
October 31, 2006 ECMWF 1

The Promise and Challenges of 
Large-Scale Computational Science 

and Engineering
Douglass Post

Chief Scientist
DoD High Performance Computing Modernization Program

(IPA from CMU Software Engineering Institute)

12th workshop on the Use of High Performance Computing in
Meteorology, 30 Oct - 3 Nov 2006,

European Centre for Medium-Range Weather Forecasts (ECMWF)
Reading, UK



October 31, 2006 ECMWF 28/16/2006



October 31, 2006 ECMWF 3

Exponential Growth In Supercomputer Speed And 
Power Is Making It A “Disruptive” Technology.

Co
m

pu
te

r 
Sp

ee
d

105

107

109

1011

1013

1015

1960 1970 1980 1990 2000 2010

Year

C
om

pu
te

r P
ow

er
 (F

LO
P

s/
s)

Computer power comes at the expense of complexity! 

Enable paradigm shift
• Potential to change the 

way problems are 
addressed and solved

• Make reliable 
predictions about the 
future

• Superior engineering & 
manufacturing 

• Enable research to 
make new discoveries

• A vastly more powerful 
solving methodology!



October 31, 2006 ECMWF 4

Computational Tools are becoming widely used 
in Science and Science



October 31, 2006 ECMWF 5

Computational Science and Engineering (CSE) 
is a uniquely powerful tool for studying the 
interaction of many different natural effects

Science-based: laws governing individual interactions 
are known

1. Scientific discovery
2. Experimental analysis and design
3. Prediction of operational conditions
4. Scientific design and analysis
5. Engineering design and analysis

Heuristic-based: laws governing individual interactions 
are heuristic and/or empirical

6. Data collection, analysis & mining
• Social sciences, medicine, education, research

7. Heuristic simulations and decision tools (economic 
forecasts, war and strategy simulations,..) 



October 31, 2006 ECMWF 6

Computational Science and Engineering is becoming 
ubiquitous in science and engineering

Accelerator Design
Aircraft Design
Archaeology
Armor Design
Astrophysics
Atomic And Molecular Physics
Automobile Design
Bioengineering And Biophysics
Bioinfomatics
Chemistry
Civil Engineering
Climate Prediction
Computational Biology
Computational Fluid Dynamics
Cosmology
Cryptography
Data Mining
Drug discovery
Earthquakes
Economics
Engineering Design And Analysis
Finance
Fluid Mechanics
Forces Modeling And Simulation
Fracture Analysis
General Relativity Theory
Genetics
Geophysics

Groundwater And Contaminant Flow
High Energy Physics Research
Hydrology
Image Processing
Inertial Confinement Fusion
Integrated Circuit Chip Design
Magnetic Fusion Energy
Manufacturing
Materials Science
Medicine
Microtomography
Nanotechnology And Nanoscience
Nuclear Reactor Design And Safety
Nuclear Weapons
Ocean Systems
Petroleum Field Analysis And Prediction
Optics and Optical Design
Political Science
Protein Folding
Radar signature and antenna analysis
Radiation Damage
Satellite Image Processing
Scientific Databases
Search Engines
Shock Hydrodynamics
Signal Processing
Space Weather
Volcanoes
Weather Prediction
Wild Fire Analysis

http://iwrwww1.fzk.de/biostruct/RLD/rld.htm
http://www.iof.fraunhofer.de/departments/optical-systems/_media/trace.jpg
http://www.sdsc.edu/tmf/
http://images.google.com/imgres?imgurl=http://upload.wikimedia.org/wikipedia/en/thumb/0/08/Dna-split.png/150px-Dna-split.png&imgrefurl=http://www.firebird.cn/wiki/Computational_biology&h=294&w=150&sz=41&tbnid=aLBM9VwTYq8Z-M:&tbnh=111&tbnw=56&hl=en&start=48&prev=/images%3Fq%3DComputational%2BBiology%26start%3D42%26dnum%3D21%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN


October 31, 2006 ECMWF 7

Computational Science and 
Engineering contributes today

• Computational Science and Engineering is 
making major contributions today

• DoD— Stores separation, weather and 
ocean prediction, materials, armor 
penetration, RF antenna and radar 
signatures, aircraft and ship design and 
analysis, bio-warfare countermeasures, and 
many more

• DOE, NSF, NIST, NASA, NOAA, EPA,…—
high energy and nuclear physics, nuclear 
weapons design, controlled fusion, 
materials, nuclear reactor, fuel efficiency, 
geophysics, astrophysics, space physics, 
and many more

• Industry— Crash design (GM,…), Tire 
design (Goodyear), chip design (Intel,..), 
consumer products (P&G,..), aircraft 
(Boeing, Airbus), structural design, drug 
design and data searches (Merck,…), oil 
exploration, and many more

Radar Signature of a Tank

Breaking Waves Around a Ship

Aircraft Design

Vehicle crash

Hurricane 
tracking

Asteroid 
Impact

Nuclear 
Weapons



October 31, 2006 ECMWF 8

COMBAT
CAPABILITY

USER
REQUIREMENT Recommend FCM&S/Analyze

Yes No
Flt 

Test?

