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\What is bias?

The main assumption of a Best Linear Unbiased Estimation
(BLUE) system is that the expected values of the
background and the expected values of the observations
are equal to the expected values of the real world.

If we use the mean to represent the expected value of the
ensemble, we need to define averaging time scales that are

both practical and representative for the expected mean.

If we have for instance slow-varying (seasonal) model
biases, this might not be straightforward.
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Why correct for bias?

A biased background or biased observations result in a
biased analysis. And a biased analysis can result in a
biased forecast. And Mrs Jones in Norwich does not like a
biased forecast.

Strong biases can also make the analysis system unstable
resulting in incorrect solutions to the minimization problem.

J

The main goal in environmental data assimilation is to
provide unbiased analyses, not good NWP forecasts.

When using tracer analyses fields for surface flux
Inversions, remaining biases that are not constant in space
and time can have disastrous effects.
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Bias

Observation bias

Correct whenever
possible with bias
correction

Model bias

Should not be
corrected by bias

correction
Can cause Can cause
rejection of valid oscillations In
observations analysis

Should be corrected by
Improving forecast model
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Bias In environment data assimilation

The main target in environmental data assimilation is to
provide unbiased analyses, not good NWP forecasts.

This means that model bias is only important as part of the
assimilation. It is not a real problem if the model drifts in a
10-day forecast.

The effect of any model bias on the analysis is controlled by
the ratio of the background errors and the observation
errors.
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True value
Observation
Background value
Analysis value

\What is bias?

Background bias = 0

No problems
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True value
Observation
Background value
Analysis value

\What is bias?

Background bias = O(0)

Mean analysis is biased, but
stability is probably still all
right.
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True value
Observation
Background value
Analysis value

\What is bias?

Background bias > o

Mean analysis is biased, and
stability problems can arise.
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\What is bias?

Background bias < o

Mean analysis is much less

True value
Observation
Background value
Analysis value

biased.
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Summary so far

Effect of bias in background depends on the ratio
of the bias to the standard deviation of the error.

In environment monitoring we would like to correct
background bias with observations to get a less
biased analysis.

This could imply the use of large standard
deviations in the background covariance matrix.

Observations should be bias-corrected as best as
possible.

What time scales do you consider for bias
correction?
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Causes for biases

Instrument bias (relatively constant)
Aerosol and cloud effects (regionally varying)
Radiative transfer biases (air mass dependent)

Forecast model transport
Forecast model physics
Forecast model surface fluxes
Forecast model chemistry
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Satellite Instruments in GEMS

 Greenhouse + Chemistry * Aerosol

» AIRS » Sciamachy

> |ASI » SBUV

> CrlS > OMI

» Mopitt » TOMS

» Sciamachy » GOME

» 0OCO > MIPAS

» GOSAT > MLS

Causes for bias: spectroscopy errors, (undetected) clouds,

(undetected) aerosol, surface reflectivity errors, air mass
factors, errors in climatological temperature fields.
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Observation bias
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Observation bias

Mid-Latitude Summer
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AIRS CO, signal has the same order of magnitude (0.2 — 0.3 K) I
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Example: y-correction and CO,

'(p) =exp| -7 | x(p)p(p)dp
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An error in the absorption coefficient will move the weighting function up
or down. A gamma correction will therefore produce an air-mass
(temperature) dependent bias correction.
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Example: y-correction and CO,

April 2003 ECMWF CO, Analysis - April 2003 ECMWF CO, Analysis —
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flat bias correction v bias correction

Because the CO, signal in AIRS radiances is small, differences in
bias correction can be dramatic.

If the CO, model bias is spatially correlated to the y-patterns, some of
this model bias ends up in the bias correction.

