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D+7 and D+6 ECMWEF forecast for 20041224/12

Friday 17 December 2004 12UTC ECMWF Forecast t+168 VT: Friday 24 December 2004 12UTC

500 hPa Height / 850 hPa Temperature
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Early Predictability Work

Thompson (1957)

Lorenz (1963) o
Lorenz (1965) SVs . Q
Charney et al. (1966) ”Wﬂp 2
Epstein (1969) N
Leith (1974)

ECMWF
N MC/NCEP T. Palmer, R. Buizza

— Liouville equation
— Stochastic-dynamic equations
— Monte Carlo approach
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View on predictability

nonlinearity of dynamics

and

Instability with respect to small perturbations
—

sensitive dependence on present condition
chaos

iIrregularity and nonperiodicity
unpredictability and error growth
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ECMWEF Seminar 1989 N
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perturbations generated from short-term forecast error

strong sensitivity to initial condition (19881202/00) Palmer et al. 1990

,Predictability in the Medium Range and Beyond*
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NMC LAF Method w==
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F1G. 1. Schematic description of the LAF method.
forecasts verifying at the same time Dalcher et al. 1988, MWR

with lagged initial times
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Conclusions Seminar 1989 JM

8. CONCLUSIONS
With projected upgrades in computer power, it will become technologically feasible to run

Monte Carlo forecasts operationally in a few years. With estimates of optimal mode growth,

it appears that a strategy for choosing the initial pertubations can be formulated. Finally,
development of a probabilistic analysis of forecast flow fields will allow a synthesis of the
ensemble forecasts to be given to the user. It can therefore be anticipated that there will
be a significant change in the perception of the medium range forecast as a purely

deterministic prediction. As a result it is hoped that the perceived skill of the medium
EIGENVECTOR AT 300 HPA (1)

range forecast will improve significantly.

eigenmode of L+L* ... SV

951

Palmer et al. 1990

Fig. 14 First eigenmode of (L+L*) for baroclinic climatological basic state.
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NMC Ensemble Forecasting

Ensemble Forecasting at

NMC: The Generation
of Perturbations

Zoltan Toth*" and
Eugenia Kalnay*

breeding

Abstract

On 7 December 1992, The National Meteorological Centar
(NMC) started operational ensemble forecasting. The ensemble
forecast configuration implemented provides 14 independent fore-
casts every day verifying on days 1-10. In this paper we briefly
review existing methods for creating perturbations for ensemble
forecasting. We point out that a regular analysis cycle is a "breeding
ground” for fast-growing modes. Based on this observation, we
devise a simple and inexpensive method o generate growing
modes of the atmosphere.

The new method, “breeding of growing modes,” or BGM, con-
sists of one additional, perturbed shori-range forecast, introduced
on top of the regular analysis in an analysis cycle. The difference

UTC, by an ensemble of four 12-day forecasts, plusan
extensionto 12 days of the aviation 3-day forecast run
at 1200 UTC (Tracton and Kalnay 1993). The opera-
tional configuration implemented at that time is such
that there are 14 forecasts, originating from analyses
within the most recent 48 hours, that verify over the
same 10-day period. It replaces the previous configu-
ration, where only one operational forecast and one
experimental forecast were available for the 6-10-day
forecast range. In order not fo increase the total use of
the CRAY YMP supercomputer, which is already
saturated, a compromise had to be found, where the

First Workshop of TIGGE, ECMWF, March 2005
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ECMWF Ensemble Forecasting \/

(. J. R. Mereorol Soc. (1996), 122, pp. 73119

The ECMWF Ensemble Prediction System: Methodology and validation

By E MOLTENL R BUIZZA, T N. PALMER* and T, PETROLIAGIS
European Centre for Medium-Range Weather Forecasts, UK