Quick reaction process must 
have validated models and tools 
ready when need arises

Future Goals – Move the test simulation into the 
Design Process:
Provide first model quicker, better, cheaper
Continuously improve models thru collaboration
Speed response to warfighter – less test & better design

Stores Integration & Certification
Supercomputing Improves the Test Process

Old Way - Flight test it Today’s Way - Computationally simulate 
the test and run much reduced flight test Benefits:

Faster
Cheaper
More 
technical 
insight
Safer



October 31, 2006 ECMWF 9

PetaFlop computers are coming 

NSF, DOE Science and Defense 
Systems, NASA, NOAA, DoD 
(DARPA) all plan petaflop computers 
for 2008-2012 

• DARPA High Productivity Computing 
Systems a bright light

• Faster computing but also
• Higher bandwidth and lower 

memory latency (64k GUP/s)
• Flatter memory hierarchy with 

globally addressable memory
• + many more

But are we ready to use 
them?



October 31, 2006 ECMWF 10

To succeed, Computational Science and 
Engineering faces immense challenges*
• Scientific and Engineering:

– Calculate the trade-off of many different strongly interacting 
effects across many orders of magnitude of multiple time and 
distance scales 

– Verify and validate highly complex applications
– Develop problem generation and setup methods for larger and 

more complex problems
– Analyze and visualize larger and more complex datasets

• Project:
– Evolve from small code development teams to large teams
– Successfully deploy multi-disciplinary and multi-institutional 

code development teams 
• Programming:

– Develop codes for computers that don’t yet exist.
– Develop codes for computers that will be 102 to 104 faster and 

contain 102 to 103 times more processors than today
– Develop codes with adequate performance levels 
– Cope with relatively immature tools for developing and running 

massively parallel applications
*c.f. The Opportunities, Challenges and Risks of High Performance Computing in Computational Science and Engineering, D.E. Post, R.P. Kendall and 
R.F. Lucas, Advances in Computers, Quality Software Development, 66, ( 2006), M. Zelkowitz, Ed., Academic Press pp. 239-301.



October 31, 2006 ECMWF 11

Lessons Learned are 
the way forward!!!

3

4

1

2

• Case studies conducted after each 
crash.

• Lessons learned identified and adopted 
by community

• Computational Science is at stage 3

Tacoma Narrows Bridge buckled 
and fell 4 months after construction!

• 4 stages of design maturity for a 
methodology to mature—Henry Petroski—
Design Paradigms

• Suspension bridges—case studies of failures 
(and successes) were essential for reaching 
reliability and credibility

• The Scientific Method!



October 31, 2006 ECMWF 12

What do CSE applications look like?

Surveyed DoD and other codes to verify 
characterizations of CSE codes.

• Identify general characteristics
• Preamble (anonymity guaranteed)
Questionnaire asked for:
• Contact information
• Code purpose
• Team size, number of users
• Domain Science area and sponsor
• Code size (slocs) 

– Total and for each language
• Code history 

– How long did the code take to develop and how old is it now?)
• Platforms
• Degree of parallelism
• Computer time usage
• Memory requirements
• Algorithms



October 31, 2006 ECMWF 13

What kind of cods are we talking about?
We surveyed our Large, Diverse DoD HPC Community to characterize our codes

• 587 projects and 2,262 users at 
approximately 144 sites

• Requirements categorized in 10 
Computational Technology 
Areas (CTA)

• DoD HPCMP has about 20 
computers with ~240 TFlops/s
peak (circa 2006)

Computational Structural 
Mechanics – (CSM)Electronics, Networking, and 

Systems/C4I – (ENS)

Computational Chemistry, Biology 
& Materials Science – (CCM)

Computational Electromagnetics 
& Acoustics – (CEA)

Computational Fluid Dynamics 
– (CFD)

Environmental Quality Modeling 
& Simulation – (EQM)

Signal/Image Processing – (SIP)

Integrated Modeling & Test 
Environments – (IMT)

Climate/Weather/Ocean Modeling 
& Simulation – (CWO)

Forces Modeling & 
Simulation – (FMS)



October 31, 2006 ECMWF 14

We sent surveys to our top 40 codes ( ordered by time 
requested), with 15 responses so far.

