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In-situ Observations
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Source (GtC yr™!) Source (GtC yr™)

Source (GtC yr™*)

Svynthesis inversion

* Red 'x’' indicates mean flux
across 15 models

* Blue circles indicate mean a
posteriori uncertainty (within'
model error)

« Red error bars indicate model
spread (‘between’ model error)

- 'Within' model uncertainty
larger than 'between’ model
uncertainty for most regions

- Current inversion

system is data limited!

From Gurney et al. (2002)
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Satellite Observations
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Data assimilation vs. stand-alone retrieval

Data Assimilation

v Various sources of atmospheric
observations are used to estimate
atmospheric state in consistent
way.

v’ Spatial and temporal
interpolation of information is
done with atmospheric transport
model.

X Attribution of random and
systematic errors is complicated.

Stand-alone Retrieval

X Individual retrievals need to be
gridded and averaged to produce
3-dimensional fields.

X Only observations from single
satellite platform are used to
estimate atmospheric state.

v" Attribution of random and
systematic error less
complicated.
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Retrieval example

MOPITT CO (V3) 850hPa Jul 1-31, 2005
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Grdded at 1x1deg from MOP02-200507#2-L2V5.*_hdf {(apriori fraction < 50%)

The MOPITT stand-alone algorithm retrieves CO, T, and € using proper
first guess estimates and NCEP reanalysis profiles for T and q.
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Satellite data assimilated operationally at ECMWEF

27 different satellite sources!
3XAMSU-A (NOAA-15/16 + AQUA)| Coming soon: NOAA-18, SSMIS,

2xAMSU-B (NOAA-16/17) radio occultation (GPS),...

3 SSMI (F-13/14/15) in clear and rainy conditions
1XHIRS (NOAA-17)

AIRS (AQUA)

Radiances from 5 GEOS (Met-5, Met-8, GOES-9/10/12)

Winds from 4 GEOS (Met-5/8 GOES-10/12) and
MODIS/TERRA+AQUA

Scat winds from QuikSCAT and ERS-2 (Atlantic)
Wave height from ENVISAT RA2 + ERS-2 SAR
Ozone from SBUV (NOAA 16) and SCIAMACHY (ENVISAT)
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4D-Var Data Assimilation

4-dimensional variational data assimilation is in principle a least-
squares fit in 4 dimensions between the predicted state of the
atmosphere and the observations.

The adjustment to the predicted state is made at time T, which
ensures that the analysis state (4-dimensional) is a model trajectory.

Previous
forecast

Corrected
forecast

TU Assimilation window
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4D-Var Data Assimilation

Minimize the incremental 4-dimensional cost function:
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Observations

Conventional

Satellite
Retrievals

Satellite
Radiances

Forecast
Model

Background
Constraint
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4D-Var Analysis
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Analysis + Forecast
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Observations 1
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CO2 Observations

Satellite observations: Satellite sensitivity to CO,
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Focus is currently on satellite observa
and global availability. They are also a
operational NWP system. In-situ data

Christi and Stephens, 2004
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Observations - Infrared
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Radiance = F ( T, CO,, H,0, O,, CO, CH,, N,O )
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Observations — Near Infrared
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Data limitations

* Emission based instruments (AIRS, IASI) have low
sensitivity to the lower troposphere. They also can
only observe the atmosphere above clouds.

* Reflection based instruments (Scia, OCO, GOSAT)
are sensitive to the whole column, but suffer from
aerosol scattering and cloud scattering and
absorption.

* First dedicated CO, satellite instruments, making
use of near-infrared technique, will not be launched
before end of 2007 with an expected lifetime of 2
years.

 VValidation data for satellite estimates is very limited.
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Bias correction

+ 4D-Var data assimilation is based on the general assumption that
errors are random. Therefore, any significant systematic errors in
the observations and/or the radiative transfer model need to be
corrected before proper assimilation can be done.

+ Model bias should be corrected as well, but is difficult to estimate.
There is currently no model bias correction at ECMWF, but research
is being done on this issue.

+ Model bias might end up in the observation bias correction, because
there is no straightforward method to distinguish between model bias
and observation bias.

