A new partitioning approach for ECMWF's Integrated Forecasting System (IFS)

George.Mozdzynski@ecmwf.int

Outline

• IFS

- highly optimized (MPI & OpenMP)
- depressingly flat profile

Partitioning

- Grid point space
 - 2D (NPRGPNS × NPRGPEW = NPROC)
 - eq_regions (NPROC)
- Fourier space, 2D (lats, levels)
- Spectral space, 2D (waves, levels)
- Performance (2D v. eq_regions)
 - Forecast model
 - 4D-Var

ECMW

Integrated Forecasting System (IFS)

- IFS 1992 today
 - Collaboration between Meteo France and ECMWF
 - Source ~ 1.8 million lines
 - Fortran 95, some C
 - Good performance on scalar and vector systems
- IFS model characteristics:
 - Spectral
 - Semi-implicit
 - Semi-Lagrangian

IFS - Parallelised using 'mixed' MPI and OpenMP

MPI communications

- Transpositions
 - Between Grid point, Fourier and Spectral spaces
- Wide halo exchange
 - Semi Lagrangian method
 - Radiation grid interpolation
- Long messages
- Typically MPI_ISEND/RECV/WAITALL or collective

OpenMP

- Shared memory nodes
- Memory efficient
- Use 4/8 threads

ECMN

IFS - Semi-Lagrangian Advection

Full interpolation in 3-D is 32 point

Slide 5

ECMW

IFS - Semi-Lagrangian 'On Demand'

RAPS workshop

1st November 2006

Slide 6

ECMW

T_L799 1024 tasks 2D partitioning

2D partitioning results in non-optimal Semi-Lagrangian comms requirement at poles and equator!

Square shaped partitions are better than rectangular shaped partitions.

Model / Radiation Grids

- Radiation computations are expensive
- To reduce this cost we,
 - Run radiation computations every hour
 - every 5th timestep for T_L799 model
 - Run radiation computations on a courser grid T_L399
 - requires interpolation
- Two interpolation possibilities
 - Gather global fields to different tasks (non-scalable)
 - global comms is bad; # fields can be less then # tasks
 - Perform interpolation with only local comms for halo (scalable)
 - implemented in IFS this way

ECMN

Slide 9

ECMWF

PE=293, Model Grid $T_{L}511$.

Model and Radiation grids for same partition are offset geographically, because >Use of reduced grid (linear) >T_255 is not a projection of T_511

Long thin partitions make matters worse

ECMW

eq_regions algorithm

A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER

PAUL LEOPARDI *

Abstract. The recursive zonal equal area (EQ) sphere partitioning algorithm is a practical algorithm for partitioning higher dimensional spheres into regions of equal area and small diameter. This paper describes the partition algorithm and its implementation in Matlab, provides numerical results and gives a sketch of the proof of the bounds on the diameter of regions. A companion paper [13] gives details of the proof.

Keywords: Sphere, partition, area, diameter, zone.

1. Introduction. For dimension d, the unit sphere \mathbb{S}^d embedded in \mathbb{R}^{d+1} is

$$\mathbb{S}^{d} := \left\{ x \in \mathbb{R}^{d+1} \mid \sum_{k=1}^{d+1} x_{k}^{2} = 1 \right\}.$$
 (1.1)

This paper describes a partition of the unit sphere $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ which is here called the recursive zonal equal area (EQ) partition. The partition $\mathrm{EQ}(d, N)$ is a partition of the unit sphere \mathbb{S}^d into N regions of equal area and small diameter. It is defined via the algorithm given in Section 3.

Figure 1.1 shows an example of the partition EQ(2, 33), the recursive zonal equal area partition of S² into 33 regions. A movie showing the build-up of an example of the partition EQ(3, 99) is available at http://web.maths.unsw.edu.au/~leopardi/.

For the purposes of this paper, we define an equal area partiton of S^d in the following way.

DEFINITION 1.1. An equal area partition of S^d is a nonempty finite set P of regions, which are closed Lebesgue measurable subsets of S^d such that

1. the regions cover S^d, that is

$$\bigcup_{R\in P}R=\mathbb{S}^d$$

 the regions have equal area, with the Lebesgue area measure σ of each R ∈ P being

$$\sigma(R) = \frac{\sigma(\mathbb{S}^d)}{|P|}$$

where |P| denotes the cardinality of P; and

 the boundary of each region has area measure zero, that is, for each R ∈ P, σ(∂R) = 0.

