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Abstract 

We provide a number of examples from recent international, multi-model experiments of the performance and 
application of land surface schemes in both offline and coupled simulations. Science-driven investigations show a wide 
range of skill and behavior among models that all purport to represent the same quantities (e.g., near-surface soil 
moisture). Combining estimates from multiple models can produce an analysis which is of high quality, and usually 
superior to any individual model. If there is sufficient observational data for calibration, a more sophisticated regression 
can be formulated to improve skill further. However, it appears that calibrations over data rich regions may not be 
transferable to other locations. The quality of forcing data, or the coupled atmospheric model, can play a large role in 
the quality of the resulting land model estimates. Land models can also produce estimates of brightness temperatures as 
they would be observed by satellite, opening new opportunities for calibration, validation and assimilation. Finally, the 
behavior of coupled land-atmosphere model systems is beginning to be validated to ascertain whether the feedbacks are 
being simulated at the appropriate strength. In all cases, research would greatly benefit from a greater amount of 
observational data.  

 

1. Introduction 

For weather and climate forecasting with numerical models, we need land surface initial and boundary 
conditions that have four basic qualities: 1) They are consistent with the land surface scheme (LSS) in the 
forecast model; 2) They are consistent with the spatial and temporal resolution(s) of the forecast model; 3) 
They are consistent with the precursory observed atmospheric conditions; 4) They are complete through the 
soil column. We then need the LSSs to perform adequately, representing realistically the physical processes 
which govern the conservation and transfer of water and energy at the land surface, and the exchanges 
between land and atmosphere.  

Development of LSSs is typically performed at the laboratory level, which encourages scientific inquiry and 
innovation. However, the tasks of calibration and validation are tedious, require large amounts of 
observational data from disparate sources, and often necessitate drawing on resources greater than individual 
labs can provide. 

Recent activities within the Global Energy and Water Experiment (GEWEX) Modeling and Prediction Panel 
(GMPP) have shown the value of participation in focused multi-model process investigations to improve 
both our understanding of the natural world, and to accelerate model development and the improvement in 
performance of participating schemes (Holtslag and Randall 2001, Randall et al. 2003). Within GMPP, and 
particularly the GEWEX Global Land-Atmosphere System Study (GLASS; Polcher et al. 2000), a number 
of actions are underway specifically targeting the application of land surface models and coupled land-
atmosphere models towards understanding key problems in earth system science. 

Offline testing of process models includes stand-alone testing of the LSS at individual locations where 
observed forcing and validation data are complete, as well as integration in a distributed framework akin to 
the scheme’s application in weather and climate applications. There exists through the Second Global Soil 
Wetness Project (GSWP-2; IGPO 2002) a ready framework for global model evaluation and comparison for 
the 10-year period 1986-1995. Regional and local evaluations can take place in the framework of various 
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phases of the Project to Intercompare Land-surface Parameterization Schemes (PILPS; Pitman et al. 1998). 
Both of these efforts use a common data formatting standard that simplifies participation in multiple tests. 
Testing of the fully coupled land-atmosphere system in GLASS takes place in the framework of the Global 
Land-Atmosphere Coupling Experiment (GLACE; Koster et al. 2004). A new effort is beginning to bring 
together the land, boundary layer, and cloud modelers to understand land-atmosphere interactions at the 
process level. All of the GLASS activities, and related studies that consolidate and share large validation 
data sets, are of tremendous use to large-scale validation of individual LSSs. Recent efforts in these areas 
form the basis of this overview of continental to global scale validation of land models. 

2. Observational data and validation 

Observational data are necessary for assimilation, initialization, model validation and calibration. The lack 
of global observational networks is a hindrance for weather and climate modeling (Leese et al. 2001). What 
exists is a smattering of highly localized and spatially irregular in situ measurements in national or state 

networks, sparse international networks dedicated to research aims only, and one-of-a-kind field experiments 
which are not coordinated nor distributing data in real time (Dirmeyer et al. 2004a). The global network of 
rain and streamflow gauges has been deteriorating for decades over large regions of the world, particularly 
in developing countries (Vörösmarty et al. 2001). 

