

Performance Comparison of Capability Application Benchmarks on the IBM p5-575 and the Cray XT3

Mike Ashworth

Computational Science and Engineering Department CCLRC Daresbury Laboratory Warrington UK

http://www.cse.clrc.ac.uk/arc/

Mike Ashworth, CCLRC Daresbury Laboratory

Abstract

- The UK's flagship scientific computing service is currently provided by an IBM p5-575 cluster comprising 2560 1.5 GHz POWER5 processors operated by the HPCx Consortium. The next generation high-performance resource for UK academic computing has recently been announced. The HECToR project (High-End Computing Technology Resource) will be provided with technology from Cray Inc., the system being the followon to the Cray XT3, with a target performance of some 50-100 Tflop/s.
- We present initial results of a benchmarking programme to compare the performance of the IBM POWER5 system and the Cray XT3 across a range of capability applications of key importance to UK science. Codes are considered from a diverse section of application domains, including environmental science, molecular simulation and computational engineering.
- We find a range of performance with some algorithms performing better on one system and some on the other and we use low-level kernel benchmarks and performance analysis tools to examine the underlying causes of the performance.

Outline

- Introduction
 - CCLRC Daresbury Laboratory
 - HPCx
 - A perspective on UK academic HPC provision
 - HECTOR a new resource for UK computational science
- Performance comparison IBM p5-575 vs. Cray XT3
 - IMB
 - POLCOMS
 - PCHAN
 - DL_POLY3
 - GAMESS-US
 - Single-core vs. dual-core
- Conclusions

Introduction

Mike Ashworth, CCLRC Daresbury Laboratory

CCLRC Daresbury Laboratory

Computational Science & Engineering Department

Mike Ashworth, CCLRC Daresbury Laboratory

The HPCx Project

Computational Science & Engineering Department

- Operated by CCLRC Daresbury Laboratory and the University of Edinburgh
- Located at Daresbury
- Six -year project from November 2002 through to 2008
- First Tera-scale academic research computing facility in the UK
- Funded by the Research Councils: EPSRC, NERC, BBSRC
- IBM is the technology partner
 - '02 Phase1: 3 Tflops sustained 1280 POWER4 cpus + SP Switch
 - '04 Phase2: 6 Tflops sustained 1600 POWER4+ cpus + HPS
 - '05 Phase2A: Performance-neutral upgrade to 1536 POWER5 cpus
 - '06 Phase3: 12 Tflops sustained 2560 POWER5 cpus

HPCx Phase2A

Computational Science & Engineering Department

Mike Ashworth, CCLRC Daresbury Laboratory

UK Strategy for HPC

- Current UK Strategy for HPC Services
 - Funded by the UK Government Office of Science & Technology
 - Managed by EPSRC on behalf of the community
 - Initiate a competitive procurement exercise every 3 years
 - for both the system (hardware and software) and
 - service (accommodation, management and CSE support)
 - Award a 6 year contract for a service
 - Consequently, have 2 overlapping services at any one time
 - The contract to include at least one, typically two, technology upgrades
 - Resources allocated on both national systems through normal peer review process for research grants
 - Virement of resources is allowed e.g. when one of the services has a technology upgrade

Total academic provision

ECMWF Workshop 2006 2nd November 2006

Mike Ashworth, CCLRC Daresbury Laboratory

Total academic provision + ECMWF

Computational Science &

Engineering Department

US

H

Total academic provision + HECToR

Computational Science & Engineering Department

Mike Ashworth, CCLRC Daresbury Laboratory

HECToR and **Beyond**

Computational Science & Engineering Department

- High End Computing Technology Resource
 - Budget capped at £100M including all costs over 6 years
 - Three phases with performance doubling (like HPCx)
 - 50-100 Tflop/s, 100-200 Tflop/s, 200-400 Tflop/s peak
 - Three separate procurements
 - Hardware technology
 - CSE support

- (Cray are "preferred vendor" XT4) (NAG core + distributed support)
- Accommodation & Management (2nd tender issued October 2006)
- "Child of HECToR"
 - Competition for better name!
 - Possible collaboration with UK Met Office
 - Procurement due mid-2007
 - Possible HPC Eur: european scale procurement and accommodation

All this provides motivation for this talk ...

... a Comparison of the Cray XT3 and IBM p5-575

(current vs. "future" UK provision)

Mike Ashworth, CCLRC Daresbury Laboratory

Systems under Evaluation

Make/Model	Ncpus	CPU	Interconnect	Site
Cray X1/E	4096	Cray SSP	CNS	ORNL
Cray XT3	1100	Opteron 2.6 GHz	SeaStar	CSCS
Cray XD1	72	Opteron 250 2.4 GHz	RapidArray	CCLRC
IBM	2560	POWER5 1.5 GHz	HPS	CCLRC
SGI	384	Itanium2 1.3 GHz	NUMAlink	CSAR
SGI	128	Itanium2 1.5 GHz	NUMAlink	CSAR
Streamline cluster	256	Opteron 248 2.2 GHz	Myrinet 2k	CCLRC

- all Opteron systems: used PGI compiler: -O3 -fastsse
- Cray XT3: used -small_pages (see Neil Stringfellow's talk on Thursday)
- Altix: used Intel 7.1 or 8.0 (7.1 faster for PCHAN)
- IBM: used xlf 9.1 03 garch=pwr4 gtune=pwr4

Acknowledgements

SE Computat Engineeri

Thanks are due to the following for access to machines ...