Only proper validation can help to sort things out.
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Cloud bias effect on CO estimates
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Cloud detection of tropical thin cirrus

Long-wave CO,
band

- Water vapour

band
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= A water vapour background error affects
= the cloud detection in the water vapour

. band and the long wave band in cases of
blown-off thin cirrus on top of a dry
troposphere.

i Removing the water vapour sensitive
- Channels from the long-wave cloud
*detection helps to detect the thin cirrus.
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Effect on COZ estimates

January 2003 LrOpospheric CO, Analysis (clear only)
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Observation bias
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FG. 10. Monthly mean aerosol optical thickness at 0.55 pm for the year 2001 at (a) four sites with land retrievals and (b) four sites with only ocean retrievals. The top portion of
each plot shows the monthly means. The bottom portion shows the difference between MODIS and AERONET values. Also shown by thin dashed lines in the bottom portions are
the prelaunch estimated uncertainties of optical thickness retrievals, =0.03 = 0.057 over ocean and =0.05 = 0.157 over land. Bluedenotes MODIS ocean retrievals, red denotes MODIS
land retrievals, and black denotes AERONET. The MODIS values are calculated from level 3 daily statistics and represent a 3° latitude by3° longitude box centered on the AERONET
station.

MODIS aerosol biases from Remer et al., JAS, 2005.

Bias Workshop SSECMWF 10 November 2005




Model bias

Mauna Loa
. . .

R Using the same transport model

' with 2 different biosphere surface
flux climatologies shows
considerable (systematic)
differences in CO, mixing ratios
around 500 hPa.
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Model bias

Park Falls, Wisconsin
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Using the same transport model
with 2 different biosphere surface
flux climatologies shows
considerable (systematic)
differences in CO, mixing ratios
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Model bias

South Pole
. . .

e Using the same transport model

' with 2 different biosphere surface
: ; flux climatologies shows
e - considerable (systematic)
: ' differences in CO, mixing ratios
around 500 hPa.

1 year 1 South Pole

Biosphere CO2 perturbation [ppmv]

[ppmv]

Biosphere CO2 perturbation

The magnitudes of these
systematic differences are
regionally dependent.
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Boundary Layer CO2 mixing ratio [ppmv]

Boundary Layer CO2 mixing ratio [ppmv]

Model bias
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Unconstrained model errors

AIRS weighting function

-

This layer is directly
constrained by the
observations.

Lowest level of
AIRS sensitivity

Vertical

I l mass fluxes

This layer is constrained by information
propagating backwards within the 12 hour
assimilation window, and by the background

l ‘l vertical error correlations.

Surface
fluxes
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Greenhouse gas validation
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Greenhouse gas validation

Atmospheric measurement sites in the CarboEurope IP (in prep.)
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Aerosol validation

Aeronet provides aerosol optical thickness observations
from various ground-based stations around the world
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Reactive gas validation

NDSC Sites
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Example: bias correction for ozone

* Bias between model and observations violates underlying
assumption of DA that obs and fg are unbiased

- Model AND GOME data can have bias

- Understand model bias - Develop a bias correction for ozone
7 data, based on independent observations

« Correct model bias Q9
A

-

- Use ground-based Brewer and Dobson

observations (obtained from WOUDC:
http://www.msc-sms.ec.gc.ca/woudc)
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Example: bias correction for ozone

Use independent
observations

to develop

bias correction

Linear fit:
y =3.5-0.1x
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SZA [ degress |

Relative difference between GOME and Brewer obs. (1999)
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Example: bias correction for ozone
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Example: bias correction for ozone

Ny-Aalesund (78.9 N, 12 E)
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Summary

 Observation bias

» Bias in retrieval products (e.g., aerosol optical depth)
can be large. It is also variable in space, which makes it
hard to correct.

» Bias in radiance data (AIRS) is small, but signal is small
as well. Left-over small biases can affect results.

 Model bias

» Model bias can be quite large and is hard to quantify.

» Because we are mainly interested in good analyses, it
would be desirable to have the observations correct the
model bias, even if this has to be done cycle after cycle.
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Just a few Questions

* How do we obtain the least-biased analysis?

« How do we estimate correct observation bias corrections,
considering the low amount of accurate validation data?

* How do we avoid removing the signal with the
observation bias correction?

* How tight do we want to keep the background constraint?
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