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| am looking for information, not a literal interpretation.

Please

switéh off
your engine
at all times
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Four Big Questions:

How are we to generate the better models?
How are we to generate the better model simulations?
How are we to combine information to form a forecast?

How are we to judge which forecast Is better?
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The parable of the three statisticians.

ity

Three non-Floridian statisticians come to a river, they want
to know If they can cross safely. (They cannot swim.)
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Three non-Floridian statisticians wish to cross a river.
Each has a forecast of depth which indicates they will drown.

Forecast 1

Forecast 2

4

Forecast 3

So they have an ensemble
forecast,with three members




Three non-Floridian statisticians wish to cross a river.
Each has a forecast of depth which indicates they will drown.
So they average their forecasts and decide based on the ensemble mean..

Is this a good idea?
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ity

Ensembles may have lots of information, we must be careful not to destroy
or discard it!

But how can we distinguish better ways of combining
Information-rich simulations?

IHow: can We judge whether to decrease resolution at day. 7,
or decrease ensemble size and keep the same resolution?
(or decrease the resolution ofi the single Hi-Res run?)




Decision Support and Forecasts

Time to Decide Revise Health Event
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Decision Support and Forecasts

Time to Decide Revise Health Event

What is the cost of delay?
of revised action? [)igw

of getting it wrong?

of a non-event action?
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Decision Support and Ensemble Forecasts

Time to Decide Revise Health Event

A

So the ensemble aims to provides information on the reliability
of the forecast given the infermation in hand today.

Is the ensemble result better?

a) Ultimate evaluation must be made in user relevant variables!
b) For operational centres, continuous Weather variables count!
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What do we have
on 3 Nov. for

L HR temperature
on 14 Nov?
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Forecast for LHR t2m 14 Nov 2004 as of 3 Nov 2004
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Forecast for LHR t2m 14 Nov 2004 as of 4 Nov 2004
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Forecast for LHR t2m 14 Nov 2004 as of 5 Nov 2004
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Forecast for LHR t2m 14 Nov 2004 as of 6 Nov 2004
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What do we have
on 10 Noy for

L HR temperature
on 14 Nov?
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Forecast for LHR t2m 14 Nov 2004 as of 10 Nov 2004
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What do we have
on 10 Noy for

L HR temperature
on 14 Nov?
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Forecast for LHR t2m 14 Nov 2004 as of 10 Nov 2004
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What do we have on 10 Nov for LHR temperature on 14 Nov?

Climatology

Simulations

| atest HI-Res

Blend L-Hi-Res

G-dressed EPS

Which \Was better?

I f 1 I
5 10 15

Forecast for LHR t2m 14 Nov 2004 as of 10 Nov 2004
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Weather roulette
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Weather Roulette & IGN = <-log P~

Weather Roulette provides a more intuitive illustration of
evaluating probabilistic forecasts than pure IGN scores.

One forecast (the house) sets odds (the inverse of its predicted probability),
The other places bets proportional to its predicted probabilities (Kelly Betting)

It matters not who Is the house (Ignorance is symmetric).

A thermometer at LHR determines where T “happened”.

The house then pays 1/P,,,,.(T) times the bet on T.

TEMPERATURE (°C)
25 26 27 28 29

Rather than look at the “returns™ (which can be rather 20 21 22 25 24

1516 (1721819

large), we’ll look at the effective daily interest rate for 10 11 12 13 14
:2()()11. 5 76 7 |8 79

o |1 |2 |3 |4
-5 —4 -3 -2 —1



Weather Roulette

We dress a single hi-res forecast with historical errors to form a pdf forecast:
How would this hi-res do against climatology at day 8?

We can make an ad hoc blend of the hi-res with climatology and contrast this
with a dressed EPS forecast.

For the right price, a user would buy both and blend the
Hi-Res and the EPS (and forecasts from other centres...).

What is the right price?

For the remainder of this talk, | want to o

25 26 27 28 29

shiew: how! this tool might prove useful to =

Users, forecasters, and modellers. alslols
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Effective daily interest rate:
Dressed ECMWEF Hi-Res forecast against Climatology.
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Model and dressing kernels form 2002, 2003; evaluation on 2004.
Verification: observed temp at LHR
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, Effective daily interest rate:
Dressed ECMWEF Hi-Res forecast against Climatology.

95% bootstrap level
effective interest rate (2004)

5% bootstrap level
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Model and dressing kernels form 2002, 2003; evaluation on 2004.
Verification: observed temp at LHR
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Effective daily interest rate:
Dressed ECMWEF Hi-Res forecast against Climatology.
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Verification: observed temp at LHR
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Dressed ECMWEF Hi-Res forecast blended with
Climatology against Climatology.
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The G-dressed opt-blended Lagged Hi-Res forecasts
against today’s Hi-Res (both blended with climatology)
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, The dressed ECMWEF EPS forecast against Climatology.
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The dressed ECMWEF EPS forecast blended with
e climate against Climatology.
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ECMWEF EPS (G-dressed) against Hi-Res (G-dressed)
b both blended with climate).
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A user would, of course, buy both the Hi-Res and EPS
If the combination added value in excess of the cost!

In fact, this approach allows us to easily contrast performance
of ECMWEF, NCEP, or the combination of the two,

Or Bayesian Updating,

Or LEEPS,

Or ...

We do not want to fit too many things, since these results are
only for 2004, based on a forecast archive of 2002 and 2003.

(But how does the combination of Hi-Res and EPS do against
the EPS alone?)
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ECMWEF EPS & Hi-Res blend against EPS
@ie | (both blended with climate).
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The weight assigned to the Hi-Res when optimally
blended with the EPS as a function of lead-time.

Cptimal blend of High Resolution in EFS (Best Member Dressed) (day)

Optimal blend of High Resclution in EPS (Best Member Dressed) (day)
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While the ultimate valuation must be done in terms of the users
observations, weather roulette provides a good overview.

The Hi-Res has skill against climatology at least to day 10,

The EPS has skill against Hi-Res in medium-range,

In week two, the Hi-Res has weight similar to an ensemble member,
Bayesian updating performs not very well,

EPS has skill against the dressed lagged hi-res,

And there iIs information beyond the second moment.

(1) and (2) are of use to forecast users
(4) (5) and (6) are of use to forecast producers
(3) and (6) are ofi use to operational centres.
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When Is a probabilistic Forecast
not a probability forecast?

?Whenever you’ d not apply it as a probability forecast?

Numerate user’s who have useful utility functions can detect that an
operational forecast gives bad decision-support when used to maximise

their expected utility!

On the other hand, the ECMWF ensemble is repeatedly found to provide
valuable decision support in terms of identifying when a user’s bespoke
forecast Is likely to be unusually poor.

The evaluations above considered ECMWIE
Information as proekability forecasts!
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Model Inadequacy and our three non-Floridian statisticians.

AS It turns out, the river Is rather shallow.

Model inadeguacy covers things in the system but left out
of the model.

The real question was could they make It across, the depth
of the river was only one component...
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Take Home Messages:

If you have an ensemble, use it.

Ensembles are always valuable in nonlinear models, when they
warn you that the model does NOT know what will happen.

Focus on information content, not on meteorological accuracy.

Require “verification” on relevant, semi-independent, real
target, observations!

The goal Is utility, not optimality. (Decision aid, not decision made)

If one forecast Is good, then 50 forecasts will be better!

(but not 50 times better)
Weather Roulette (Ignorance) can quantify how much better!
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Please tidy up

after using
the guﬂl’()tine |

Y
¥

(from AOPP in Oxford Physics)
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