+ Therefore, any bias correction method is in theory capable of
removing some of the CO, (CO, CH,, N,O) signal!l Slow variations in
time or global means could be incorrectly seen as model bias!!!
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Monitoring

Statistics for Radiances from Aqua / AIRS

14 pum Channel = 221, Selected data: clear
Area: lon_w= 0.0, lon_e= 360.0, lat_n= 90.0, lat_s=-90.0 (over sea)
EXP = 0001

— (OBS-F(; —— (OBS-AN = beor OBS-FG ==+ beor OBS-AN
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Observed radiances are being monitored against clear
model radiances. Biases can be detected and corrected.
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Example of bias correction

Systematic errors in observations are usually identified by monitoring
against the forecasted background in the vicinity of constraining

radiosonde data.
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HIRS channel 5 (peaking
around 600hPa on
NOAA-14 satellite has
+2.0K radiance bias
against model

HIRS channel 5 (peaking
around 600hPa on
NOAA-16 satellite has
ho radiance bias against
model.
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Biases in Upper Stratospheric Channels

Systematic errors
in the model upper
stratospheric
temperatures give
apparent air-mass
dependent biases

}

Seasonal dependence of bias (K)

]

Dec 2004 date

June 2004

AIRS channel 75
(stratopause/mesosphere)
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Bias correction methods

L+ Flat bias
One single global mean bias correction value.
L Air-mass dependent bias

Regression against model thicknesses (1000 - 300 hPa and
200 - 50 hPa), column water vapour, and surface skin
temperature to account for air-mass dependency of biases.

+ Gamma-correction

Combination of flat bias and gamma correction of radiative
transfer. It tries to correct for errors in the RT by
multiplying the optical depth with a correction factor.

+ Internal bias variable

Any of the above bias correction methods can be built into
the assimilation system as a slow-moving state variable.
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Potential problems with slow-moving signals

oo After a month of
monitoring a relatively
S constant bias is
T | observed and then
o T corrected.

e U VU NV S S RS S S RS

01-May 06-May 11-May 16-May 21-May 26-May 31-May

Greenhouse gas signals are much
smaller than temperature signals.

An apparently constant bias in a 1
month time series is in reality part o]
of a seasonal cycle. o S My SR S B Be B TR SR

Observation - Mo
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Potential problems with slow-moving signals

Observation - Model First Guess

-8_ | | 1 | 1 ! 1 t t | t
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

With an adaptive bias correction (e.g., a new flat bias each
month) the small signal is removed from the observations.
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Forecast I\/Iodelz
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Forecast model

* The forecast model is used to predict the
atmospheric state at the observation locations and
times starting from the initial state.

* |t therefore needs to include the proper dynamics
and physics to be able to fit the observations within
the specified error margins.

* For greenhouse gases this means that advection,
vertical diffusion, convection, and surface fluxes
are needed with sufficient accuracy for a 12 hour
forecast.
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Forecast model

The forecast model for the greenhouse gas
assimilation will most likely be run at resolution T159
(1.125° by 1.125") with 60 levels. The transport is
based on the following:

« Semi-Lagrangian advection (not fully mass
conservative)

 Implicit K-diffusion formulation for the vertical
diffusion

 Fully-implicit 1st order conservative mass flux
advection for the convection

 Radiation: 6 band SW scheme and the AER LW
code
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L and and ocean biosphere from space

Seawiffs observations provide a nice view of the temporal and spatial
variability of the biosphere. This has then to be captured in climatological
surface fluxes.
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CO2 surface fluxes - climatology

Ocean

Takahashi CO2 flux Takahashi CO2 flux
kg C/m2/second x 10*{-9} kg C/m2/second x 10°{-9}

NP

EQ

2.0 ai 4.3 -4.8 37 2.6 -1.4 0.3 08 2.0 ai 43
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COZ surface fluxes - climatology

Natural Biosphere

CASA Net Ecosystem Production CASA Net Ecosystem Production
g C/m2/month g C/m2/month
December NP Global Mean = 3.913
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CO2 surface fluxes - climatoloqy

Anthropogenic

1995 carbon emissions
1000 tonnes C/grid cell

Global Mean = 109
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Tracer Transport

Monthly mean CO2 around 500 hPa (L39) - April 2002
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Tracer transport

Zohal mean monthly mean CO2 - April 2002

ppmv

1385.2
384.6
384.0
3834
3828

379.2
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Background constraint

, Ny =X, — X"
Background Observation
term ’r;r'm 5X(ti) — M (5)(0)
J(oX)=J, + J, d, :yio_Hi(Xb(ti))

_ 5x§B—15x0+Zn:(Hi5x(ti)—di)TR;l(Hi(Sx(ti)—di)

Previous
forecast

T 0 Assimilation window
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Background constraint

The role of the background error covariance matrix B is to:

+ provide statistically consistent increments at the
neighbouring gridpoints and levels of the model

Two problems:
+ We want to describe the statistics of the errors in the
background, but we don't know what the true state is
+ The B matrix is enormous (~107 x 107), so we are forced to
simplify it.

Differences between 48 and 24 forecast (NMC method, Parrish
and Derber, 1992) or an analysis-ensemble method (Fisher, 2004)
are usually used to estimate the background error covariance

matrix.
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Example of background constraint
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Background constraint

X Section: Par 203 19920125 1200 Step 0 Expver e88t
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An observation departure is spread out both in
the horizontal and the vertical by means of the

background covariance structures.
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Operational Estimation of Background Error Statistics

» Perturb all the inputs to the analysis/forecast system with random perturbations,
drawn from the relevant distributions:

xP+gb
y+e°
SST+e>5T (etc.)