Application Code Hours

CTH (SNL) 93,435,421

HYCOM (30% DoD) 89,005,100

GAUSSIAN (Commercial) 49,256,850

ALLEGRA (SNL) 32,815,000

ICEPIC (100% DoD) 26,500,000

CAML (100% DoD) 21,000,000

ANSYS (Commercial) 17,898,520

VASP (U.ofVienna) 18,437,500

Xflow (Commercial) 15,165,000

ZAPOTEC (SNL) 12,125,857

XPATCH (DoD commercial) 23,462,500

MUVES 10,974,120

MOM 18,540,000

OVERFLOW (NASA) 8,835,500

COBALT (commercial) 14,165,750

ETA 11,700,000

CPMD (MPI & IBM) 5,975,000

ALE3D (LLNL) 5,864,500

PRONTO (SNL) 5,169,100

Application Code Hours

DMOL 5,200,100

ICEM (commercial) 4,950,000

CFD++ (commercial) 5,719,000

ADCIRC (DoD + academia) 4,100,750

MATLAB (commercial) 4,578,430

NCOM 5,080,000

Loci-Chem 5,500,000

GAMESS (Iowa State) 5,142,250

STRIPE 4,700,000

USM3D 4,210,000

FLUENT (commercial) 3,955,610

GASP 4,691,000

Our DNS code (DNSBLB) 2,420,000

ParaDis 4,000,000

FLAPW 4,050,000

AMBER 4,466,000

POP (LANL) 3,800,000

MS-GC 3,500,000

TURBO 3,600,600

Freericks Solver 2,600,000



October 31, 2006 ECMWF 15

Characteristics aren’t surprising.

• Even now, codes are developed by teams
• Most codes have more users than just the 

development team
• Codes are big
• 58% of the codes are written in Fortran.
• New languages with higher levels of abstraction are 

attractive, but they will have to be compatible and 
inter-operable with Fortran with MPI. 

Team 
size

FTEs

# users Total 
sloc(k) SLOC 

Fortran 
77 (k)

SLOC 
Fortran 
90, 95 

(k)
SLOC 
C (k)

SLOC 
C++ (k)

other

Mean 38 5,038 820 24% 34% 17% 13% 13%

Median 6 27 275



October 31, 2006 ECMWF 16

Further data isn’t surprising either. 

Total 
project 

age

age 
production 

version

total 
number of 
different 
platforms

Largest 
Degree 

of 
Parallelism

Typical 
minimum 

# of 
processors

Typical 
Maximum 

# of 
processors

Is 
memory a 
limitation?

Memory 
processor
GBytes
/proc

Mean
19.8 15.1 6.9

1000 to 
3000 225 292

Sometimes 0.75-4

Median
17.5 15.5 7.0

1000 to 
3000 128 128

• Most codes are at least 15 years old
• Most codes run on at least 7 different platforms
• Most codes can run on ~1000 processors, but don’t
• Most users want at least 1 GByte / processor of 

memory. 



October 31, 2006 ECMWF 17

HPCMP TI-05 Application Benchmark Codes 
perform differently on different platforms.

• Aero – Aeroelasticity CFD code 
(Fortran, serial vector, 15,000 lines of code)

• AVUS (Cobalt-60) – Turbulent flow CFD code
(Fortran, MPI, 19,000 lines of code)

• GAMESS – Quantum chemistry code
(Fortran, MPI, 330,000 lines of code)

• HYCOM – Ocean circulation modeling code
(Fortran, MPI, 31,000 lines of code)

• OOCore – Out-of-core solver
(Fortran, MPI, 39,000 lines of code)

• CTH – Shock physics code (SNL)
(~43% Fortran/~57% C, MPI, 436,000 lines of code)

• WRF – Multi-Agency mesoscale atmospheric modeling code
(Fortran and C, MPI, 100,000 lines of code) 

• Overflow-2 – CFD code originally developed by NASA
(Fortran 90, MPI, 83,000 lines of code)



October 31, 2006 ECMWF 18

Performance depends on the computer 
and on the code.

