model and their 
deployment onto resources, and generate the required wrapper code (e.g. 
main(s) and communication code).

• BFG{1,2} are implementations of the above approach 

Configure 
coupled 
model

Configure 
models Compile Run



ECMWF Workshop
11th October 2006

Translated
xml

Introduction: BFG Implementation

Xslt
engine

Input
xml

xslt

script

coupled
xml

deployment
xml

composition
xml

model
xml

xslt

tmp
xml

Xslt
engine

Code and
scripts



ECMWF Workshop
11th October 2006

Introduction: Model Wrapping

Main(s), Control, Coupling wrapper

Atm

Coupling wrapper

Target Coupling Infrastructure

- Existing code/library code
- BFG-generated wrapper code

Ocn Sea-ice



ECMWF Workshop
11th October 2006

BFG1: Deployment Flexibility

• Support for many targets, therefore choose most appropriate:

– in-sequence, mpi, Oasis3, tdt, web services

– (Oasis4, esmf, …)

• No change to model code (or composition)

Main(s), Control, Coupling wrapper

Atm

mpi Coupling wrapper

mpi

Ocn Sea-ice

Oasis3 Coupling wrapper

Oasis3

In-sequence Coupling wrapper



ECMWF Workshop
11th October 2006

BFG1: Deployment Flexibility

• Ability to choose most appropriate mapping of models to executables, with no 
change to model code (or composition)

Main

Atm

Coupling

Target Coupling Infrastructure

Ocn Sea-ice

Main Main

Coupling Coupling

MainMain



ECMWF Workshop
11th October 2006

(f90) Models and In-Place Communication

module m1model
…
real :: a,x,y
…
subroutine m1init()
! Do things
call put(a,3)

end subroutine m1init
…
subroutine m1()
call get(x,6)
! Do things
call put(y,3)

end subroutine m1
…
end module m1model

module m2model
…
real :: a,b,c
…
subroutine m2init()
call get(c,2)
! Do things

end subroutine m2init
…
subroutine m2()
call get(a,1)
! Do things
call put(b,1)

end subroutine m2
…
end module m2model

mpi_send()
mpi_recv()

prism_put()
prism_get()copyfrombuf()

copytobuf()



ECMWF Workshop
11th October 2006

Running in Sequence?

program mycoupledmodel

use m1model
use m2model

call m1init()
call m2init()

do i=1,nts
call m1()
call m2()

end do

end program mycoupledmodel

program mycoupledmodel

use m1model
use m2model

real :: a,b,c

call m1init(a)
call m2init(a)

do i=1,nts
call m1(b,c)
call m2(b,c)

end do

end program mycoupledmodel

BFG (In-place) style control Hand-crafted Arg-passing comms
(and data allocation)



ECMWF Workshop
11th October 2006

BFG2: (f90) Models and Arg-passing Communication

module m1model
…
real :: a,x,y
…
subroutine m1init()
! Do things
call put(a,3)

end subroutine m1init
…
subroutine m1()
call get(x,6)
! Do things
call put(y,3)

end subroutine m1
…
end module m1model

module m1model

…

subroutine m1init(a)
real, intent(out):: a
! Do things

end subroutine m1init
…
subroutine m1(x,y)
real, intent(in) :: x
real, intent(out):: y
! Do things

end subroutine m1
…
end module m1model



ECMWF Workshop
11th October 2006

BFG2: Wrapping Arg-passing Communication

module m1model

…

subroutine m1init(a)
real, intent(out):: a
! Do things

end subroutine m1init
…
subroutine m1(x,y)
real, intent(in) :: x
real, intent(out):: y
! Do things

end subroutine m1
…
end module m1model

module m1modelwrap
…
use m1model
…
real :: a,x,y
…
subroutine m1initwrap()
call m1init(a)
call put(a,3)

end subroutine m1initwrap
…
subroutine m1wrap()
call get(x,6)
call m1(x,y)
call put(y,3)

end subroutine m1wrap
…
end module m1modelwrap



ECMWF Workshop
11th October 2006

BFG2: Mixed Arg-passing/In-place Communication

module m1model
…
real :: y
…
subroutine m1init(a)
real, intent(out):: a
! Do things

end subroutine m1init
…
subroutine m1(x)
real, intent(in) :: x
! Do things
call put(y,3)

end subroutine m1
…
end module m1model

• Choose most appropriate for model 
developer and for required use

• e.g. in-place for some diagnostics



ECMWF Workshop
11th October 2006

BFG2: Mixed, concurrent/in-sequence

call atm(a)

call atm_chem(a)

call ocn(a)

call ocn_chem(a)

threads/processes

call atm(a)

call atm_chem(a)

call put(a,tag)

call get(a,tag)

call ocn(a)

call ocn_chem(a)

threads/processes

(Oasis4)

mpi



ECMWF Workshop
11th October 2006

GENIE example

• ESM system http://www.genie.ac.uk

• Models implemented with arg passing, all run in sequence, hand crafted 
control code (and data allocation)

• Made 4 genie models compliant and generate 2 configurations (ig_fi_sl, 
ig_sl_sl)

• Same performance as hand crafted implementations with slightly less memory 
use.

http://www.genie.ac.uk/


ECMWF Workshop
11th October 2006

GENIE example



ECMWF Workshop
11th October 2006

FLUME, PRISM, BFG

• Graham and I are consultants to the Met Office on FLUME.

• BFG1 and BFG2 were originally implemented to test out the ideas being 
developed in FLUME.

• It is hoped that FLUME models will be compatible with BFG2. The current 
plan is to follow the same model coding rules and to ensure that the metadata 
describing models are at least compatible and hopefully the same.

• FLUME will use Oasis4 (the latest generation PRISM Coupler) to couple 
models concurrently (plan to use wrapping code approach).

• Oasis4 will be a BFG2 target



ECMWF Workshop
11th October 2006

Conclusions

• Flexibility in deployment allows

– choice of most efficient “target” infrastructure

– choice of most efficient mapping of models to “main’s”

• Argument passing interface allows

– as efficient generated code (in memory and time) as hand crafted code 
when running in sequence

– all models to be run in-sequence, some models to be run in-sequence and 
some concurrently, all models to be run concurrently. Can choose most 
appropriate target and mapping to mains for concurrent models.

– (potentially) More fine grain coupling without loss of performance

– (potentially) Coupling for both NWP and ESM.



ECMWF Workshop
11th October 2006

Thanks …

http://www.cs.manchester.ac.uk/cnc/projects/bfg


	Flexible Coupling�for Performance
	Overview
	Introduction
	Introduction: BFG Implementation
	Introduction: Model Wrapping
	BFG1: Deployment Flexibility
	BFG1: Deployment Flexibility
	(f90) Models and In-Place Communication
	Running in Sequence?
	BFG2: (f90) Models and Arg-passing Communication
	BFG2: Wrapping Arg-passing Communication
	BFG2: Mixed Arg-passing/In-place Communication
	BFG2: Mixed, concurrent/in-sequence
	GENIE example
	GENIE example
	FLUME, PRISM, BFG
	Conclusions
	Thanks …

