

Progress in the GEMS-aerosol sub-project

Met Office, ECMWF, CNRS-LOA, MPI-M, CEA-IPSL-LSCE, NUIG, SA-UPMC, FMI, DWD, RMIB, DLR (no cost)

Olivier Boucher Presentation to the GEMS annual assembly Reading, 7 February 2006

Irak – May 2005

Malaysia – August 2005

11 August 2005

"Malaysia has declared a state of emergency as the air pollution index soars to extremely hazardous levels on the west coast, which is worst-hit by smoke from fires in Sumatra."

Status of staff hired in GEMS-aerosol

ECMWF **MetOffice** CNRS_LOA MPI-M **CEA-IPSL-LSCE** NUIG SA UPMC FMI DWD RMIB

Noone hired yet Noone hired, internal resources are used Since 01 Jan 06 Bertrand Crouzille Since 01 Mar 05 Stefan Kinne Since 01 July 05 David Fillmore Since 01 April 05 Conor Milroy Noone hired, internal resources are used Noone hired, internal resources are used Since 01 August 05 Harald Flentje Alexander Mangold Since 06 June 05

+ pre-existing internal resources

Reasons for being interested in aerosols

MONITORING

- climate effect (clear-sky, cloudy-sky)
- anthropogenic aerosols are responsible for a radiative forcing
- anthropogenic aerosols may modify the hydrological cycle
- natural aerosols may response to climate change
- deposition and acid rain issues

==> ecosystems

- satellite atmospheric corrections
 - ==> retrieval of the properties of ocean, land, and atmosphere
- role of aerosol deposition on ocean biology
- depletion of the stratospheric ozone layer
- improvement in meteorological reanalysis

FORECASTING

- Visibility ==> tourism, aviation
- Boundary conditions for air quality models ==> human health
- Improvements in weather forecasts and analysis
- Dust deposition on railways (catenary)

Aerosol monitoring in GEMS

Aerosol monitoring in GEMS

Hadley Centre © Crown copyright 2004

Aerosol monitoring in GEMS

Products	Usage
4D distribution of aerosol concentrations at 50-100 km resolution (troposphere and stratosphere)	climate research; monitoring of the atmospheric chemical composition; monitoring of the stratosphere (air traffic); monitoring of volcanic eruptions for local populations; initial and boundary conditions for regional air quality models
4D distribution of aerosol optical properties at 50-100 km resolution (troposphere and stratosphere)	atmospheric corrections for remote sensing of land surfaces and ocean;
	prediction of surface UV radiation
Surface distribution of particulate matter PM	regional air quality
Improved visibility range	air traffic, tourism
Improved photosynthetically active radiation (PAR) at the surface	study of the carbon cycle; monitoring of the Kyoto protocol
Aerosol deposition flux (dry and wet)	study of the ocean biology; impact on ecosystems (acid rain monitoring)
Improved photolysis rates	regional air quality; global monitoring of the atmospheric chemical composition
Improved surface, atmospheric, and top-of-atmosphere radiative budget	climate research
resolution (troposphere and stratosphere) Surface distribution of particulate matter PM Improved visibility range Improved photosynthetically active radiation (PAR) at the surface Aerosol deposition flux (dry and wet) Improved photolysis rates Improved surface, atmospheric, and top-of-atmosphere radiative	surfaces and ocean; prediction of surface UV radiation regional air quality air traffic, tourism study of the carbon cycle; monitoring of the Kyo protocol study of the ocean biology; impact on ecosyster (acid rain monitoring) regional air quality; global monitoring of the atmospheric chemical composition

Meeting on stratospheric aerosols (ECMWF, Met Office, SA-UPMC) (Exeter, September 2005)

Meeting on satellite data and observational error covariance matrix (ECMWF, Met Office, CNRS-LOA, CEA-IPSL-LSCE) (Exeter, September 2005)

Working documents on skill scores, injection heights, emissions.

