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Bene�ts of Kalman Filtering (KF)

The formulation of the general data assimilation (state estimation) problem for
discrete time steps t = 1, 2, 3, ..., n contains an evolution or prediction equation
and an observation equation:

x(t) = Mt(x(t− 1)) + Et (1)

y(t) = Kt(x(t)) + et, (2)

whereMt is a model of the evolution operator, xt is the state of the process at
time t and Et is a vector valued stochastic process.

The second equation connects the state estimate x(t) to the measurements
y(t), with their associated observation errors et, by way of an observation operator
Kt.
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Bene�ts of Kalman Filtering (KF)

⇒ The optimal linear estimator to the data assimilation problem is the Extended
Kalman Filter (EKF).

⇒ EKF can compensate for model bias

⇒ EKF analyses are discontinuous, but can be smoothed out afterwards

⇒ The analysis error covariance matrix can be used for assessing predictability

⇒ Its singular vectors can be used as initial perturbations to Ensemble Forecasting,
if the time interval over which they have been computed is appropriate
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Feasible Approximations to KF

⇒ EKF requires that in addition to evolving the model state with the nonlinear
forecast model, all the columns of the analysis error covariance matrix be
evolved back and forth in time, with the adjoint model and the tangent linear
model in succession.

⇒ This is prohibitively expensive, and we must �nd feasible approximations to
EKF.
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Feasible Approximations to KF

⇒ 4D-Var is the special case of EKF where the model is perfect and the analysis
error covariance matrix is static

⇒ In Reduced Rank Kalman Filtering (RRKF), the covariance matrix is constantly
projected onto a �xed low dimensional subspace and evolved only there

⇒ In Ensemble Kalman Filtering (EnKF), a set of random perturbations is evolved
to form a statistical sample of the span of the analysis error covariance matrix
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Design Principles of the Variational Kalman Filter

(VKF)

⇒ VKF - like EKF - behaves like a continuous data assimilation method

⇒ It is robust against model error

⇒ It produces a good estimate to the analysis error covariance matrix

⇒ VKF is highly parallel
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Kalman Filter algorithm (1/2)

Let xest(t − 1) be an estimate of state x(t − 1) and Sest(t − 1) be the
corresponding error covariance matrix of the estimate. At time t the evolution
operator is used to produce an a priori estimate xa(t) and its covariance Sa(t):

xa(t) = Mtxest(t− 1) (3)

Sa(t) = MtSest(t− 1)MT
t + SEt, (4)

where SEt is the covariance of the prediction error Et.
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Kalman Filter algorithm (2/2)

The next step is to combine xa(t) with the observations y(t) made at time t
to construct an updated estimate of the state and its covariance:

Gt = Sa(t)KT
t (KtSa(t)KT

t + Set)−1 (5)

xest(t) = xa(t) + Gt(y(t)−Ktxa(t)) (6)

Sest(t) = Sa(t)−GtKtSa(t), (7)

where Gt is the Kalman gain matrix, which is functionally identical to the
maximum a posteriori estimator.

In a more general case, when the evolution model and/or the observation
model is non-linear, the Extended Kalman Filter (EKF) is required.
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Extended Kalman Filter algorithm (1/3)

The �lter uses the full non-linear evolution model equation (1) to produce an
a priori estimate: xa(t) =Mt(xest(t− 1)) .

In order to obtain the corresponding covariance Sa(t) of the a priori

information, the prediction model is linearized about xest(t− 1):

Mt =
∂Mt(xest(t− 1))

∂x
(8)

Sa(t) = MtSest(t− 1)MT
t + SEt. (9)

The linearization Mt of the modelMt in equation (8) is computed as the
tangent linear model, from which the adjoint model MT

t is obtained as its
transpose.
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Extended Kalman Filter algorithm (2/3)

The observation operator is linearized at the time of the observation about the a
priori estimate xa(t) in order to obtain Kt, which is then used for calculating
the gain matrix:

Kt =
∂Kt(xa(t))

∂x
(10)

Gt = Sa(t)KT
t (KtSa(t)KT

t + Set)−1. (11)

The evolution of the full covariance matrix expressed by the term
MtSest(t− 1)MT

t in equation (9) is a computationally very expensive
operation for large models.
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Extended Kalman Filter algorithm (3/3)