0 2 4 6 8 10
WRF Std

Avus Lg

GAMESS Std

GAMESS Lg

HYCOM Std

HYCOM Lg

OOCore Std

OOCore Lg

Overflow2 Std

Overflow2 Lg

RFCTH2 Std

RFCTH2 Lg

Code Performance (by machine)

Cray X1
IBM P3
IBM P4
IBM P4+
HP SC40
HP SC45
SGI O3800
SGI O3900
Xeon Cluster
Xeon Cluster
SGI Altix
IBM Opteron

Code Performance by machine

Substantial variation of codes 
for a single computer.

• Normalized Performance = 1 on the NAVO IBM SP3 (HABU) platform with 1024 processors 
(375 MHz Power3 CPUs) assuming that each system has 1024 processors.

0 2 4 6 8 10

Cray X1

IBM P3

IBM P4

IBM P4+

HP SC40

HP SC45

SGI O3800

SGI O3900

Xeon Cluster (3.06)

Xeon Cluster (3.4)

SGI Altix

Code performance (grouped by machine)

AERO Std
AERO Std
WRF Std
Avus Std
Avus Lg
Gamess Std
GAMESS Lg
HYCOM Std
HYCOM Lg
OOCore Std
OOCore Lg
Overflow2 Std
Overflow2 Lg
RFCTH2 Std
RFCTH2 Lg

Relative code performance

• GAMESS had the most variation among platforms.

―SC 2005 panel Tour de HPCylces



October 31, 2006 ECMWF 19

Eagle Hawk
Falcon Condor

Nene

number of languages

core team size

nonimal age
lines of source code

1

10

100

1000

10000

100000

1000000

Project Name

Attribute

Code Attributes

number of languages
core team size
nonimal age
lines of source code

Also did detailed case studies of  first 6 large US 
federal agency CSE codes and then another set 

of 5 large-scale CSE codes

760,000
<80,000

405,000
134,000 ~200,000

25 years
3 years

10 years
20 years

6 years

9

2

3
4

4

104

17

3
3

5 CSE codes (academia and lab)



October 31, 2006 ECMWF 20

Use of Higher-Level Languages

Falcon  Hawk Condor Eagle Nene
Application Domain Product Performance Manufacturing Product Performance Signal Processing Process Modeling

Project Duration ~10 years (since 
1995)

~6 years (since 1999) ~20 years (since 
1985)

~3 years ~25 years (since 
1982)

Number of Releases 9 Production 1 7 1 ?
Earliest Predecessor 1970s early 1990s 1969 ? 1977-78

Staffing 15 FTEs 3 FTEs 3-5 FTEs 3FTEs ~10FTEs+100s of 
contributors

Customers <50 10s 100s Demonstration code ~100,000
Nonimal Code Size ~405,000 ~134,000 ~200,000 <100,000 750,000
Primary Languages F77 (24%), C (12%) C++ (67%), C (18%) Fortran 77 (85%) C++, Matlab Fortran 77      (95%)

Other Languages F90,Python,Perl,ksh/
csh/sh Python, Fortran 90 Fortran 90, C, Slang Java 

Libraries(~70%) C (1%)

Target Hardware Parallel 
Supecomputers

Parallel 
Supercomputers

PCs to Parallel 
Supercomputers

Embedded App PCs to Parallel 
Supercomputers

Status Production Production ready Production Demonstration code Production
Sponsors DOE DoD DoD DoD DoD, DOE, NSF



October 31, 2006 ECMWF 21

Nine Cross-Study Observations
1. Once selected, the primary languages (typically Fortran) adopted by existing code 
teams do not change.
2. The use of higher level languages (e.g. Matlab) has not been widely adopted by 
existing code teams except for "bread-boarding" or algorithm development.
3. Code developers in existing code teams like the flexibility of UNIX command line 
environments.
4. Third party (externally developed) software and software development tools are 
viewed as a major risk factor by existing code teams.
5. The project goal is scientific discovery or engineering design. "Speed to solution" 
and "execution time" are not highly ranked goals for our existing code teams unless 
they directly impact the science. 
6. All but one of the existing code teams we have studied have adopted an "agile" 
development approach.
7. For the most part, the developers of existing codes are scientists and engineers, 
not computer scientists or professional programmers.
8. Most of the effort has been expended in the "implementation" workflow step.
9.  The success of all of the existing codes we have studied has depended most on 
keeping their customers (not always their sponsors) happy.



October 31, 2006 ECMWF 22

Developing a large, multi-scale, multi-effect code takes 
a lot of people a long time, and development continues 

through the entire life cycle of the code.