Preliminary aerosol simulation (sea-salt, dust) performed at ECMWF and incorporated into the AEROCOM web-based evaluation tools.

Good progress in DA and model evaluation

On-going work on the observational operator and DA plumbing.

Significant on-going activities in data preparation for DA and evaluation.

- MODIS data uploaded
- data sampling strategy
- removal of bias
- observational error covariance matrix
- AOD from GAW stations
- UV AOD from Brewer spectrophotometer
- Physical and chemical aerosol data
- SEVIRI AOD
- AEROCOM tools

Development of a prognostic aerosol package in the ECMWF model

10-day sea-salt AOD @ 550 nm

Friday 6 December 2002 00UTC ECMWF Forecast t+12 VT: Friday 6 December 2002 12UTC Surface: ** "eqtv: Tau550: Sum SS10b: TL159L60 CY29R2_aer_x"

Courtesy J.-J. Morcrette, ECMWF

Hadley Centre © Crown copyright 2004

10-day pseudo-dust AOD @ 550 nm

Friday 6 December 2002 00UTC ECMWF Forecast t+12 VT: Friday 6 December 2002 12UTC Surface: ** "eqva: Tau550: Sum10bins: DD: TL159L60: Ave Jan"

Hadley Centre © Crown copyright 2004

Courtesy J.-J. Morcrette, ECMWF

AEROCOM web-based tools

- Correlation plots

- Taylor diagram

AN: ANET_2000 AR: ARQM_9999 AV: AVHRR 9999 GI: GISS 2000 GO: GOCART 200 KY: KYU 2000 LO: LOA 2000 LS: LSCE 2000 MA: MATCH 2000 MI: MISR_2000 MI9: MISR 9999 M0: MODIS 2000 M1: MODIS 2001 M2: MODIS 2002 M3: MODIS 2003 M09: MODIS_9999 MM: MODMIS 200 MZ: MOZGN 2000 MP: MPI HAM 200 PN: PNNL 2000 P1: POLDER_1997 P2: POLDER 2003 TM: TM5_B_2000 TO: TOMS 9999 UC: UIO_CTM_200 UG: UIO GCM 999 UL: ULAQ 9999 UM: UMI 2000

© CEA-IPSL-LSCE, MPI-M

Correlation

M1

M09

0.12

0.14

DUST – Western Africa

Courtesy S. Kinne, MPI-M

Sea Salt - Pacific Ocean

Hadley Centre © Crown copyright 2004

Courtesy S. Kinne, MPI-M

Ongoing aerosol modelling

Important criteria for model implementation:

- aerosol parametrisations need to be consistent with the ECMWF physics
- aerosol parametrisations need to be computationally affordable
- choice of aerosol parametrisations guided by skill scores
- to become interactive aerosols should not deteriorate the weather scores

Balance between aerosol model complexity and spatial resolution

Modal scheme (N, m) for the stratosphere

Emissions

Reduced scheme (4 variables) for the troposphere? Modal scheme (M7 or UKCA) later on?

FULL SCHEME

REDUCED SCHEME

24 tracers: DMS, SO₂, H₂S, DMSO,MSA,H₂O₂, SO₄, Black Carbon, Organic Matter, Fly Ash, 2 bins for Dust and 10 bins for Sea Salt

Black Carbon and Organic Matter exist in model as hydrophilic and hygrophobic **Tracer 1**: Aerosol Precursors (DMS, SO₂, H₂S)

Tracer 2: Accumulation mode aerosol (SO₄, Black Carbon, Organic Matter, Dust & Sea Salt)

Tracer 3: Coarse mode aerosol (Sea Salt)

Tracer 4: Coarse mode aerosol (Dust)

DMS <u>oxidation</u> \rightarrow SO₂ + DMSO +...