After this, the full non-linear observation operator is used to update xa(t) and
this is then used to produce a current state estimate and the corresponding error
estimate:

xest(t) = xa(t) + Gt(y(t)−Kt(xa(t))). (12)

Sest(t) = Sa(t)−GtKtSa(t). (13)

If the linearization of the observation operator at xa(t) is not good enough to
construct xest(t), it will be necessary to carry out some iterations of the last
four equations.
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Variational Kalman Filter algorithm (1/5)

The VKF method uses the full non-linear prediction equation (1) to construct an
a priori estimate from the previous state estimate:

xa(t) =Mt(xest(t− 1)). (14)

The corresponding approximated covariance Sa(t) of the a priori information is
available from the previous time step of VKF method.

In order to avoid the computation of the Kalman gain we perform a 3D-Var
optimization with a Kalman equivalent cost function. As the result of the
optimization, we get the state estimate xest(t) for the present time t.
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Variational Kalman Filter algorithm (2/5)

The error estimate Sest(t) of the state estimate is obtained from the formula:

Sest(t) = 2(Hess(t))−1, (15)

where the inverse of the matrix Hess(t) can be approximated by using the
search directions of the optimization process. These directions are used also by
the Quasi-Newton method used in the minimization for creating an
approximation to the Hessian of the cost function.
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Variational Kalman Filter algorithm (3/5)

The estimate of the analysis error covariance is updated from the previous
estimate using the Kalman formula

Sa(t) = Mt−1(Sest(t− 1) + SPt−1)MT
t−1 + SEt, (16)

where SPt is a stochastic process representing the variance of the matrix valued
truncation error incurred in approximating the analysis error covariance matrix
Sa(t) by the approximate inverse Hessian (Hess(t))−1 from the minimization.

We split Sest(t− 1) into a static background covariance B that represents the
long term mean of the covariance matrix and to a low rank transient component,
kept in vector form, which is transformed by the adjoint and tangent linear
models.
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Variational Kalman Filter algorithm (4/5)

In practice, the inverse of the Hessian only is kept, and in vector form to boot.
The required multiplications with the analysis error covariance matrix are carried
out with the Sherman-Morrison-Woodbury formula.

During the optimization another task is done: the full non-linear evolution model
equation (1) is used to transfer search directions to the next time step t + 1.
These evolved search directions are then used to update the approximation of the
present covariance Sa(t) in order to approximate Sa(t + 1).

The other vectors used to approximate Sa(t) should be transferred by the
nonlinear evolution as well, if there is a long interval between observations. In our
current experiments, it has proven su�cient just to use them as they stand and
still retain the useful qualities of VKF intact.
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Variational Kalman Filter algorithm (5/5)

In order to maintain an upper limit on the rank of the Hessian approximation used
in the L-BFGS Quasi-Newton method, the updates are carried out by using the
limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) update formulas.

After a 3D-Var optimization we have an updated covariance Ŝa(t) which is then
used to produce:

Sa(t + 1) = Ŝa(t) + SEt. (17)

At each iteration of the optimization method the evolved search directions and
the evolved gradients of J are stored and the approximation of the Ŝa(t) is
updated as the optimization method updates it's own approximation of the
inverse Hessian (∇∇J)−1.
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The Structure of VKF Computations

Taken step-by-step, the VKF algorithm looks as follows

1. Start from the prior xa(t− 1) to the state at time t− 1, and a prior guess
for the analysis error covariance matrix Sest(t− 1).

2. Solve the corresponding 3D-Var problem at time t− 1 to produce the analysis
xest(t− 1), using the current estimate of the error covariance matrix
Sest(t− 1) as the metric

3. Update Sest(t− 1) with the search directions of the minimization, using the
L-BFGS inverse Hessian update formula, so as to come up with the estimate
S̃est(t− 1). The inverse Hessian is kept in vector form and the L-BFGS
formula is applied at every matrix vector multiply.

17



The Structure of VKF Computations

4. Evolve the state estimate xest(t− 1) to the next observation time t with the
nonlinear modelMt−1, storing the tangent linear and adjoint models Mt−1

and MT
t−1, respectively,on the way

5. Carry out a local 4D-Var minimization starting at time t− 2 with the state
from the 3D-Var analyses as the observations to locally smoothen the analysis
trajectory

6. Evolve some or all of the vectors forming the estimate S̃est(t− 1) to the
observation time t, possibly dropping the oldest ones, with the nonlinear
modelMt−1
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The Structure of VKF Computations

7. If the vectors spanning the range of the estimate to the analysis error
covariance matrix above have lost too much of their orthogonality in the
course of their evolution, reorthogonalize the basis using the Gram-Schmidt
algorithm.