{Recedved 1 August 1994, revised 24 May 1995}

SuMmaRy

The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS)
is described. In addition to an unperturbed (control) forecast, ¢ach ensemble comprises 32 10-day forecasts starting
from initial conditions in which dynamically defined perturbations have been added 1o the operational analysis. The
rturbations are constructed from singular vectors of a time-evolution operator linearized arpund the short-range-
forecast trajectory. These singular vectorS approximately determine the most unstable phase-space directions in
the early part of the forecast period, and are estimated using a forward and adjoint linear version of the ECMWF
numerical weather-prediction model. An appropriate norm is chosen, and relationships between the structures of
these singular vectors at initial time and patterns showing the sensitivity of short-range forecast error to changes in
the analysis are discussed. A methodology to perform a phase-space rotation of the singular vectors is described,
which generates hemispheric-wide perturbations and renormalizes them acoording to analysis-error estimates from
the data-assimilation systen.

singular vectors
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Ensemble Prediction

 Purpose
— evolve probability density function
— Identify flow-dependent predictability
— determine possible different flow evolution
— essentially all methods are of MC type
— possibly account for model error

o Initial Perturbations
— critical to efficiently reflect analysis uncertainty P*a
— In view of high short-term sensitive dependence

« Analysis error covariance P"a
— known incompletely and high-dimensional
— efficiency in reflecting known P”*a features
— perturbations representing P*a

First Workshop of TIGGE, ECMWF, March 2005
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Generating Initial Perturbations

e Basic requirement

— the initial perturbations reflect the covariance
structure contained in P*a

— then, the model M will map these perturbations
Into realizations consistent with P/ f

e Difficulties

— limited number of perturbations affordable
— limited knowledge about structure of P*a

First Workshop of TIGGE, ECMWF, March 2005
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Evolving a probability density function (pdf) \/

Initial pdf described by (multivariate normal):

xo ~ N (pg, P?) (1)

e Evolved pdfis, when state evolves according to linear model M:

x; = Mxq (2)

still multivariate normal:

x; ~ N (Mpeg, MP*MT) (3)

e with the forecast error covariance matrix:

pf = Mp2M7T (4)

First Workshop of TIGGE, ECMWF, March 2005 13



Methods based on ...

Singular Vectors (SVs) - ECMWEF (Palmer, Buizza, Barkmeijer)

— total energy (TE) or analysis error covariance (AEC)
« sample future dynamical instabilities given analysis uncertainty

Breeding — NCEP (Kalnay, Toth)

— regional rescaling
» simulate analysis cycle, growth over past assimilation interval
— ensemble transform (ET)/breeding

Ensemble Kalman Filter - MSC (Houtekamer, Evensen, Hamill)

— perturbed observations
» parallel sets of data assimilation
— ETKF (Bishop)

« find T such that P*a=(I-KH)P"f is solved, where P*f is from evolved ensemble,
P/ a from transformed evolved ensemble and consistent with (new) observations

— EXKF (Anderson, Hamill)
» reforcasting and calibration

First Workshop of TIGGE, ECMWF, March 2005
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Breeding

Differences

— Nature

X Analysis

BREEDING C 'I""E‘LE:
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Toth and Kalnay 1997

R. Buizza

First Workshop of TIGGE, ECMWF, March 2005

15



Singular Vectors

==

(a) Z (b)

(c) 7 (d)

solution of the
Liouville equation
for Lorenz 1984
model

Ehrendorfer 1997
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Ensemble Kalman filtering W

MSC
perturbed
ENSENMBLE SET-UP observations :
observations
random tmmbers |y |
‘ —assimilation
.
sonom s perturbed .
= analyses
t doubling of
roughte ss length atialys es l
:;?Es;-gtface temperature _ pe rtU rbed
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Houtekamer, Buizza

First Workshop of TIGGE, ECMWF, March 2005 17




¢

Singular Vectors - Definition \/

Singular Vectors (SVs)
Definition — Maximize: Cl'C > 0and ATA >0
Jx) = (Mzx) (CMzix) st (A" (Ax) =1 5)
Solution x is called first singular vector. obtainable from eigenproblem:
Mz ,C'CMz .y = AAT Ay s.t. yIATAy =1 (6)

Property — Note that:
J(X:yk) — )\;_3 (7)

Compurarion — Through a change of variable according to:
z = Ay = y=A"lz (8)
(6) may completely equivalently be rewritten in the form:
(CI\/IEJA_l)T (M=, A)z=2z st z2'z=1 9)

The vectors z;. are the right singular vectors of the matrix CMg A~ with associated singular
values o, = /' Ak (see, e.g., Golub and Van Loan 1989).