2003



Formulate
questions

Develop
Approach

Develop
Code

V&V Analyze
Results

Production
Runs

Decide;
Hypothesize

Define
Goals

Set global
Requirements

Identify
Customers

Define
General

Approach

Customer
input

Identify
algorithms

Detailed
Design

Recruit
Team

Detailed
Goals

Computing
environment

Select
Programming

Model

Write
Component

Debug
Component

Test
Component

Define
tests

Regression
Tests

Verification
Tests

Validation
Tests

Validation
Expts.

Identify
Models

Setup
Problems

Schedule
Runs

Execute
Runs

Store
Results

Initial
Analysis

Complete
Run

Optimize
runs

Optimize
Component

Analyze
Run

Identify
Next Run

Computational
Science
Workflow

Formulate
questions

Develop
Approach

Make
Decisions

Document
Decisions

Identify
Uncertainties

Identify
Next Step

Upgrade existing code 
or develop new code

Not the WaterFall Model!

1. Requirements
2. Design
3. Code
4. Test
5. Run

The process is complex!



1996 1997 1998 1999 2000 2001

Program 
planning 
and start

Program Milestones set

New Code Projects
Launched

1st 2nd 3rd

1992 — 1995

Falcon Code Project

Kite Code Project

Jabiru Code Project

Egret Code Project

Gull Code Project

Finch Code Project

M
issed M

ilestones
M

ilestone successes  
Code Project Schedule for Six Large-scale Physics Codes

Project start    

Milestones

Project successes   —
2004 

Project W
ork

C
eased

2004

Risk mitigation often requires redundant projects*.

*Computational Science Demands a New Paradigm, 
D. E. Post, L. G. Votta, Physics Today, 2005, 58 (1): 
p.35-41 



October 31, 2006 ECMWF 25

Computational Science and Engineering 
has at Least Four Major Elements.

Computers Codes V&V Users

Making enormous 
progress but at 

cost of 
complexity, 
particularly 

memory hierarchy

More 
complicated 

models + 
larger 

programming 
challenges 

Harder due to 
inclusion of 
more effects 

and more 
complicated 

models

Use tools to 
solve problems, 

do designs, 
make 

discoveries

Need to reduce 
programming 

challenge

Greatest 
bottleneck

Inadequate 
methods, need 
paradigm shift

Users make 
connections to 

customers

Sponsors

• We need to develop a total capability to solve 
problems, not just build codes or computers. 



October 31, 2006 ECMWF 26

What are the needs of CSE 
Application Codes?

• Developers and production users want and need:
– Fast integer and floating point arithmetic (with fast divides)
– Fast, global addressable, reliable memory and data storage with low 

latency
– Stable, long-lived and reliable platforms and architectures
– Stable, long-lived and reliable software development and production 

tools that provide the needed capability and are simple and easy to 
use

– Developers want something like a Unix/LINUX or Mac workstation 
development environment or better

Summary: Users and developers want to solve their scientific or 
engineering problem and not worry about the details of 
computers



October 31, 2006 ECMWF 27

What are they getting? 

• Distributed processor and memory systems linked together in ever more 
complex networks

• Rapid turnover in machines and machine architectures (2-4 years)
• Unreliable parallel file systems
• Unstable development and production environment
• Highly complex programming environment and challenges

– Complex architectures—>Complex programming
– Performance that is poor (a few % of peak) and hard to optimize
– Frequent and challenging ports to new platforms

• Distributed memory 
with only very slowly 
improving memory 
bandwidth

• Slowing rate of 
processor speed 
growth J. Mitchell, Sun Microsystems

Growth in Power Density

Po
w

er
 D

en
si

ty
 (W

/c
m

2 )

Year
1985 1990 1995 2000 2005 2010
1

10

100

i386

i486 Pentium

Pentium MMX

Pentium 4

Pentium II

hot plate

space shuttle tile

nuclear reactor fuel cell

1000

 2x in 3.3 years

QuickTime™ and a
 decompressor

are needed to see this picture.

Chart courtesy of Dr. Gary Shaw, MIT/Lincoln Laboratories



October 31, 2006 ECMWF 28

Issues summarized in January 
2005 Physics Today Article*.

• Three Challenges
– Performance Challenge
– Programming Challenge
– Prediction Challenge

• Where case studies are important
• Case Studies are needed for success

– The Scientific Method
• Paradigm shift needed

– Computational Science moving from 
few effect codes developed by small 
teams to many effect codes developed 
by large teams

– Similar to transition made by 
experimental science in 1930—1960

– Software Project Management and 
V&V need more emphasis

*Computational Science Demands a New Paradigm, D.E. 
Post and L.G. Votta, Physics Today,58(1), 2005, p.35-41. 