8. Transform this basis with the linear transformation Mt−1S̃est(t− 1)MT
t−1

to produce a prior estimate to the error covariance matrix Sa(t) at time t.
Drop vectors that do not shrink signi�cantly in size in this reverse-time
transformation (i.e. do not grow in forward time) and add the noise term SEt.

9. Loop from step 2 until end of assimilation window

10. As an outer loop, perform a 4D-Var assimilation over the entire assimilation
window, using the sequence of analyzes xest(t) as the observations

11. Iterate the whole sequence if needed
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The Structure of VKF Computations

⇒ The tenth step results in a continuous analysis trajectory that has been
processed by the VKF analogue to the Fixed Lag Kalman Smoother FLKS.

⇒ It comprises 4D-Var with direct observations of the state, as obtained from
previous 3D-Var steps. We have called this method Variational Kalman
Smoothing (VKS).

⇒ Smoothing by VKS does not change the analysis at the �nal time, but it does
improve the accuracy of the analyzes during all intermediate steps, as has
been veri�ed in experiments.

⇒ Short local VKS sweeps, as described in the �fth step, have proven bene�cial
to forecast skill in experiments

⇒ VKS is particularly attractive for reanalysis.
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The Serial Complexity of VKF Computations

⇒ Looking at the complexities and summing over all the steps, we see that the
dominant serial cost in VKF consist of the advection of the covariance vectors
back and forth, of the 3D-Var steps, the local 4D-Var steps, and of the
4D-Var minimization at the end.

⇒ Altogether, every vector of the inverse of the error covariance matrix stored
requires three model or adjoint model integrations (in fact, once with each of
the three models: the nonlinear one, the tangent linear one and the adjoint
one).

⇒ If we were to keep the rank of the error covariance matrix at just the number
of most recent search directions, the overall complexity of the VKF algorithm
would amount just to two subsequent 4D-Var minimizations over the
"one-and-a-half"assimilation window.
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The Serial Complexity of VKF Computations

⇒ This is so, because the 3D-Var minimizations can be seen to be part of a
single model integration with the 4D-Var algorithm in any case, and because
4D-Var requires as many model and adjoint model integrations as it takes
steps to converge.

⇒ If it proves desirable to maintain a higher rank approximation to the error
covariance matrix, the total serial complexity of VKF is multiplied by this
rank, divided by a typical number of steps needed by 4D-Var to converge.

⇒ An educated guess would put the total serial complexity of VKF at two to �ve
times the complexity of 4D-Var, and growing linearly with the resolution, just
like the complexity of 4D-Var does.
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The Parallel Complexity of VKF Computations

Let us now turn our sights on the parallel computational complexity of VKF and
review parallelisation opportunities at each step

1. No computations yet

2. Standard 3D-Var at every observation time. No gain from parallelism.

3. Matrix update with a �xed number of vectors of the size of model resolution.
Complexity is linear in spatial resolution and independent of the time step. No
easy gains from parallelism.

4. A single model run to the next time step, with the standard tangent linear
and adjoint coe�cient stores on the way. No parallelism.

5. A short 4D-Var minimization with identity as observation operator.
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6. A number of forward model runs with a �xed number (a few, possibly a few
dozen) of independent initial states. All these are independent, and can be
carried out in parallel.

7. Standard linear algebra with a �xed number of vectors of the size of model
resolution. Complexity is linear in spatial resolution and independent of the
time step. No parallelism.

8. A number of adjoint and subsequent tangent linear model runs, once back
and forth for every vector, with a �xed number (a few, possibly a few dozen)
of independent initial states, plus a sparse matrix vector product for each.
Just as in step four, these can be fully parallelized, since we keep the
approximate Hessian in vector form.

9. The steps above are taken over the entire assimilation window, instead of just
between subsequent observation times

10. Standard 4D-Var over the entire assimilation window
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The Parallel Complexity of VKF Computations

⇒ Many supercomputers in current operational weather forecasting centres, such
as the IBM Cluster at ECMWF, or the 70 T�ops Cray Hood just ordered by
CSC to Finland, or the 100 Tera�ops Hood ordered by NERSC, have a
clustered structure.