First Workshop of TIGGE, ECMWF, March 2005 18
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Hessian SVs \/

Hessian SVs (HSVs) / Analysis Error Covariance SVs (AECSVs)
The HSVs Zj solving the eigenvector problem: ATA = (P2)—?
MTCTCMZ, = (Pa)—lzo/\ S.t. Z'OT(PQ)_IZO = | (10)

are, when time—evolved, eigenvectors of Pf. because:

(c I\/IPasz\/IT CT%/I? — (CI\/IPE') (P2)~1ZoA - (CPfCT) Z, — Z:A (11)

The evolved HSVs Z. are the eigenvectors of CPTCT — which is the forecast error covariance in the
“final-time norm” C. Note the final-time orthogonality relationship:

T -~ e “~
777, — (CMZD) (CMZO) — Z§ MTCTCMZ = Z§ (P*) ' Zo A = A (12)

First Workshop of TIGGE, ECMWF, March 2005 19
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SVs — Properties ECMWF v

Energy Profiles and Wavenumber Spectra: HSVs and TESVs

Northern Hemisphere 25 SVs  Autumn 1999
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SVs — Properties NRL/NAVDAS
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Analysis error covariance and SVs \/

The SV-Decomposition of P2
Because the initial-time SVs satisfy (10), it is true that P® can be written as:
P> = 7074 (13)

This is a special square—root for P? (different from eigendecomposition and also not lower—

triangular) — the SV—-decomposition of P?

Under linear dynamics this SV—decomposition becomes the eigendecomposition of the fore-

cast error covariance matrix, because (14) is the same as (11) together with (12):

(CM) p2 (CM)T _ (CI\/I)ZOZDT (CI\/I)T - cpfcT — 7,77 (14)

non—eigendecomposition — eigendecomposition (non—modality)
ECMWE: use of SV—decomposition in EPS

[

k time—evolved HSVs are the leading k eigenvectors of forecast error covariance ...”
Ehrendorfer and Tribbia (1997)

First Workshop of TIGGE, ECMWF, March 2005 22



Multinormal sampling

Multinormal Sampling Based on SV-Decomposition of P2
Transforming random variables
q ~ N(0,1) — x = x{ + V'/?q — X ~ N (x5, V) (15)

Use SV—decomposition of P“ (possibly truncated to N SVs) in (13) — to describe square—root

of P? — in process of generating initial-time perturbed states x:

P2 =7, (pam)”z _ 7, palN) _ (zom) (ZO(N))T (16)

x; = x5+ 2N i=1,2.,M = x ~ N (x5, (PH)™) (17)

Generating perturbations consistent with P? knowledge based on NV SVs
Assumes normally distributed analysis errors

Taking SV properties into nonlinear regime

Strong similarity to operational roration at ECMWEF

free parameters: /N and N/ Ehrendorfer and Beck (2003)

First Workshop of TIGGE, ECMWF, March 2005 23



Use of methods to generate initial perturbations

Breeding
— National Centers for Environmental Prediction (NCEP) OP

— Climate Diagnostics Center (CDC)-NCEP/National Oceanic and
Atmospheric Administration (NOAA)

— National Centre for Medium Range Weather Forecasting (NCMRWF)
— Fleet Numerical Meteorological & Oceanographic Center (FNMOC) OP
— China CMA, Brazil CPTEC, Japan JMA, Korea KMA 4 x OP

Singular Vectors
— European Centre for Medium-Range Weather Forecasts (ECMWF) OP
— Bureau of Meteorology Research Centre (BMRC) OP

Ensemble Kalman Filter
— Meteorological Service of Canada (MSC) OP
— United Kingdom Meteorological Office (UKMO)

