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Most data assimilation systems are bias-blind: they were designed to correct random errors only. 

Bias-blind assimilation

Data assimilation is essentially a sequential procedure for adjusting a model integration to actual observations:

time

Systematic errors in models and observations cause many problems in assimilation systems:

• Suboptimal use of observations
• Biases in the assimilated fields
• Non-physical structures in the analysis
• Extrapolation of biases due to multivariate 

background constraints
• Spurious trends due to changes in the 

observing system

time



Bias-blind data assimilation, in theory

Courtesy Michiko Masutani (NCEP), Ron Errico, Runhua Yang (GMAO)

Zonal mean analysis increments in an Observing System Simulation Experiment (OSSE)
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ERA-40 Monthly Mean Analysis Increments 

• Large upper stratospheric temperature bias
• Vertical structure of the increments reflect 

background constraints (B)
• Tropospheric mean temperature increments are 

large as well, especially in tropics

• Systematic dry bias in tropics, wet bias in high 
latitudes

August 2001 zonal mean T,q



ERA-40 Monthly Mean Analysis Increments

August 2001 - July 2002 zonal mean T



Summary so far

• Bias-blind analysis schemes are suboptimal, propagate biases and generate 
spurious signals and trends in the assimilation

• Persistent patterns in the analysis increments are indicative of systematic errors

• These are present in any data assimilation system, unless it uses synthetic data

• What about the possible sources of these problems?

– Model errors
– Data errors
– Observation operators
– Assimilation methodology

• A great deal of work is being done on identification and correction of biases –
much of it outside the assimilation framework
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SAIGON/TAN-SON-NHUT  bg-obs, bg corrected
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SAIGON/TAN-SON-NHUT  raso correction, ERA-40

1960 1970 1980 1990 2000
-4

-2

0

2

4

-4

-2

0

2

4

[K
]

N: 9776 Sig:   1.42 Corr:  0.66

48900, [ 10.82 106.67], 00h, 200 hPa Trend 1989-2001: 2.33 ± 0.06 [K/10a]

SAIGON/TAN-SON-NHUT  corrected bg-obs, ERA-40
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Uncorrected bg-obs temperature at 50hPa
Test statistic (SNHT) used for break detection

Corrections applied at this station after 
break identification

Corrected bg-obs temperature at 50hPa

Major challenge: To account for jumps and trends in background temperature field that are due to 
changes in the observing system (particularly satellites) and associated bias corrections

Break detection based on stationarity tests of bg-obs differences, combined with available 
information about changes in radiosonde and/or ground equipment, radiation correction, etc.

Break detection in radiosonde time series (climate time scales)
Leopold Haimberger (Univ. of Vienna and ECMWF)



  Composite bg-obs of radiosondes south of 25N, ERA-40
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Some examples of identifiable artificial jumps and trends in mean background 
temperatures

Composite bg-obs of radiosonde south of 25N, bg corrected
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Leo Haimberger, 2005: Homogenization of radiosonde temperature time series using ERA-40 
analysis feedback information. ERA-40 Project Report No. 22, ECMWF

Uncorrected bg-obs temperature at 50hPa:
Mean over all stations south of 25N 

After global bg corrections:

Errors in NOAA-4 bias correction

Excessive tropical precipitation 
associated with increase in 
humidity observations

Gradual replacement of radiosondes in 
Australia and Pacific Islands (not 
global)



Spectral analysis of observed-minus-background differences 
(weather time scales)

Background fit to radiosonde
observations is commonly 
used to assess the impact of 
changes to the assimilation 
system

We usually monitor certain basic statistics:

• Data counts
• Mean departures
• Rms departures

Do station time series contain additional useful information?



Spectral analysis of observed-minus-background differences

Normalized spectrum of white obs-bg with station-
dependent bias and std dev (FAKE)

Innovation property: If the assimilation is optimal 
then the obs-bg time series will be white

Using 2 months of actual temperature data:
(NCEP’s GSI, Jan-Feb 2005, all NH stations)

A great deal of useful information in the 
observations is not extracted by the analysis
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Bias-aware assimilation

• These methods always rely on assumptions about the sources of bias

• They require meaningful bias models:

– Essentially a way to reduce the number of degrees of freedom
– Persistent bias; use of basis functions; physically-based (parameterized) models
– Estimation requires a relationship between bias model parameters and the observations
– Fundamentally: The bias parameters must be observable