Analysis

x4+g?

Forecast

x+et

»

» The result will be a perturbed analysis and forecast, with perturbations
characteristic of analysis and forecast error.

» The perturbed forecast may be used as the background for the next (perturbed)

cycle.

» After a few cycles, the system will have forgotten the original initial background

perturbations.

« This ultimately provides statistics representing the background error.
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Problems with greenhouse gas variables

We don’t have a proper analysis to start from.

Current satellite observations constrain globally a limited
vertical part of the atmosphere.

Current surface and flight profiling observations are only
available at a small number of locations.

This means that we obtain a reasonable estimate of the
forecast error, but a very limited estimate of the analysis
error. Both are important for the background error.
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Possible Solution?

Specify a backgroun_d 912 0.5.0.0, _
covariance model with a B= i
few unknown parameters. _0-5“91 0, 0, J

Minimize the following cost function with respect to the
unknown covariance model parameters using a
representative set of observations:

L, :%m HBH" + R‘+%(y— Hx,)" (HBH™ +R) " (y—Hx,)

This can be done either formally or by using a Monte Carlo
set-up.
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Example

-1

L, :%1n‘HBHT + R‘+%(y— Hx,) (HBH"+R) (y—Hx,)
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H: 02 —
0 1 L,

100 - L L - -
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Examples 1
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Example 1: CO, column estimates

» CO, has already been implemented as a so-called ‘column’
variable within the 4D-Var data assimilation system.

 This means that CO, is not a model variable and is therefore not
moved around by the model transport.

 For each AIRS observation location a CO, variable is added to
the control (minimisation) vector. The CO, estimates therefore
make full use of the 4D-Var fields of temperature, specific humidity
and ozone.

* The CO, variable itself is limited to a column-averaged
tropospheric mixing ratio with fixed profile shape, but a variable
tropopause.

* A background of 376 ppmv is used with a background error of
30 ppmv.

18 channels in the long-wave CO, band are used
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Example 1: CO2 column estimates

March 2003 ECMWEF COE Analysis ppmv September 2003 ECMWF COz Analysis ppmv

370 3N 372 313 374 375 376 37T 3718 3719 380 370 3N 372 313 374 315 376 37T 378 379 380

March 2004 ECMWF CO» Analysis ppmv March 2003 Mean Analysis Error ppmv

370
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Example 1: CO, column estimates

Apr 2003 . ECMWF CO, Analysis _— April LSCE Model Simulation
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Example 1: CO, column estimates

Model 1 Model 2
DEC - L A5 i
? ST
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30S Latitude At

Satellite CO, estimates can already be used to learn
more about differences between transport models!

ECMWF Seminar SSECMWF 6 September 2005




Example 2: Validation
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Flight data kindly provided by H. Matsueda, MRI/JJMA
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Example 3: CO, tracer transport

Monday 1 April 2002 12UTC ECMWF Fomecast t+12 WT: Tuesday 2 April 2002 00UTC Model Level 22 **Carbon Dicxide
a
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1 April — 30 August simulation for 500 hPa
from ECMWF CO, forecast model.
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Example 4: Tracer constraint on winds

3D Var * 1 obs ) 4D Var « 1 obs @ t,
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Example 5: Impact of CO, on Temperature Analysis

exp:emgb emga 2005030100-2005030912(6) boctaomd copatts 05
TEMP-T Trop|cs ...................... analysis departure o-a(ref)
used T ...................... analysis departure 0-a
exp - refnobsexp
~ STD.DEV o BIAS -
10— o +6 1126 = 10
20+ { +6 1680 ~ 20
© 30 : -2 2119 ~ 30
O 50 +20 2519 — 50
c 70— +4 2602 ~ 70
~ 100 -39 2283 — 100
@ 150 -9 2244 — 150
S 200 +2 2093 ~ 200
O 250 +0 2173 — 250
) 300 +3 3048 — 300
QO 400 +1 3890 - 400
Q. 500 +7 5349 — 500
700 +8 5330 — 700
850 +2 3816 — 850
1000 { | +3 2870 | 1000
3.2 4 -2

Including CO, in the analysis results in an improved fit
to the radiosonde temperature profiles in the vertical
range where AIRS is sensitive to CO.,.
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Conclusions

» Challenging and exciting advance in data
assimilation

* Possible because of intensive collaboration
between ECMWF and various research institutes

* Aim is to build an operational system by 2009 to
monitor the atmospheric greenhouse gases

* The 4D atmospheric fields will then hopefully
contribute to a better quantification and
understanding of the carbon surface fluxes.
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