Satellites can provide measurements of surface skin temperature and other surface properties that are related 
to brightness temperatures at various electromagnetic wavelengths. Remote sensing holds great promise to 
provide spatially distributed measurements on a large scale for immediate use, but many key aspects of the 
land surface cannot or will not be measured from space in the foreseeable future. Surface soil wetness and 
snow coverage can be measured by satellite where the signal is not degraded by excessive overlying 
vegetation, but the amount of water in the snowpack or below the surface is only measured in an 
insufficiently small number of observing stations around the world. Therefore, one must rely on numerical 
models to fill the gaps and serve as the basis for global analyses that are continuous in space and time, for 
purposes of monitoring as well as the initialization of weather and climate forecasts. 

There are second-order ways to infer the skill of LSSs in simulating land surface state variables and fluxes. 
For instance, there have been numerous studies which show that changes in the formulation, initialization, or 
prescription of the land surface in coupled land-atmosphere models improves the simulation of the 
atmospheric component of climate (e.g., Fennessy and Shukla 1999, Dirmeyer 2000, Douville et al. 2001, 
Douville 2002, Schlosser and Milly 2002, Koster and Suarez 2001, 2003). In these cases, the coupled land-
atmosphere system is validated against distributed near-surface meteorological measurements on large 
spatial scales. 

State variables such as surface soil moisture and surface temperature are observable to some degree from 
space, which can provide global-scale coverage for validation of LSSs. Soil moisture is also measured in the 
soil column in a number of agricultural regions, either gravimetrically or electronically. Snow coverage can 
also be measured from space, but the amount of water in the snowpack is difficult to measure except in situ.  

Radiative fluxes may also be measured remotely, but fluxes of sensible heat and water (evapotranspiration 
and runoff) cannot be measured directly. All measurements of heat fluxes from the surface must rely on 
some assumptions about conduction, convection, gradients and turbulence. Instrumented towers are used to 
estimate heat fluxes that can be compared to LSS simulations. Runoff can be measured integratively through 
streamflow, but model grids generally do not conform to the boundaries of catchment basins. In all cases, 
calculated variables from a gridded LSS will not compare directly to the spatial and temporal scales sampled 
by instruments. Some compromising assumptions must be made in any validation exercise  
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Beyond the choice of variables, there is also the question of what statistics of the model to validate. For ease 
of comparison on large spatial and temporal scales, one typically tries to distill the comparisons to a single 
number. For measurement of accuracy, root mean square error is most often used over a spatial or temporal 
domain, although there are arguments against its use in favor of mean absolute error or mean bias error (C. J. 
Willmott, pers. comm.).  

If one is more concerned with the ability of a LSS to simulate the pattern of variations in space or time, 
some form of correlation may be more appropriate. Correlation is a particularly important metric when one 
is interested transferability of a quantity such as soil moisture from observations to a model (e.g., for 
initialization of a forecast) or between models. Because different models (and observations) have different 
climatologies and “operating ranges” for soil moisture (Koster and Milly 1997), values cannot be conveyed 
without some sort of transformation. Transformations can be constructed so that the correlation with 
observations is not changed (e.g., rescaling so that the mean and variance are preserved; Dirmeyer et al. 
2004b). 

3. Validation in uncoupled LSSs 

Large-scale validation in GSWP-2 is being conducted in several ways, including overall skill compared to 
all stations in the Global Soil Moisture Data Bank (Robock et al. 2000). Figure 1 shows the median 
correlation with all stations where at least 25% of monthly readings for the period 1986-1995 are available. 
Results from the COLA version of the Simplified Simple Biosphere model (SSiB; Xue et al 1991; 1996; 
Dirmeyer and Zeng 1999) are shown for a number of GSWP-2 sensitivity studies, where substitutions are 
made to elements of the forcing data or boundary conditions compared to the baseline simulation (the black 
bar, with characteristics given at the bottom of the plot). The shades for each bar denote which aspect of the 
input data has been altered (Hyb stands for a hybrid of reanalysis and observational data sets). It is clear that 

the quality of the simulation is dependent on the quality of the forcing data. A change to even one field (e.g., 
precipitation or vegetation) can have a profound effect on the results. Likewise, the result is not always 
intuitive. For example, substitution of the ERA40 model downward surface radiation for SRB leads to the 
best simulation of soil wetness, even though SRB (and ISCCP) are derived directly from remote sensing 
observations. 

 
Figure 1: Median correlation of 120-month time series of 1m soil wetness from SSiB simulations in 
GSWP-2 sensitivity studies  and station data from GSMDB.. 
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Comparison of longer-term offline model products (1980-1999; Dirmeyer et al. 2004b) are shown as the 
first, second and fifth sets of bars in the panels of Fig 2. Clearly there are products which tend to perform 
better than others on the whole, but no model is always best or worst, and every model ranks first or last for 
some stations. This fact helps to motivate our attempts at multi-model analyses, described in section 6.  