Analysis methods designed to correct (some) biases during data assimilation 
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Correct for observation bias
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The bias in a given instrument/channel is usually modeled in terms of a relatively small number 
of parameters – e.g. linear predictor model for radiance bias (Harris and Kelly 2000)

It is natural to add these parameters to the control vector and correct the observations during 
the analysis (Derber and Wu 1998; Dee 2004)

Variational correction of observation biases

The standard variational analysis minimizes

Modify the observation operator to account for bias:
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What is needed to implement this:

1. A modified operator               and its TL + adjoint
2. Background error covariances for the bias parameters
3. An effective preconditioner for the joint minimization problem
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Observed-background statistics and adaptive bias correction

NOAA-9 MSU Ch 3
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Model bias correction in weak-constraint 4D-Var
Yannick Trémolet, ECMWF
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• Extend 4D-Var by including model forcing in the 
control vector (Derber 1989; Zupanski 1997)

• Reduce size by assuming that model error is 
constant for the length of the assimilation window

• Model error constraints (Q) are obtained from 
time series of tendency differences

• Estimated model errors in the stratosphere are 
consistent with large stratospheric temperature bias

• Improved agreement with observed radiances in 
stratospheric temperature sounding (AMSU-A Ch13)
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Model bias confused with observation bias
Yannick Trémolet, Lars Isaksen (ECMWF)

Persistent model error forcing at lower levels 
in the vicinity of major airports
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Explained by observation bias due to slight 
delay in reports during ascents/descents?

Local model error forcing disappears when all 
aircraft reports near Denver airport are 
withheld from the assimilation
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A simple sequential scheme for correcting bias in the model background

bias correction

the usual bias-blind
analysis

bias estimation



Sequential schemes for correcting model bias correction

Applications and enhancements:

• Atmospheric humidity analysis (Dee and Todling 2001)

• Sequential estimation of model bias parameters (Dee 2003)

• Bias correction via model forcing (Nichols et al.; Bell et al. 2004)

• Skin temperature analysis (Radakovich et al. 2004)

• Constituent assimilation (Lamarque et al. 2004) 

• Ocean data assimilation (Balmaseda 2005; Chepurin et al. 2005)

• This simple scheme is a special case of separate-bias estimation (Friedland 1969)
• Provides the Best Linear Unbiased Estimate (BLUE) in case of constant bias parameters
• Can be used to estimate observation bias parameters as well 
• Virtually cost-free and very easy to implement
• BUT: the approach is purely statistical; no attempt to correct bias at the source 



Another simple sequential scheme: Predictability of analysis increments

It seems clear that certain aspects of the analysis increments are very predictable…

Can we take advantage of this to improve the data assimilation?

August 2002 monthly mean analysis increments of total column ozone in ERA-40
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Bias-blind assimilation:

Prediction of the analysis increment:
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Outline of a method:

Bias-aware assimilation:



Demonstration with a simple statistical estimator

Background error = slowly varying bias + quasi-diurnal cycle + serially correlated noise

Bias-blind assimilation:



Demonstration with a simple statistical estimator

Prediction of the analysis increment using a linear autoregressive model (2-day lag)

Start increment prediction

Bias-aware assimilation:



Summary

Traditional data assimilation methods are not designed to handle biases

• It is always preferable to correct bias at the source, if it can be identified
• A lot of work goes into bias correction of observations before they can be usefully assimilated

(presentations by many at this workshop)
• Data assimilation systems provide excellent tools for identifying biases

(presentations by L. Haimberger, D. Vasiljevic) 

All assimilation systems show evidence of residual biases in both models and data

• Persistent spatial patterns in analysis increments; temporal aspects of departures
• Impact on NWP: Loss of information; obstacles to proper utilization of satellite data

(presentation by T. McNally)
• Impact on reanalysis: Difficult to separate real climate changes/trends from spurious signals

(presentation by S. Uppala)

Need for adaptive methods to correct systematic errors during the assimilation

• It is not reasonable to assume that errors are strictly random (either in models or data)
• There are compelling practical reasons for implementing adaptive, bias-aware systems
• Major challenge: To develop meaningful error models that can separate model bias from observation bias
• Many bias-aware techniques (variational and sequential) are available and are being implemented 

(presentations by T. Auligné, Y. Trémolet)