Email  post@ieee.org to get a copy.



October 31, 2006 ECMWF 29

Code Development will be (is) the 
major bottleneck in the future (now).
• Codes need to scale to many, many thousands of processors.
• Low-hanging fruit has been gathered (porting of serial codes to parallel 

computers).
• Exciting opportunities to remedy present deficiencies:

– Better spatial and temporal resolution
– More accurate models
– Inclusion of a more complete set of effects

• Strongly-coupled, multi-scale effects
– Codes that can model a whole system
– Codes that can get answers in minutes to hours rather than days to weeks 

to months
• The greatest opportunities include integrated codes that couple many 

multi-scale effects to model a complete system.
• Success often requires large (10 to 30 professionals), multi-

disciplinary, multi-institutional teams and 5 to 10 years of development 
time.

• It’s exciting, it’s challenging and it’s risky.



October 31, 2006 ECMWF 30

Predictive Risk is even more serious 
than Programming Risk.

• Programming Risk is a matter of efficiency
– Programming for more complex computers takes longer and is more 

difficult and takes more people, but with enough resources and time, codes 
can be written to run on these computers.

• But the Predictive Risk is a matter of survival:
– If the results of the complicated application codes cannot be believed or if 

the right codes are not developed and used effectively, then there is no 
reason to support the development and deployment of platforms or
supporting software. 

– Pretty pictures are not necessarily consistent with the laws of nature!
– Computational scientists and engineers have to be aware of all the issues:

• Development of the application codes takes time and resources, often tens of 
people for tens of years plus resources for validation and testing and 
productions runs.

• If the right codes are never developed, they cannot be used to solve problems.
• If they are developed and give wrong answers, they cannot be used to solve 

problems.
• If they are developed and not utilized effectively to solve problems, then the 

problems won’t be solved. 



October 31, 2006 ECMWF 31

Proto-FALCON Workflows were initially serial



October 31, 2006 ECMWF 32

Ambitious schedule required parallel 
development with no contingency. 

Delayed delivery of Package with 
Effect C led to missed milestones.



October 31, 2006 ECMWF 33

Computational Science and Engineering is making the 
same transition that experimental science made in 1930 

through 1960.
• Computational Science and Engineering moving from “few-effect” codes developed 

by small teams (1 to 3 scientists) to “many-effect” codes developed by larger teams 
(10, 20 or more).

• Analogous experimental science transition made in 1930-1960 time frame
• Small-scale science experiments involving a few scientists in small laboratories —> 

“big science” experiments with large teams working on very large facilities. 
• “Big Science” experiments require greater attention to formality of processes, project 

management issues, and coordination of team activities than small-scale science. 
• Experimentalists were better equipped than most computational scientists to make 

the transition and they had more time to make the transition.
– Small scale experiments require much more interaction with the outside world than small-

scale code development.  
– Experimentalists had ~20 years, while computational scientists are doing the transition 

much more quickly.  

Early 1930’s Late 1930’s CERN 2000



October 31, 2006 ECMWF 34

We studied 6 federal agency projects 
to identify the “Lessons Learned*”

The Successful projects emphasized:
• Conservative approach  - Minimize Risks!

– Building on successful code development history and prototypes 
– Better physics and computational mathematics over better “computer science”
– The use of proven Software Engineering rather than new Computer Science 

• Don’t let the code project become a Computer Science research project!
• Sound Software Project Management  - Plan and Organize the Work!

– Highly competent and motivated people in a good team
– Development of the team
– Software Project Management: Run the code project like a project
– Determining the Schedule and resources from the requirements
– Identifying, managing and mitigating risks
– Focusing on the customer

• For code teams and for stakeholder support
– Software Quality Engineering: Best Practices rather than Processes

• Verification and Validation – Correct Results are Essential!
– Need for improved V&V methods became very apparent

The unsuccessful projects didn’t emphasize these!
*Software Project Management and Quality Engineering Practices for Complex, Coupled MultiPhysics, Massively Parallel 
Computational Simulations, D. E. Post and R. P. Kendall, The International Journal of High Performance Computing 
Applications, 18(2004), pp. 399-416 



October 31, 2006 ECMWF 35

Verification and Validation
• Customers want to know why they should believe code results 
• Codes are only a model of reality
• Verification and Validation are essential
• Verification