 

Figure 2: Number of stations for which each model gave the best or worse correlation with the observed 
20-year time series of monthly anomalies, where at least one model showed a statistically significant 
correlation at the 95% level. 

Forward brightness temperature modeling has also been applied to model output in GSWP-2. This provides 
another means to expand the validation and assimilation capabilities of current LSSs beyond those few areas 
where in situ data are readily available. An application for surface soil moisture validation is to couple the 
LSSs with a validated L-band microwave emission model – MEB (Pellarin et al. 2003) to simulate forward 
brightness temperature as would be observed from microwave radiometers. Several participating LSSs have 
been examined for their performance in simulated brightness temperature, which is assessed by comparisons 
with airborne measurements from several large-scale campaigns held during the GSWP2 period. Such an 
assessment constitutes a useful prototype of LSSs validation on a global scale when future satellite-based L-
band radiometry data are available, such as the NASA Hydrosphere State (HYDROS) mission and the 
European Space Agency (ESA) Soil Moisture Ocean Salinity (SMOS) mission. 

4. Validation in coupled LSSs 

Figure 2 also shows the performance of soil moisture estimates from coupled land-atmosphere analyses, 
namely the reanalysis products of operational weather centers in Europe and the United States. There 
appears to be a greater range of skill in the reanalysis products, with some performing very poorly in this 
metric (it should be noted that while the NCEP-DOE reanalysis (Kanamitsu et al. 2002) often has very poor 
time series correlations compared to other products, including the original NCEP-NCAR reanalysis (Kalnay 
et al. 1996), it has smaller mean errors than the original reanalysis (Lu et al. 2004). 

One drawback of surface water and energy balance estimates from reanalyses is that the assimilation of state 
variables applied to reduce the errors in the analyses necessarily introduce increments into the predictive 
equations such that the local water and energy budget does not close. This can be a serious drawback when 
one is studying the water and energy balances themselves. Of course, local observations of all terms of these 
budgets never perfectly balance either, due to measurement errors and limits on instrument accuracy.  
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The models participating in GLACE have been subject to an experiment which quantifies the degree of 
coupling from land to atmosphere within the hydrologic cycle (Koster et al. 2004). A great deal of variability 
is found both in the spatial patterns of feedback strength over the globe, and in the relative strengths of the 
feedbacks among models. Table 1 shows the rankings of the twelve models’ globally averaged coupling 
strength, and the separate components arising within the associated LSS and AGCM (Guo et al. 2004).  

Model L – A. Land Atmosphere 

GFDL 1 1 4 

NSIPP 2 4 2 

NCAR 3 8 1 

CCC 4 2 6 

CSIRO 5 6 3 

UCLA 6 7 7 

CCSR 7 9 8 

COLA 8 11 5 

GEOS 9 3 10 

BMRC 10 10 9 

Hadley 11 5 11 

NCEP 12 12 12 

Table 1. Ranks of GLACE GCMs in land-atmosphere coupling strength, and the contributions from the 
LSS and AGCM separately. 

Of course, the pressing question is whether any of these models exhibit a realistic degree of land-atmosphere 
feedback. The quantity used to estimate coupling strength is the change in the coherence in the time series of 
precipitation among 16 ensemble members across a 3-month period between a control ensemble with each 
member initialized with the soil moisture from 1 June of a different year of an AMIP-2 simulation, and a test 
ensemble where soil moisture is prescribed at each model time step to exactly match a randomly chosen 
member of the control ensemble. The real world progresses as a single realization, not as an ensemble, so the 
same statistical manipulation cannot be performed on observational data. However relationships among 
components of the surface energy and water budgets can be plotted and compared with observations at 
selected sites where data records are sufficiently long. 