Note that conditions 1 and 2 above imply that the intersection of any two regions of P has measure zero. This in turn implies that any two regions of P are either disjoint or only have boundary points in common. Condition 3 excludes pathological cases which are not of interest in this paper.

This paper considers the Euclidean diameter of each region, defined as follows. DEFINITION 1.2. The diameter of a region $R \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$ is

diam
$$R := \sup\{e(x, y) \mid x, y \in R\},\$$

1

*paul.leopardi@unsw.edu.au, School of Mathematics, University of New South Wales.

Developed by Paul Leopardi et al., School of Mathematics, Univ. of New South Wales, Australia.

Paper:

http://www.maths.unsw.edu.au/applied /files/2005/amr05_18.pdf

Slide 11

ECMWF

eq_regions algorithm

Paul Leopardi

FIG. 1.1. Partition EQ(2, 33)

where e(x, y) is the \mathbb{R}^{d+1} Euclidean distance ||x - y||.

The following definitions are specific to the main theorems stated in this paper. DEFINITION 1.3. A set Z of partitions of \mathbb{S}^d is said to be diameter-bounded with diameter bound $K \in \mathbb{R}_+$ if for all $P \in Z$, for each $R \in P$,

diam $R \leq K |P|^{-1/d}$.

Definition 1.4. The set of recursive zonal equal area partitions of \mathbb{S}^d is defined as

$$EQ(d) := {EQ(d, N) | N \in \mathbb{N}_+}.$$
 (1.2)

where EQ(d, N) denotes the recursive zonal equal area partition of the unit sphere \mathbb{S}^d into N regions, which is defined via the algorithm given in Section 3.

This paper claims that the partition defined via the algorithm given in Section 3 is an equal area partition which is diameter bounded. This is formally stated in the following theorems.

Theorem 1.5. For $d \ge 1$ and $N \ge 1$, the partition EQ(d, N) is an equal area partition of \mathbb{S}^d .

Theorem 1.6. For $d \ge 1$, EQ(d) is diameter-bounded in the sense of Definition 1.3.

Why eq_regions?

 eq_regions partitioning is 'broadly' similar to existing IFS 2D partitioning

- 2D 'A-Sets' similar to eq_regions 'bands'
- 2D partitioning good for a regular lat lon grid
- eq_regions partitioning more suited to a reduced grid
- Only one new data structure required
 - N_REGIONS
- Code changes straightforward (example follows)
- eq_regions partitioning works for any number of tasks and not just task numbers that have 'nice' factors

Other partitioning approaches: e.g. quadrangles

Difficult to implement in IFS (but not impossible).

Nothing in common with 2D partitioning approach.

Slide 14

ECMW

C. Lemaire/J.C. Weill, March 23 2000, Partitioning the sphere with constant area quadrangles, 12th Canadian Conference on Computational Geometry

Example - gather/scatter loops

In the future we expect to collapse the 'New' loop structure into a single loop to improve OpenMP performance (where applicable).

eq_regions IFS implementation

- eq_regions algorithm adapted for IFS reduced grids to give ideal load balance of grid points per partition
- IFS reduced grids have approx 20% more grid points at polar latitudes than equatorial latitudes
- Adaptation is to discard angular partitioning information from original eq_regions algorithm such as lat(beg,end), lon(beg,end)
- We simply use the high level partitioning information,
 - # of bands (called collars in eq_regions speak) and
 - # of partitions per band
- The 'nitty gritty' detailed partitioning is then done in the IFS transform (trans) library

ECMW

2D partitioning T159 32 tasks (NS=8 x EW=4)