First Workshop of TIGGE, ECMWF, March 2005 24
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Initial Perturbations at NCEP \/

Based on bred vectors
— 24 hr cycling
— Rescaling dependent on geographically and seasonally estimated analysis uncertainty
Configuration
— 2 control forecasts
— 5 pairs of perturbed forecasts up to 16 days

— 4 times per day
Resolution

— High-resolution control T254L64 up to 3.5 days
— Control truncated to T170L42 up to 7.5 days, then T126L28

— Perturbed integrations T126L28 up to 7.5 days, then T62L28
Recent work

— 6hr breeding cycle with ETKF
— to generate initial perturbations using NCEP real-time observations

— Wang and Bishop 2003, JAS
Work in progress

— Testing ensemble transform method

— for generating initial perturbations using information on analysis error variance from
3DVAR

— Increase ensemble size from 10 to 80
— 80 orthogonal perturbations

NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO

First Workshop of TIGGE, ECMWF, March 2005 25



Initial Perturbations at CDC-NCEP/NOAA p--éﬁ

Based on bred vectors / reforecast data set NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO
— 24 hour cycling

— Rescaling dependent on geographically and seasonally estimated analysis
uncertainty

— Toth and Kalnay 1997, MWR
Configuration / reforecast data set

— 7 pairs of perturbed forecasts plus control from NCEP/NCAR reanalysis, 15
members

— 00 UTC, 15 days projection

— Forecasts from 1979 to present (consistent fixed version of model)
Resolution and model

— T62L28 NCEP MRF model (recently renamed GFS)

— Forecast archive truncated at T36, variables: u, v, T, Z, ...
Work in progress

— Testing efficacy of reforecasts from ERA-40 initial condition

— Next generation reforecast with higher-resolution updated NCEP GFS
Comments

— 23 year data base of retrospective forecasts

— Hamill et al. 2004, MWR

— Data base used to calibrate EPS over training sample
— Use of MOS technique

First Workshop of TIGGE, ECMWF, March 2005 26



Initial Perturbations at NCMRWF

NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO
 Based on breeding of growing modes

— 24 hour cycling

— Geographically and seasonally dependent rescaling based on
estimated analysis uncertainty

e 2 control forecasts
— At T80 and T170
— 4 pairs of perturbed forecasts at T80
— At 00 UTC for 168 hours

« Tentatively operational by 1 April 2005
— Need to improve control forecast

First Workshop of TIGGE, ECMWF, March 2005 27



Initial Perturbations at FNMOC

Based on Bred mOdeS NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO

— 18 members
— 8 plus, 8 minus: T119L30

— current and 12-h lagged high-resolution forecasts T239L30 truncated
to T119L30 after 6 days

Perturbed integrations

— NOGAPS (Navy Operational Global Atmospheric Prediction System)

— Run daily at 00 UTC out to 10 days
Work in Progress

— Twice daily

— Initial perturbations that sample analysis error variance as estimated by
NAVDAS (NRL Atmospheric Variational Data Assimilation System)

— Initial perturbations based on Ensemble Transform being tested
— Model error

— Perturbations in the tropics

First Workshop of TIGGE, ECMWF, March 2005 28
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Initial Perturbations at ECMWF \/~—7V
Based on SVs NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO

— T42L40 (simplified physics)
— use of evolved SVs

— 48 h OTI SVs
Perturbed initial conditions

— Up to 8 target areas (including tropical SVs)

— Gaussian sampling to combine SVs (25 E-Tropics, 10 T)

— Scaling based on 4DVAR analysis error
— Perturbed integrations TL255L40

— 50+1 members
Work in progress

— Moist SVs

— TL95L60 SVs

— Shorter OTI (24 h)
— Hessian initial norm

— Use of Ensemble Data Assimilation (EDA)
Detalils

— Molteni et al. 1996, QJ
— Bourke et al. 2004, MWR: ECMWF, BMRC

— Buizza et al. 2005, MWR: ECMWEF, MSC, NCEP

First Workshop of TIGGE, ECMWF, March 2005
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Initial Perturbations at BMRC \/

