

#### LAMEPS - Limited area ensemble forecasting in Norway, using targeted EPS

Inger-Lise Frogner, Marit H. Jensen, Hilde Haakenstad and Ole Vignes



Limited area ensemble forecasting in Norway - outline

- Ensembles using Norway's operational version of the HIRLAM model LAMEPS
- Perturbing initial state and lateral boundary conditions with a dedicated version of EPS from ECMWF - TEPS
- Combining these two systems gives NORLAMEPS
- Main focus is precipitation, especially extreme precipitation events
- Running storm surge from EPS, TEPS and LAMEPS



- A dedicated version of EPS, differences are
  - 20 + 1 ensemble members, as opposed to 50 +1 for EPS
  - Target area Northern Europe and adjacent sea areas, as opposed to NH north of 30°N(\*)
  - Run to +96h, as opposed to +240h for EPS
- Running at 12 UTC every day
- Running at ECMWF for 3/4 year
- Operational since 5 April 2005
- ~80 km, 40 vertical levels





- HIRLAM in ensemble set-up
- Resolution: 20km, 40 levels in the vertical
- +60h
- 20 + 1 members
- Running at 18UTC every day
- Quasi-operational at met.no since 14 February 2005



### NORLAMEPS

- An ensemble prediction system using IFS
  and HIRLAM
  - A simple combination of TEPS and EPS
- NORLAMEPS is a supplement to EPS from ECMWF:
  - NORLAMEPS includes two different models (model uncertainty)
  - NORLAMEPS has better resolution than EPS
  - NORLAMEPS is designed for our area of interest
  - For day 1 3



Norwegian Meteorological Institute met.no



Norwegian Meteorological Institute met.no



### Verification methodology - 1

- Verify precipitation against "superobservations". (Ghelli and Lalaurette).
- All precipitation stations in Norway inside the verification area are aggregated using the method of Kriging (Ripley 1981)
- Total precipitation (stratiform and convective) from LAMEPS, TEPS, EPS and NORLAMEPS are compared to these super-observations



# Verification methodology - 2

- Agglomerations of samples spanning locations and times with different climatological frequencies can lead to spurious skill (Hamill, 2005).
- Distribution of precipitation in Norway is dominated by sharp gradients (\*)
- We verify sub regions with grossly different precipitation climatology separately.
- Averages are calculated using weights reflecting the area of the sub regions



# Spread around ensemble mean for a test-run (45 cases)





#### LAMEPS MSLP - test cases



#### **RESULTS FROM QUASI-OPERATIONAL RUNS**

- Verification since 14 February 2005 until 24 July 2005 = 161 days
- Mean over the three verification areas based on precipitation climatology
- Important: verification is done for
  - LAMEPS 20 + 1 members
  - TEPS 20 + 1 members
  - EPS 50 + 1 members
  - NORLAMEPS 41 + 1 members
- Parameter: 24 hours precipitation (from 06 to 06 UTC)
- Forecast lengths LAMEPS: +36 and +60 hours
  - LAIVIEPS: +30 driu +00 mours
  - TEPS : +42 and +66 hours
  - **EPS** : +42 and +66 hours



#### **BRIER SKILL SCORE**







#### Area under ROC-curve



Area ROC (12/18h - 36/42h)

Area ROC (36/42h - 60/66h)













Case study: "100 year precipitation" in the middle part of Norway in August 2003

- 14. 15. August 2003
- Atnadalen:

116,5 mm/24h, 156,2 mm/48h

• Sunndalsøra:

102,5 mm/24h, 171,9 mm/48h

#### 14. Aug. 06UTC - 15. Aug. 06UTC





#### Observed





#### Operational HIRLAM 20 km





*Meteorological Institute met.no* 





- Forecasting (\*)
- EU-project Eurorisk further downscaling
- Storm-surge LAMEPS (\*)
- Input to hydrological models (\*)



#### Future developments

- Include perturbing of the model physics in LAMEPS
- Increase the time resolution of the boundary fields (now every 6 hour)
- Expand system to more parameters: temperature, wind, ....
- Develop more probability products
- Compute SVs within HIRLAM
- Move to higher resolution
- Further downscaling



# Test LAMEPS on a new configuration for TEPS

- A system that combines targeted SVs and hemispheric SVs (Martin Leutbecher, ECMWF)
  - 10 leading targeted singular vectors
  - 40 leading hemispheric singular vectors computed in the subspace orthogonal to the targeted singular vectors
  - Ensemble size 20 + 1
  - Initial perturbations constructed with (revised) Gaussian sampling
- Results in increased spread for TEPS after day 2, without increasing the error of the ensemble mean
- We wish to test LAMEPS on this revised TEPS system



### Thank you for your attention







### Input to hydrological models

 Ensemble of hydrological models – one time series for each ensemble member as input to the hydrological models (customers)

| Area: | Selbusjøen 615m |       |           |
|-------|-----------------|-------|-----------|
| Time  | T2m             | dT/dz | <b>R6</b> |
|       |                 |       |           |
| 18+ 0 | 7.4             | -1.3  | 0.0       |
| 18+ 6 | 1.0             | -0.7  | 0.0       |
| 18+12 | 1.7             | -0.8  | 1.5       |
|       |                 |       |           |
|       |                 |       |           |
| 18+54 | 3.3             | -0.6  | 1.5       |
| 18+60 | 5.1             | -0.7  | 0.3       |



# Storm-surge LAMEPS







NewOrleans



0 - 10