 $SO_2 \xrightarrow{\text{oxidation}} SO4 + \dots$

 $H_2S \longrightarrow SO_2 + \dots$

Fixed oxidants but H_2O_2 chemistry Aqueous-phase oxidation of SO_2 Sulphur chemistry is replaced by an equivalent chemical lifetime $DMS+H_2S+SO_2 \longrightarrow SO_4$ lifetime

Developed/tested in LMDZ by N. Huneeus

Hadley Centre © Crown copyright 2004

FULL SCHEME

REDUCED SCHEME

• Dry Deposition

	Tracer 1*	Tracer 2**	Tracer 3	Tracer 4
Vdep_oce	0.0 & 0.7	0.05 & 0.1	0.1, 1.2 & 1.5	1.2
Vdep_sic	0.0 & 0.2	0.25 & 0.1	0.1, 1.2 & 1.5	1.2
Vdep_ter	0.0 & 0.3	0.25 & 0.1	0.1, 1.2 & 1.5	1.2
Vdep_lic	0.0 & 0.2	0.25 & 0.1	0.1, 1.2 & 1.5	1.2

*The value of SO_2 is taken for Tracer 1 in the simplified model, except for vdep_oce where it is a weighted average of deposition velocities of SO_2 and DMS

** The first value in the column represents de deposition velocity for SO_4 and all the other tracers grouped in tracer 2 have a value vdep of 1.2

• Wet Deposition

Sedimentation

Hadley Centre

Sedimentation velocity is a function of size.

© Crown copyright 2004

Aerosol optical properties

Size distribution. Mie theory.

Equivalent size is used to adjust burden

Equivalent size distribution is used.

Developed/tested in LMDZ by N. Huneeus

	Tracer 1*	Tracer 2	Tracer 3	Tracer 4
Vdep_oce	0.28*	0.05	1.2	1.2
Vdep_sic	0.2	0.25	1.2	1.2
Vdep_ter	0.3	0.25	1.2	1.2
Vdep_lic	0.2	0.25	1.2	1.2

*Weighted average between deposition velocities of SO_{2} and DMS

Model evaluation: AERONET

Model evaluation: Amsterdam Island

Page 21

Met Office

RMSE reduced versus full scheme

Monthly AOD at 550 nm

Daily AOD at 550 nm

Monthly AOD at 865 nm

Daily AOD at 865 nm

Variational assimilation

 $J = (x - x_b)^{T} \boldsymbol{B}^{-1} (x - x_b) + (y - \boldsymbol{H}[x])^{T} \boldsymbol{R}^{-1} (y - \boldsymbol{H}[x])$

+ minimisation algorithm

B,R: Covariance error matrices y: observation x_b: background H: obs operator

Hadley Centre © Crown copyright 2004

Variational assimilation

Assimilated data

1/ MODIS accumulation- and coarse-mode AOD AOD data delivered by ESA GlobAER project?2/ Satellite aerosol radiances6S model is being simplified and adjoint will be developed

Observational error covariance matrix Data unbiased and error covariance matrix defined from +/- 30 min comparison to AERONET data Defining sampling strategy based on quality flags and local s.d. Operator uncertainty lumped with the observational error

Background error covariance matrix: NMC method: difference between 48h and 24h forecasts for the same time

Skill scores

Correlation coefficients (observed vs simulated aerosol properties)
 current models perform well on monthly means
 challenge will be to get good correlation on daily means

- Linear fits: slope, offset
- Root-mean square errors
 largely used in RAQ
- Taylor diagrams

- summarizes model performance in terms of correlation coefficient, standard deviation, and RMS.

- Figures of merit
 - useful to test the transport for particular events
 - has been used for ETEX

Hadley Centre ©

Page 25

Objectives of the aerosol breakout session

1/ Review progress from all partners

2/ Make a number of key decisions

- model set up for the next year or so
- emission datasets
- satellite datasets for data assimilation
- interfaces with other sub-projects
- evaluation strategy

3/ Agree on and polish workplan for months 13 to 30

4/ Decide if interim aerosol meetings are needed