- Swiss National Supercomputer Centre (CSCS)
 - Neil Stringfellow
- Oak Ridge National Laboratory (ORNL)
 - Pat Worley (Performance Evaluation Research Center)
- Engineering and Physical Sciences Research Council (EPSRC)
 - access to CSAR systems
 - HPCx time
 - CSE's DisCo programme (Cray XD1)
- Council for the Central Laboratories for the Research Councils (CCLRC)
 - SCARF Streamline cluster

Kernel benchmarks ...

Mike Ashworth, CCLRC Daresbury Laboratory

PingPong - Latency

MPI_AIIReduce 128 procs

MPI_Reduce 128 procs

MPI_AllGather 128 procs

MPI_AllGatherV 128 procs

MPI_AIIToAII 128 procs

MPI_Bcast 128 procs

IMB Summary

Mike Ashworth, CCLRC Daresbury Laboratory

Kernel benchmarks are interesting but ...

... it's the application performance that counts

Mike Ashworth, CCLRC Daresbury Laboratory

Benchmark Applications

· POLCOMS

- Proudman Oceanographic Laboratory Coastal Ocean Modelling System
- Coupled marine ecosystem modelling (ERSEM), also wave modelling (WAM), and sea-ice modelling (CICE)
- Medium resolution continental shelf model hydrodynamics alone.
- PDNS3D
 - UK Turbulence Consortium, led by Southampton University
 - Direct Numerical Simulation of Turbulence
 - T3 channel flow benchmark on a grid 360 x 360 x 360
- DL_POLY3
 - Molecular dynamics code developed at Daresbury Laboratory
 - Macromolecular simulation of 8 Gramicidin-A species (792,960 atoms)
- GAMESS-US
 - *ab initio* molecular quantum chemistry
 - Si C_3 benchmark
 - $Si_n C_m$ clusters of interest in materials science and astronomy \mathcal{C}_{CCLRC}

Mike Ashworth, CCLRC Daresbury Laboratory

POLCOMS Structure

POLCOMS code characteristics

CSE

- 3D Shallow Water equations
 - Horizontal finite difference discretization on an Arakawa B-grid
 - Depth following sigma coordinate
 - Piecewise Parabolic Method (PPM) for accurate representation of sharp gradients, fronts, thermoclines etc.
 - Implicit method for vertical diffusion
 - Equations split into depth-mean and depth-fluctuating components
 - Prescribed surface elevation and density at open boundaries
 - Four-point wide relaxation zone
 - Meteorological data are used to calculate wind stress and heat flux
- Parallelisation
 - 2D horizontal decomposition with recursive bi-section
 - Nearest neighbour comms but low compute/communicate ratio
 - Compute is heavy on memory access with low cache re-use

MRCS model

- Medium-resolution
 Continental Shelf model
 (MRCS):
 - 1/10 degree x 1/15 degree
 - grid size is 251 x 206 x 20
 - used as an operational forecast model by the UK Met Office
 - image shows surface temperature for Saturday 28th Oct 2006

http://www.metoffice.gov.uk/research/ncof/mrcs/browser.html

Mike Ashworth, CCLRC Daresbury Laboratory

UK Turbulence Consortium

Led by Prof. Neil Sandham, University of Southampton

Focus on compute-intensive methods (Direct Numerical Simulation, Large Eddy Simulation, etc) for the simulation of turbulent flows

Shock boundary layer interaction modelling - critical for accurate aerodynamic design but still poorly understood

http://www.afm.ses.soton.ac.uk/

PDNS3D Code - characteristics

- Structured grid with finite difference formulation
- Communication limited to nearest neighbour halo exchange
- High-order methods lead to high compute/communicate ratio
- Performance profiling shows that single cpu performance is limited by memory accesses - very little cache re-use
- Vectorises well
- VERY heavy on memory accesses

PDNS3D - high-end

CSE

PCHAN T3 (360 x 360 x 360)

DL_POLY3 Gramicidin-A

GAMESS-US SiC₃

Mike Ashworth, CCLRC Daresbury Laboratory

So how did the applications do?

Mike Ashworth, CCLRC Daresbury Laboratory

Application Summary

Mike Ashworth, CCLRC Daresbury Laboratory

What about dual-core on the Cray XT3?

Mike Ashworth, CCLRC Daresbury Laboratory

POLCOMS MRCS dual-core

Mike Ashworth, CCLRC Daresbury Laboratory

PDNS3D T3 dual-core

CSE Co En

Mike Ashworth, CCLRC Daresbury Laboratory

Conclusions

- We have shown initial results from an applications level benchmark comparison between IBM POWER5 and Cray XT3
- Intel MPI benchmarks are very similar
 - Latency is almost identical at 5.5-5.6 us
 - IBM HPS has better achieved bandwidth: 1.6 GB/s vs. 1.1 GB/s
- Applications performance depends on the application
 - So far ... most (3:1) apps perform better on the Cray XT3
 - One memory intensive app performs much better on the IBM
 - Memory intensive apps appear to be badly affected by the move to dual-core (& multi-core?)

If you have been ...

Thank you for listening

Mike Ashworth, CCLRC Daresbury Laboratory