– Verify equations are solved correctly
– Regression suites of test problems, convergence tests, manufactured 

solutions, analytic test problems, code comparisons and benchmarks 
• Validation

– Ensure models reflect nature, check code results with experimental data 
– Specific validation experiments are required

• Federal sponsor is funding multi-billion dollar validation experiments for V&V,…
• V&V experience with thes and other codes indicates that a stronger 

intellectual basis is needed for V&V 
• More intense efforts are needed in both types of V&V if computational 

science is to be credible

Roach, 1998; Roache, 2002; Salari and Knupp, 2000; Lindl, 1998; Lewis, 1992; Laughliin, 2002)

Validated
Applications

Quantified
Predictability

5 %
50 %

95 %

Everything that is possible



October 31, 2006 ECMWF 36

Many things can be wrong with a 
computer generated prediction. 

• Experimental and theoretical science are mature methodologies but 
computational science is not.

• Hatton study* indicates that Scientific codes have ~ 6 defects per 1000 
lines of code. 

• Code could have bugs in either the models or the solution methods that 
result in answers that are incorrect.
– e.g. 2+2=54.22, sin(90O)= 673.44, etc.

• Models in the code could be incomplete or not applicable to problem or 
have wrong data.
– E.g. climate models without an ocean current model.

• User could be inexperienced, not know how to use the code correctly.
– CRATER analysis of Columbia Shuttle damage.

• Many examples: Columbia Space Shuttle, Sonoluminescence, Fusion
*Hatton, L. and A. Roberts (1994). "How Accurate is Scientific Software?" IEEE Transactions in 
Software Engineering 20(10): 785-797.



October 31, 2006 ECMWF 37

It’s risky. Software failures are 
not just in the IT industry.

• While software failures are commonly acknowledged in the IT industry*, 
not much is heard about them in the technical HPC community.

• But they exist. 

*Ewusi-Mensah, K., Software Development  Failures: Anatomy of Abandoned 
Projects. 2003, Cambridge, Massachusetts: MIT Press:  Glass, R.L., 
Software Runaways: Monumental Software Disasters. 1998, New York: 
Prentice Hall PTR.



Nov.25,2004 Economist
Computer codes not 

delivering!

Jan., 2005 ComputerWorld
“FBI trying to salvage $170M 

software package”

Nov.2004 IEEE Spectrum
Software failure takes LA FAA 

controllers off the air.

Jan., 1997 IEEE Computer
Software errors crash 

Ariane launch.
Technical Software Failures 
Continue to be in the news!



October 31, 2006 ECMWF 39

Perspective:
Requirements are important after all
• Often said that computational science and 

engineering software doesn’t have 
requirements in same sense as the IT 
industry

• Computational science and engineering does 
have highly rigid requirements
– The laws of nature

• Computational science and engineering code 
development can’t be planned in detail 
because it involves discovery of how to 
accurately simulate those laws



October 31, 2006 ECMWF 40

Perspective: Software Engineering 
and Computer Science are different 

and each is important
• Every successful code project needs software 

engineering, not computer science
• Software engineering involves the 

implementation of proven methodologies for 
code development

• Computer science involves exploration, 
research and development of new 
methodologies and concepts

• Computer science is an essential activity, but 
it should be an independent activity



October 31, 2006 ECMWF 41

• CREATE will develop advanced computational 
engineering tools to optimize the design and 
testing of:
1. Military aircraft (i.e., structures & aerodynamics)
2. Naval vessels (i.e., structures & hydrodynamics)
3. Integration of RF sensors and C4ISR antennas with 

platforms (i.e., electromagnetics & signatures)

• Each project: $10M/year for 10 years; total $300M

CREATE Focuses on Design and 
Engineering for Acquisition

• Result: 
– Faster and more effective acquisition process
– Better, faster and more effective design and validation
– Fewer problems discovered in testing
– Fewer costly delays and rework to fix flaws

Goal—Make design and engineering a more 
effective contributor to acquisition
Goal—Make design and engineering a more 
effective contributor to acquisition



October 31, 2006 ECMWF 42

Recap: What do you do you need to 
succeed?

Case studies* of existing computational science and 
engineering project indicate that increased emphasis is crucial 
for:

•Verification and Validation
– Accurate, reliable results, are needed and not just pretty pictures!

•Software Project Management
– Single investigator paradigm doesn’t work for large teams
– Large teams need a project orientation to organize and coordinate 

the work

•Software Engineering
– Software development is a highly technical process for producing a 

complex system
– Success requires effective methods and tools that balance the 

need for structured development with the required degree of 
flexibility and agility.

