

Short-Range Ensemble Prediction System at INM

García-Moya, J.A., Callado, A., Santos, C., Santos, D., Simarro, J. (NWP - Spanish Met Service INM)

ECMWF 10th Workshop on Meteorological Operational Systems Reading, November 2005

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

Introduction

- Predictability is flow dependent
- Extreme weather events have a low predictability, uncertainties can grow critically even in the Short Range (less than 72 hours),
- Convection is highly non-linear and it shows a chaotic behaviour.
- Then a probabilistic apprach may help to improve the prediction of such phenomena.

Ensemble for Short Range

- Surface parameters are the most important ones for weather forecast.
- Forecast of extreme events (convective precip, gales,...) is probabilistic.
- Short Range Ensemble prediction can help to forecast these events.
- Forecast risk (Palmer, ECMWF Seminar 2002) is the goal for both Medium- and, also, Short-Range Prediction.

Meteorological Framework

- Main Weather Forecast issues are related with Short-Range extreme events.
- Convective precipitation is the most dangerous weather event in Spain.
- Western Mediterranean is a close sea rounded by high mountains, in autumn sea is warmer than air.
- Several cases of more than 200 mm/few hours every year. Some fast cyclogenesis like "tropical cyclones".

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

Multi-model

- Hirlam.
- HRM
 - from DWD (German Weather Service).
- MM5
- UM
 - Unified Model from UKMO (Great Britain Weather Service).

Multi-Boundaries

From different global deterministic models:

- ECMWF
- UM
 - UM from Met Office
- AVN
 - NCEP
- GME
 - DWD (Germany Met Inst.) global model.

Planned Ensemble

- 72 hours forecast four times a day (00, 06, 12 y 18 UTC).
- Features:
 - 4 models.
 - 4 initial & boundary conditions.
 - 4 last ensembles (HH, HH-6, HH-12, HH-18).
- 16 member ensemble every 6 hours
- Time-lagged Super-Ensemble of 64 members every 6 hours.

Actual Ensemble

- 72 hours forecast once a day (00 UTC).
- Features:
 - 4 models.
 - 4 boundary conditions.
- 14 (of 16 expected) members ensemble every
 24 hours

Road Map

2003-2004	Research to find best ensemble for the Short Range	
Jun2004- Jun2005	Building the System Multimodel&Multiboundaries	
Jun2005- Dec2005	Mummub n/16 members	Daily run non- operational
Mar2006	Mummub	Full operations
	16/16 members	
Jun2006	Mummub+4lag	First try
	64 members	

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

Post-processing

- Interpolation to a common area
 - North Atlantic + North Africa + Europe
 - Grid 380x184, 0.25°
- Software
 - Enhanced PC + Linux
 - ECMWF Metview + Local developments
- Outputs
 - Deterministic
 - Ensemble probabilistic

Monitoring in real time

- Intranet web server
- Deterministic outputs
 - Postage stamps charts (Models X BCs)
 - Maps for each member
- Ensemble probabilistic outputs
 - Postage stamps charts (Time [X Thresholds])
 - Probability maps: 6h accumulated precipitation,
 10m wind speed, 24h 2m temperature trend
 - Ensemble mean & Spread maps
 - EPSgrams (not fully-operational)
- Verification

Multimodel-Multiboundaries

Run: D0, 00UTC, HH+00..HH+24..HH+72

500hPa Geopotential height & Temperature

Models X Boundaries

10m Wind Speed

Forecast range (HH+00..HH+72) X Thresholds (10,15,20)

6h Accumulated Precipitation

Forecast range (HH+06..HH+72) X Thresholds (1,5,10,20)

- EPSgrams
 - Not fully operational

Case study: Aug, 20, 2005

Case study: Aug, 20, 2005

Prob. Map& RADAR00-24Z

November 2005

ECMWF 10th Ws Met Op Systems

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

Validation

- ECMWF operational analysis as reference.
 - & ECMWF 24h det fc for Acc. Prec.
- Verification software
 - ~ ECMWF Metview + Local developments
- Deterministic scores
 - Bias & RMSE for each member & Ens Mean
- Probabilistic ensemble scores
 - Rank histograms
 - Spread-skill diagrams
 - ROC
 - Reliability diagrams
- ~80 days of exercise (Aug18 to Oct31 2005).

Rank histograms

- Ensemble members ranked from smallest to greatest value.
- Percent of cases which verifying analysis falls in an interval.
- First interval, below smallest member.
- Last one, above greatest member.
- Z500, T500, Msl Pressure
 - H+24, H+48

Spread-skill diagrams: Spread vs Ensemble Mean Error

- **Z**500
 - H+00 to H+72
- **T500**
 - H+00 to H+72
- Msl Pressure
 - H+00 to H+72

Emsd (°C)

Nc

ROC Curves

- 10m Wind Speed
 - Thresholds: 10m/s, 15m/s
 - H+24, H+48
- 24h Accumulated Precipitation
 - Thresholds: 1mm, 5mm, 10mm, 20mm
 - H+24, H+48

0.6 0.7 0.8 0.9

ECMWF 10th Ws Met Op Systems

0.1-

0.2

0.3

0.4

0.5

FAR

ECMWF 10th Ws Met Op Systems

FAR

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9

0.1-

FAR

Reliability Diagrams

- 10m Wind Speed
 - Thresholds: 10m/s, 15m/s
 - H+24, H+48
- 24h Accumulated Precipitation
 - Thresholds: 1mm, 5mm, 10mm, 20mm
 - H+24, H+48

SREPS Multimodel-Multiboundaries (9.7/16 Mummub) Reliability 10m Surface Wind Speed over 10m/s Analysis 00 Z H+24

