

Current status of the INGV Earth System Model

M. Vichi, P.G. Fogli, E. Manzini A. Alessandri, S. Gualdi, S. Masina, A. Navarra, L. Patara, E. Scoccimarro

The INGV ESM (category: A & C)

ESM configuration for <u>Stream1</u>: category A

- just submitted to IPCC
- configuration
 - atmosphere ECHAM4.6@T106L19
 - ocean OPA8.2@ORCA2
 - sea ice: LIM@ORCA2
 - coupler: OASIS2
- runs: Control, 20C3, 21C3 (A1B, A2)

ESM configuration for S<u>tream2</u>: category C

- Atmosphere: ECHAM5@T63L31 (Roeckner et al 2006)
- Ocean: OPA8.2@ORCA2 (Madec et al 1998)
- Sea-Ice: LIM@ORCA2 (Timmermann et al 2005)
- Marine Biogechemistry: <u>PELAGOS@ORCA2</u>
 (Vichi et al 2006a,b)
- Land, Vegetation, and Terrestrial Carbon: <u>SILVA@T63</u> (*Alessandri, 2006; Zeng et al 2004; Ducoudre et al 1993*)
 Coupler: <u>OASIS3</u> (*Valcke et al 2004*)

Control Simulation

Control Simulation: SST

Control Simulation: Total Precipitation

Control Simulation: Zonal wind (850mb)

PELAGOS: PELAgic biogeochemistry for Global Ocean Simulations

Scheme of the state variables and pelagic interactions of the biogeochemistry model. Living (organic) Chemical Functional Families (CFF) are indicated with bold-line square boxes, non-living organic CFFs with bild-line square boxes and inorganic CFFs with thin-line square boxes and inorganic CFFs with rounded boxes (modified after Blackford and Radford (1995)).

Theoretical constructs: Living Functional Groups (LFG)

Scheme of the standard organism,

which is the **prototype** of any Living Functional Group (LFG), and the physiological/trophic relationships among the Chemical Functional Families and major environmental forcings.

The standard organism is a theoretical representation of the real organisms and can describe both an autotroph, a heterotroph or a mixotroph, depending on the choice of the (internal) living CFFs and the process equations that link them.

SILVA: Surface Interactive Land VegetAtion

The model can be run with fixed observed vegetation distribution or with vegetation-carbon dynamics activated

- Contains an hydrology module with 2 soil layers
- Soil thermodinamics module (7 layers soil diffusion)
- Computes fluxes and solves surface energy and water balance at the interface with the atmosphere
- Surface parameters such as albedo, roughness and surface conductance to evapotranspiration are computed interactively

SILVA: interactive vegetation (on-going)

Bio-optical feedbacks in the equatorial Pacific

SeaWiFS (1997-2004) ChI variability (normalized stdev of anomalies)

Model (40 years) Chl variability (normalized stdev of anomalies)

Previous results don't agree...

Mean fields and seasonal cycle

Green ocean – Blue ocean

NINO3 region: Green Ocean (green) Blue Ocean (blue)

SST monthly climatology (degC)

Heat Content monthly climatology (W)

HadISST (red) Green Ocean (green) Blue Ocean (blue)

Vears

0.2

- Control simulation for Stream2 ready to start
- Closure of the terrestrial and marine carbon cycle on-going
- Coupled Dynamic Green Ocean Model produces a reasonable biology in the Equatorial Pacific area
- The coupling of biology with the physical model in the Equatorial Pacific produces (to be confirmed with longer runs):
 - a slight cooling (SST and heat content)
 - a slightly larger variability in the SST and heat content anomalies
 - comparable ENSO phase