TIGGE- Infrastructure and Tools

TIGGE Workshop ECMWF, Reading, UK 1 - 4 March 2005 Alfred Hofstadler Meteorological Applications Section

Slide 1

TIGGE Infrastructure and Tools: Topics

- Data
- Archive
- Access
- Tools
- Infrastructure
- Some questions

TIGGE Infrastructure and Tools: Data

Data specification

- Resolution
- Levels, Level type
- Parameters
- Number of Ensembles
- Initial times, Steps

Data Format

- GRIB2
- BUFR (for non-gridded information; e.g. tracks)
- Conversion APIs (GRIB1, NetCDF)
- (WEB-)Graphics: SVG, PNG

TIGGE Infrastructure and Tools: Archive

MARS

- GRIB/BUFR restriction
- "Nice" extra features (e.g. interpolation, sub-area)
- Large data amounts possible
- File-based "Archive"
 - Can store anything (e.g. project description documents)
 - Can be copied on tape drives, DVDs
 - WMO file naming convention
 - Space restrictions
- Other solution

TIGGE Infrastructure and Tools: Access

- Centralised data repositories:
 - Pull from ftp server via LAN/Internet (common procedures)
 - Data Server with (restricted) MARS access
 - Tapes, CDs, DVDs
- Distributed: Data- and/or Application-GRID
- Access to full data sets or a subset (e.g. only last month)
- Security (e.g. registration, passwords)
- Data policies
- Common (graphical) interfaces and request procedures
- Time delay (near-realtime, days, weeks, months)
- Backup procedures

TIGGE Infrastructure and Tools: Tools

Simple data access tools

- MARS tools (interpolation, sub-area,...)
- Data conversion APIs
- Post-processing APIs

Interactive applications

- Modify post-processing parameters (eg. target areas)
- Run case specific applications (e.g. LAM EPS, sensitivity)
- Set up user specific post-processing/verification

WEB site

- Centralized or distributed with common portal
- What information and in what format
- Who administrates

TIGGE Infrastructure and Tools: Infrastructure Example 1

-Simple design

-Essentially a remote MARS access

-Less software development

-Retrieval and processing capacity provided by archive sites (e.g. ECMWF,CMA)

TIGGE Infrastructure and Tools: GRID

Data GRID

- Distributed DBs with homogeneous catalogues
- Data caching, duplication
- WMO: FWIS (SIMDAT) standards/infrastructure
- Application GRID
 - Postprocessing
 - Extra model runs
 - Control EPS runs
 - Targeted EPS LAMs

TIGGE Infrastructure and Tools: Infrastructure Example 2

Slide 9

TIGGE Infrastructure and Tools: Example

• ECMWF EPS at T255

- Selected pressure levels & surface fields
- Control forecast and initial conditions

25 GB/day 8 GB/day

- T255 to T399 implies a factor of 2.5 for field sizes
- Figures are for two runs per day out to 10 days
- Archive volumes: 82.5 GB/day

• TIGGE with up to 10 EPS producing centres

- Assume higher resolution and more members at ECMWF
- 5 times the ECMWF volumes may cover the needs
- ECMWF's EPS is already archived; use a factor of 4 for TIGGE
- 342 GB per day, 125 TB per year

 Does NOT include data required for regional models (boundary data on model levels) or wave data

Slide 10

TIGGE Infrastructure and Tools: Example

• Receive 342 GB per day via the Internet

- 32 Mbps sustained throughout the day
- Will require a dedicated 100 Mbps link to allow for variability
- ECMWF has currently a 60 Mbps Internet link
- Shipping of tapes would be a cumbersome procedure with long delays

Archive 125 TB per annum

- There is probably no need to keep backups of the TIGGE data (the originating Centres or a mirror site should do so)
- The projected ECMWF archive growth for 2005 is ~ 1.4 PB (inclusive backup copies)
- TIGGE would be ~10% of the primary data growth

TIGGE Infrastructure and Tools: Some questions

- Which sites wish to provide a TIGGE service (NCEP, BMRC,...)
- What data should be exchanged and archived:
 - resolution, levels, level type, parameter, number of ensembles, initial times, steps
- What Data Formats will have to be supported:
 - GRIB2, BUFR, GRIB1, NetCDF
- How to provide access to data: centralized data repositories, distributed GRID, standard interfaces, WEB site
- What will be the typical request: complete fields, sub-areas
- What time-delay for data provision is acceptable
- What tools and applications are needed
- Funding for hardware, media, software development