Aitoff projection

eq_regions partitioning T159 32 tasks

2D partitioning T799 256 tasks (NS=16 x EW=16)

eq_regions partitioning T799 256 tasks

2D partitioning T799 512 tasks (NS=32 x EW=16)

eq_regions partitioning T799 512 tasks

2D partitioning T799 1024 tasks (NS=32 x EW=32)

eq_regions partitioning T799 1024 tasks

N REGIONS (1) = 1N REGIONS (2) = 7N REGIONS (3) = 13N REGIONS (4) = 19N REGIONS (5) = 25N REGIONS (6) = 31N REGIONS (7) = 35N REGIONS (8) = 41N REGIONS (9) = 45N REGIONS (10) = 48N REGIONS (11) = 52N REGIONS (12) = 54N REGIONS(13) = 56N REGIONS(14) = 56N REGIONS (15) = 58N REGIONS(16) = 56N REGIONS(17) = 56N REGIONS(18) = 54N REGIONS(19) = 52N REGIONS (20) = 48N REGIONS(21) = 45N REGIONS (22) = 41N REGIONS(23) = 35N REGIONS (24) = 31N REGIONS (25) = 25N REGIONS (26) = 19N REGIONS(27) = 13N REGIONS (28) = 7N REGIONS (29) = 1

Slide 24

1st November 2006

2D partitioning T799 251 tasks (NS=251 x EW=1, 251 is a prime ©)

eq_regions partitioning T799 251 tasks

N_REGIONS (1) = 1 N_REGIONS (2) = 7 N_REGIONS (3) = 12 N_REGIONS (4) = 17 N_REGIONS (5) = 22 N_REGIONS (5) = 25 N_REGIONS (7) = 28 N_REGIONS (7) = 28 N_REGIONS (9) = 28 N_REGIONS (10) = 25 N_REGIONS (10) = 25 N_REGIONS (11) = 22 N_REGIONS (12) = 17 N_REGIONS (13) = 12 N_REGIONS (14) = 7 N_REGIONS (15) = 1

RAPS workshop

1st November 2006

T799 512 tasks, 2D, task11

T799 model grid T399 radiation grid

RAPS workshop

T799 512 tasks, eq_regions, task 4

T799 model grid T399 radiation grid

Slide 28

RAPS workshop

T799 512 tasks, 2D, task 201

T799 model grid T399 radiation grid

RAPS workshop

1st November 2006

T799 512 tasks, eq_regions, task 220

T799 model grid T399 radiation grid

RAPS workshop

1st November 2006

Grid interpolation HALO area (512 tasks, T799=model grid, T399=radiation grid)

eq_regions in 4D-Var

- JB wavelet code in 4D-Var minimisation steps
- Used full grids (lat x lon) for the wavelet scales
 - E.g. min1 scales are T255 T213 T159 T127 T95 T63 T42 T30 T21 T15

• The problem

- T15 has 16 lat x 32 lon points = 512 grid points
- IFS partitioning restriction, max one split per latitude
- Full grids not compatible with eq_regions partitioning for smallest scales on 100's of tasks

eq_regions in 4D-Var

 Solution was to use reduced grids instead of full grids for wavelet scales

- T799 4D-Var 192 tasks x 4 threads
- 1.8% performance improvement overall
- 7% reduction in memory for min1
- In the future all wavelet scales will be reset to be linear grids to give a further small improvement in performance
- Above performance improvement not included when comparing 2D and eq_regions partitioning (next slide)

Thanks to

- Mike Fisher (JB wavelet)
- Mariano Hortal (linear grids)

ECMW

T799 performance (comparing 2D & eq_regions)

Application	tasks x threads	2D partitioning secs	eq_regions partitioning secs	2D / eq_regions
model	512 x 2	3648	3512	1.039
4D-Var	96 x 8	3563	3468	1.027

Good: Reduced semi-lagrangian comms Reduced memory requirements

Bad: Increased TRGTOL/TRLTOG comms (grid to fourier space) Less of an issue for 'thin' nodes as relatively more comms is 'on switch'

Slide 34

ECMW

Grid to/from Fourier space transposition (full lats, some levels) 256 tasks x 2 threads, node 3 marked, 16 CPU nodes

2D partitioning

Grid/Fourier transposition is mostly performed within each node.

Very little comms required.

eq_regions partitioning

grid / fourier transposition is performed within each node.

Approx half data is off-node.

summary

eq_regions partitioning implemented in IFS

- Both 2D and eq_regions partitioning are supported
- eq_regions is the default partitioning
- Available in IFS cycle CY31R2

eq_regions reduces semi-lagrangian communication cost

- Also for model / radiation grid interpolation
- eq_regions has small performance advantage over 2D partitioning

QUESTIONS?

1st November 2006