⇒ These parallel computers have dozens of Tera�ops of computing power, and
the operational weather models have been parallellized in a scalable fashion.

⇒ However, parallel supercomputers based on commodity processors have a
signi�cant bottleneck in their inter-cluster communications.

⇒ Because of Amdahls's and Hockney's laws, this limits the bisection bandwidth
of the machines so badly that operational models are often run within a single
cluster of processors only. (The Earth Simulator is a notable exception!)
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The Parallel Complexity of VKF Computations

⇒ VKF has an ideal structure to �t itself neatly onto such a parallel architecture,
with potentially close to linear speedup. This follows from the independence
of the evolution steps of all the transient vectors used in approximating the
analysis error covariance matrix.

⇒ Looking at the parallel complexities of the individual steps, and summing over
all the steps, we get a surprising result: the parallel complexity of VKF is
equivalent to just three model runs and local VKS sweeps, apart from the
�nal 4D-Var smoothing step.

⇒ Moreover, the last 4D-Var iteration does not change the analysis at the �nal
time step. This means that if we are to launch the next forecast from it we
can postpone the 4D-Var to be carried out afterwards, outside the operational
cycle, for archival and reanalysis purposes.
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The Parallel Complexity of VKF Computations

⇒ We arrive therefore at a rather striking conclusion: the parallel complexity of
VKF in the operational cycle is just three model runs, one with each model:
the nonlinear one, the adjoint one and the tangent linear one, and a single,
rapidly converging simpli�ed 4D-Var.

⇒ Parallel complexity of VKF is also independent of the rank of the error
covariance approximation, as long as this remains modest. If the covariance
matrix is kept in vector form, all matrix vector products with it are fully
parallelisable.

⇒ VKF is therefore potentially faster than even the standard

4D-Var on a su�ciently powerful - yet realistic - parallel

computer.
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Simulated assimilation results in Lorenz'95 case

We are very grateful to Mike Fisher and Martin Leutbecher of ECMWF for
providing us with their codes for the Lorenz'95 model and the weak constraint
4D-Var and EKF data assimilation algorithms for it.

The assimilation results presented below are generated using the simple
non-linear model introduced by Lorenz[1] in 1995. The model is small and
represents simpli�ed mid-latitude atmospheric dynamics of a single variable.

[1] E. N. Lorenz: Predictability: A problem partly solved. Proc. seminar on
Predictability, Vol. 1, ECMWF, Reading, Berkshire, UK, 1-18, (1995).

[2] E. N. Lorenz and K. A. Emanuel: Optimal sites for supplementary weather
observations: Simulations with a small model. J. Atmos. Sci., 55, 399-414,
(1998).
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Lorenz'95 model and parameters

The model consist of a set of coupled ordinary di�erential equations

∂ci

∂t
= ci−2ci−1 + ci−1ci+1 − ci + F, (18)

where i = 1, 2, ..., n and F is a constant. The number of grid points is
controlled by the number n. The domain is set to be cyclic, so that
c−1 = cn−1, c0 = cn and cn+1 = c1.

The simulations presented in this section follow Lorenz and Emmanuel[2], so we
select F = 8 and take a unit time interval to represent 5 days. The number of
the grid points was set to n = 40. The time integration of the model was
performed using a fourth order Runge-Kutta method.

29



Simulated assimilation results without model bias
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Simulated assimilation results without model bias
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Simulated assimilation results with model bias (1/2)
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Simulated assimilation results with model bias (2/2)
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Conclusions

⇒ The Variational Kalman Filter (VKF) method is as good a data assimilation
method as EKF in the Lorenz'95 benchmark

⇒ It is robust against model error
⇒ It outperforms EKF, both in accuracy and in computational complexity, in

retrospective analysis
⇒ It has a serial complexity comparable to that of 4D-Var
⇒ It has a parallel complexity comparable to that of three subsequent model

runs with a parallelized model plus a sequence of local 4D-Var steps, and has
the potential to outperform even the standard 4D-Var in wall-clock time on a
large parallel supercomputer

⇒ In principle, linear speedup with such a parallel complexity looks attainable on
current parallel supercomputers.
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