

#### Development of Earth System Models at the MPI for Meteorology



Marco Giorgetta



## Original aims for ENSEMBLES

**O1.a:** Provision of a set of tested Earth System Models for use in the ensemble prediction system.

#### Table 6.8: MPIMET

Existing: Jungclaus et al. (2006), Roeckner et al, (2006)

- ECHAM5 atmosphere
- MPI-OM ocean including sea ice

New:

- ECHAM5 atmosphere
- HAM aerosol module
- MOZART2 atmospheric chemistry
- JSBACH land biosphere
- MPI-OM ocean including sea ice
- HAMOCC ocean biogeochemistry

nin as an ann an Anna An an Anna an An



| <u>Atmosphere</u><br>Dynamics<br>Physics<br>Chemistry<br>Aerosols |  |
|-------------------------------------------------------------------|--|
| <u>Land</u><br>Hydrology<br>Vegetation                            |  |
| <u>Ocean</u><br>Dynamics<br>Physics<br>Biogeochem.                |  |
| Society                                                           |  |

nellingen er senter en er er er tres er felstere en el beren er

The second s

**Economics** 

Land use

**Ocean use** 









#### Recent developments 1. Physical system

#### Extension to the middle atmosphere

- Dynamical feedback from stratosphere is biased in standard model with top at 10 hPa
- Climate effects of major volcanic eruptions
- Coupling to (ozone) chemistry
- Developments+Testing:
- ECHAM5 31 layers to 10 hPa  $\rightarrow$  47 layers to 0.01 hPa
- Identical vertical grid below 100 hPa
- Ongoing spin-up integration for pre-industrial conditions
  - ~100 years
  - Drift not yet ended, ca. +0.5K in global mean surface temp.



### Recent developments 1. Physical system

- Test simulation from an existing troposphere control simulation
- No tuning
- Positive temperature drift
- Reduced ice area and volume in NH





#### Recent developments 2. Carbon cycle model

Has been used experimentally with prescribed maps of plant functional types for IPCC integrations (not in AR4)

New:

- Coupling of light attenuation in ocean top layers to chlorophyll amounts (Wetzel et al., 2006)
- Technical improvements





#### Recent developments 2. Carbon cycle model

- light attenuation length scale
  - Blue ocean: 11 m
  - Green ocean: 0 25 m / top layer
- Seasonal and regional changes in SW heating and wind stress
  - Improvements in El Nino:
    - More peaked Nino3 PDF
    - Smaller amplitude
    - Longer period





#### Recent developments 3. Aerosol system

Has been used experimentally for IPCC integrations (not in AR4), at low vertical resolution (T63 L19) Deficiencies related to low vertical resolution

New:

- higher resolution T63 L31
- Technical improvements



#### Recent developments

- 4. Chemistry and aerosol+chemistry
- Used in RETRO project
- Problem:
- Too expensive
  8 times more expensive than physical model alone
- Necessary emission data not available for 20C+scenario
- $\rightarrow$  Not applicable for stream 2





# MPIMET models that can be used for stream 2 integrations

Physical system ECHAM5/MPIOM or MAECHAM5/MPIOM with middle atmosphere

Aerosol system ECHAM5-HAM/MPIOM-HAMOCC

Carbon cycle system ECHAM5-JSBACH/MPIOM-HAMOCC

Horizontal resolution for all models: T63 Vertical resolution L31 (A and C models), L31 or L47 for P model