*Software Project Management and Quality Engineering Practices for Complex, Coupled MultiPhysics, Massively Parallel 
Computational Simulations, D. E. Post and R. P. Kendall, The International Journal of High Performance Computing 
Applications, 18(2004), pp. 399-416 



October 31, 2006 ECMWF 43

Observations on Weather prediction
• Validation is a challenge

– Few controlled experiments
• Who is the code architect?  Where is the 

conceptual integrity? And who enforces it? 
• All codes involve trade-offs between accuracy 

and time to problem completion.
– I’m not sure that many weather/climate codes 

enforce the trade-off to ensure practical run times. 
• Example: ASCI academic alliances:

– Multi-physics codes, each module with the “best 
physics”

– Result: Initially could only simulate 6 s of a 20 
minute fire, 2 s of a 120 s rocket burn,…



October 31, 2006 ECMWF 44

Reductionism and Emergence
• Weather and climate codes include 100s of effects

– Problem is reduced to its constituents
– Answer depends on trade-off of many competing effects

• Robert Laughlin (Nobel Prize, 1999) and others have been 
pointing out that solving complex problems by calculating 
the trade-off of all of the detailed effects (reductionist) is an 
NP incomplete problem

• They claim that we only solve problems where there are a 
set of overarching or “emergent” principles (e.g. 
conservation laws, symmetry, thermodynamic principles,…)
– We use hydrodynamics to calculate ocean flow, not molecular 

dynamics
• How can we sure that weather models correctly capture the 

relevant emergent principles?
– Validation is the best way to ensure that the emergent principles are 

captured



October 31, 2006 ECMWF 45

The Future
• We live in “exciting times”
• CSE offers tremendous promise to address 

and solve important problems
– The potential to tackle and solve problems that we 

couldn’t before now
• CSE faces many challenges just like every 

other new problem solving methodology has 
faced

• It will take time and a lot of hard work 
• But if we face and overcome the challenges 

we can do great and important things


	The Promise and Challenges of Large-Scale Computational Science and Engineering
	Exponential Growth In Supercomputer Speed And Power Is Making It A “Disruptive” Technology.
	Computational Tools are becoming widely used in Science and Science
	Computational Science and Engineering (CSE) is a uniquely powerful tool for studying the interaction of many different natural
	Computational Science and Engineering is becoming ubiquitous in science and engineering
	Computational Science and Engineering contributes today
	Stores Integration & Certification�Supercomputing Improves the Test Process
	PetaFlop computers are coming 
	To succeed, Computational Science and Engineering faces immense challenges*
	Lessons Learned are the way forward!!!
	What do CSE applications look like?
	What kind of cods are we talking about?�We surveyed our Large, Diverse DoD HPC Community to characterize our codes
	We sent surveys to our top 40 codes ( ordered by time requested), with 15 responses so far.
	Characteristics aren’t surprising.
	Further data isn’t surprising either. 
	HPCMP TI-05 Application Benchmark Codes perform differently on different platforms.
	Performance depends on the computer and on the code.
	Also did detailed case studies of  first 6 large US federal agency CSE codes and then another set of 5 large-scale CSE codes
	Use of Higher-Level Languages
	Nine Cross-Study Observations
	Developing a large, multi-scale, multi-effect code takes a lot of people a long time, and development continues through the en
	Risk mitigation often requires redundant projects*.
	Computational Science and Engineering has at Least Four Major Elements.
	What are the needs of CSE Application Codes?
	What are they getting? 
	Issues summarized in January 2005 Physics Today Article*.
	Code Development will be (is) the major bottleneck in the future (now).
	Predictive Risk is even more serious than Programming Risk.
	Proto-FALCON Workflows were initially serial
	Ambitious schedule required parallel development with no contingency. 
	Computational Science and Engineering is making the same transition that experimental science made in 1930 through 1960.
	We studied 6 federal agency projects to identify the “Lessons Learned*”
	Verification and Validation
	Many things can be wrong with a computer generated prediction. 
	It’s risky. Software failures are not just in the IT industry.
	Technical Software Failures Continue to be in the news!
	Perspective:�Requirements are important after all
	Perspective: Software Engineering and Computer Science are different and each is important
	CREATE Focuses on Design and Engineering for Acquisition
	Recap: What do you do you need to succeed?
	Observations on Weather prediction
	Reductionism and Emergence
	The Future