Forecast frequency

10mWind >=10m/s H-+48

SREPS Multimodel-Multiboundaries (9.7/16 Mummub) Reliability 10m Surface Wind Speed over 15m/s Analysis 00 Z H+24 Average 2005/08/18 to 2005/10/31

10mWind >=15m/s H-+24

SREPS Multimodel-Multiboundaries (9.7/16 Mummub) Reliability 10m Surface Wind Speed over 20m/s Analysis 00 Z H+24 Average 2005/08/18 to 2005/10/31

10mVing >=20m/s H-+24

SREPS Multimodel-Multiboundaries (9.6/16 Mummub) Reliability 10m Surface Wind Speed over 20m/s Analysis 00 Z H+48 Average 2005/08/18 to 2005/10/31

10mWind >=20m/s H-+48

24hACCP >=1mm H-+24

SREPS Multimodel-Multiboundaries (9.7/16 Mummub) Reliability 24h Accum Precipitation over 5mm Analysis 00 Z H+24 Average 2005/08/18 to 2005/10/31

24hACCP >=5mm H-+24

SREPS Multimodel-Multiboundaries (9.6/16 Mummub) Reliability 24h Accum Precipitation over 5mm Analysis 00 Z H+48 Average 2005/08/18 to 2005/10/31

24hAccP >=5mm H-+48

24hAccP >=10mm H-+24

SREPS Multimodel-Multiboundaries (9.6/16 Mummub) Reliability 24h Accum Precipitation over 10mm Analysis 00 Z H+48 Average 2005/08/18 to 2005/10/31

24hAccP >=10mm H-+48

SREPS Multimodel-Multiboundaries (9.7/16 Mummub) Reliability 24h Accum Precipitation over 20mm Analysis 00 Z H+24 Average 2005/08/18 to 2005/10/31

24 hAccP >= 20mm H-+24

SREPS Multimodel-Multiboundaries (9.6/16 Mummub) Reliability 24h Accum Precipitation over 20mm Analysis 00 Z H+48 Average 2005/08/18 to 2005/10/31

24hAccP >=20mm H-+48

RV Curves

- 10m Wind Speed
 - Thresholds: 10m/s, 15m/s
 - H+24, H+48
- 24h Accumulated Precipitation
 - Thresholds: 1mm, 5mm, 10mm, 20mm
 - H+24, H+48

ECMWF 10th Ws Met Op Systems

ZANACCI H---48

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions

Relevant aspects for Multimodel

Advantages:

- Better representation of model errors (SAMEX and DEMETER)
- Consistent set of perturbations of initial state and boundaries
- Better results (SAMEX, DEMETER, Arribas et al. MWR Jul2005)

Disadvantages:

November 2005

- Difficult to implement operationally (four different models should be maintained operationally)
- Expensive in terms of human resources
- No control experiment in the ensemble

Conclusions

- An EPS is expected to help in Short Range Forecasts
- INM bets on a Multimodel-Multiboundaries system, difficult & expensive to implement operationally
- The system is under construction
- Preliminary results look promising
- First verification exercise shows model biases ~ spurious spread

Future

- Near
 - 16 members full-operational
 - Bias removal
 - Calibration: Bayesian Model Averaging
 - Verification against observations
 - Comparison with other ensembles
- Beyond
 - Time-lagged 64 members 4runs/day
 - More Post processing software (targeting clustering)

García-Moya, J.A.	Head, Pre-processing, Hirlam
Callado, A.	UM
Santos, C.	Post-processing, Verification, Hirlam
Santos, D.	MM5
Simarro, J.	HRM, Pre-processing

Thanks to...

- MetOffice
 - Ken Mylne, Jorge Bornemann
- DWD
 - Detlev Majewski, Michael Gertz
- ECMWF
 - Metview Team, Paco Doblas

- J.garciamoya@inm.es
- csantos@inm.es

- Motivation
- Features
- Post-processing & outputs
- Validation
- Conclusions
- Extras

- INM is the Spanish Meteorological Institute.
- Headquarters are located in Madrid.
- About 1500 people working for INM.
- Mostly an operational institute, research is about 10%.

Current Computer

Cray X1e

- Accepted June 2005
 - 8 M€
 - 2.3 Tf; 15 nodes x 8MSPs/node
 - Deterministic Forecast + SREPS.

Peak-down explanation

Peak down due to number of prob. intervals forced to 16, when #members < 16

	16	15	14	13	12	11	10	9
0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,063	0,067	0,071	0,077	0,083	0,091	0,100	0,111
2	0,125	0,133	0,143	0,154	0,167	0,182	0,200	0,222
3	0,188	0,200	0,214	0,231	0,250	0,273	0,300	0,333
4	0,250	0,267	0,286	0,308	0,333	0,364	0,400	0,444
5	0,313	0,333	0,357	0,385	0,417	0,455	0,500	0,556
6	0,375	0,400	0,429	0,462	0,500	0,545	0,600	0,667
7	0,438	0,467	0,500	0,538	0,583	0,636	0,700	0,778
8	0,500	0,533	0,571	0,615	0,667	0,727	0,800	0,889
9	0,563	0,600	0,643	0,692	0,750	0,818	0,900	1,000
10	0,625	0,667	0,714	0,769	0,833	0,909	1,000	
11	0,688	0,733	0,786	0,846	0,917	1,000		
12	0,750	0,800	0,857	0,923	1,000			
13	0,813	0,867	0,929	1,000				
14	0,875	0,933	1,000					
15	0,938	1,000						
16	1,000							

- J.garciamoya@inm.es
- csantos@inm.es