Figure 3 shows the relationship between evaporative fraction (here given as the ratio of daily mean 
evapotranspiration to daily net surface radiation) and soil moisture at each model’s grid box containing the 
AmeriFlux site at Little Washita, Kansas during June-August (note: only ten of the models reported all of 
the necessary variables to perform this calculation). Also shown in Fig 4 is the corresponding plot from the 
observational site for 1996-1998 (Falge et al. 2001). The models show a range of coherence in the 
relationship between soil wetness and evaporation. The models with the strongest coupling strengths 
generally show the tightest relationships between soil wetness and evaporative fraction. Several models have 
a very limited range of soil wetness for this location. None show the same distribution of soil wetness as 
observations, although some models (e.g., Hadley Centre and NSIPP) span a similar range to the 
observations. And none of the models except the Hadley Centre show the weak relationship between soil 
wetness and evaporative fraction over a range of soil wetnesses that appears in the observations at this site. It 
should be noted that the Little Washita site is in a transitional zone between arid and humid regimes, where 
the multi-model GLACE analysis suggested one of the strongest coupling strengths in the world (Koster et 
al. 2004). On the other hand, a tighter relationship between available energy and evaporation is found in the 
observations than the models at this site (not shown). Initial investigations at more humid locations show a 
similarly weak relationship in the observations between soil moisture and evaporative fraction, and a strong 
relationship between net radiation and evapotranspiration, with the models showing somewhat better 
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agreement with observations. Over more arid regions, one would expect evaporation to be more moisture 
limited than energy limited, but observational data from more arid sites has yet to be analyzed. Nevertheless, 
these initial comparisons suggest that the model-based conclusions of Koster et al. (2004) may need to be 
revisited, as the implied regions of strong land-atmosphere coupling strength for the real world may be either 
weaker, or displaced farther into the arid zones than the models suggest.  

 
Figure 3 Plot of daily mean evaporative fraction versus soil wetness for model grid box containing the 
Little Washita field site. 

 
Figure 4 As in Fig 3 for observations. 
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5. Multi-model analyses 

One way to easily improve upon the performance of individual land surface models is to statistically 
combine the simulations of multiple models. It can be shown analytically that given a large enough sample, 
an ensemble mean should always outperform individual members in predicting nonlinear systems. For 
atmosphere and ocean models, the skill is gained by reduction of noise, and thus enhancing the ratio of 
signal to noise in the simulations. For land models, noise is not a major issue, since they behave in a more 
deterministic fashion than fluid dynamical systems. The gain in skill is realized by the reduction of 
systematic errors and pathological behaviors in individual LSSs, which arise from poor calibration or an 
incomplete representation of physical processes. 

One caveat for the construction of multi-model analyses of the land surface is to carefully consider how to 
deal with inconsistencies between models (their formulation, resolution, representation or omission of 
certain state variables or fluxes in their output streams). For example, rarely will two unique models have the 
same vertical structure of soil levels. Thus an analysis of soil moisture at 10cm intervals will require 
interpolation. And if some models represent ice in the soil and others do not, how should one represent the 
multi-model analysis of frozen soil? 

Gao et al. (2004) showed that when sufficient validation data are available, one can use a seasonally-
dependent linear regression to improve the correlation of any individual model simulation of soil wetness 
time series with observations. A regression on the multi-model mean performs even better, and the best skill 
can be had when each model has its own calibrated weight in the multi-model mean. However, in the 
absence of regression, the multi-model mean generally does as well or better than the best single model at 
any location. 

This approach is being used in GSWP-2 to create a multi-model analysis of the land surface for the period 
1986-1995 from the baseline simulations of all participating LSSs. This analysis is scheduled to be 
completed and released in early 2005. 

In a very real sense, the conclusion of Koster et al. (2004) is the result of a multi-model analysis of coupled 
land-atmosphere models. Because the pattern of land-atmosphere feedbacks is highly model dependent, an 
average across twelve models is means to produce an assessment that is not heavily dependent on the 
vagaries of any single model. It remains to be seen if the multi-model estimate of the strength and 
distribution of land atmosphere coupling is in better agreement with observational evidence than any of the 
individual model products. 

6. Conclusions 

The lack of observational data makes large-scale validation of land models quite difficult. We need global in 

situ observational networks for land surface state variables (Leese et al., 2001). Remote sensing holds 

promise for providing the global coverage needed, especially if combined with land surface models in data 
assimilation systems. However, ground truth capabilities are still needed, so that remote sensing can be used 
to fill the gaps in the network and contribute to continuous spatial coverage. 

Numerous ways of testing offline and coupled land-atmosphere models are being developed and applied. 
Some examples have been given here, both in the area of validation of LSSs, and improving upon basic 
simulations. Land surface modeling (and its relationship to weather and climate forecasting, climate change 
and applications to society) is still a relatively immature field of study, and it will be a grand research area 
during the next decade. 
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