Based on SVs

— Initial-time 48h SVs

— evolved SVs not used

— T42L19 (simplified physics)

— Localization: excluding tropics 20S to 20N
Perturbed initial conditions

— fj=f 0+a jkSV kwithf 0the TL119L19 analysis
— Resolution TL119L19 (operational is TL239L29)

— 32+1 members

— Rotation of SVs

— perturbations in both hemispheres

— Scaling: spread at D+2 similar to error of control at D+2
Regional EPS

— Randomly perturbed observations, stochastic physics

— Tropical cyclone bogus data are perturbed if TC present
Planned work

— Increase in resolution TL159L29
— 50 members

— Investigate occasional appearance of spurious SVs
Detalls

— Bourke et al. 2004, MWR

NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO

First Workshop of TIGGE, ECMWF, March 2005 30



Initial Perturbations at MSC

Based on ensemble of assimilation cycles NCEP, CDC, NEMRWE, FRMOC, ECMWE, BMRC, MSC, UKMO

— Random perturbations to model error fields and observations
Ensemble Kalman Filter

— With 96 members, reduced to 16 members

— Multimodel ensemble: 8 versions SEF, 8 versions GEM
Configuration

— 16 members plus unperturbed control forecast, 00 UTC, 10 days
— 8 members TL149 spectral model (SEF)
— 8 members 1.2 deg finite element model (GEM)

— Vertical resolution: 28 levels GEM, 23 or 41 levels SEF
Recent work

— EnKF with improved accuracy of ensemble mean
— Short-range high-resolution SV-based ensemble
(OTI 48 h, 20 members, 35 km resolution)

— Bayesian model averaging, Extreme forecast index
Future

— 15 days projection, twice daily 00 and 12 UTC

First Workshop of TIGGE, ECMWF, March 2005 31



Initial Perturbations at UKMO

Based on ETKF
— ETKF
— rescaling of evolved perturbations while observing P*a=(I-KH)P"f

— an ensemble data assimilation method
Model perturbations

— RP (random parameter) scheme
— Perturbing a selection of tunable parameters
— SCV (stochastic convective vorticity) scheme

— Based on conceptual dynamical model of mesoscale convective
systems

Present configuration

— Global ensemble forecast (not operational)
Future

— Limited-area ensemble covering North-Atlantic and Europe
— Initial perturbation from global ensemble

— Localization within the ETKF

— Stochastic kinetic-energy backscatter

NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO
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Do perturbation properties matter?

Yes

— high short-term sensitivity of model to initial condition
— at least for short-term results

— most perturbations will (eventually) grow (in global model) due to
presence of instability

 thus not necessarily a sign of reflecting analysis error
— final pdf is direct result of initial-pdf formulation

— sample size is of secondary importance in comparison to reflecting
P~a well

First Workshop of TIGGE, ECMWF, March 2005
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Z500 Europe STD TO and D+2 for
NCEP BMRC ECMWF

N

Z500 - 00UTC 15 Jan 2005 tO Z500 - 00UTC 15 Jan 2005 t0

NCEP 11m STD (ci=0.5dam) BMRC 33m STD (ci=0.5dam)

i

Z500 - 00UTC 15 Jan 2005 +48h Z500 - 00UTC 15 Jan 2005 +48h

NCEP 11m STD (ci=2dam) BMRC 33m STD (ci=2dam)

L

R. Buizza

Z500 - 00UTC 15 Jan 2005 t0
ECMWF 51m STD (ci=0.5dam)

Z500 - 00UTC 15 Jan 2005 +48h
ECMWF 51m STD (ci=2dam)
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Z500 May 2002 EM+STD TO for W
NCEP, MSC, ECMWF, Analysis

Z500 - 00UTC May 2002 10 (31d)  Z500 - 00UTC May 2002 t0 (31d) 7500 - 00UTC May 2002 t0 (31d) Z500 - May 2002 (31d)-10
NCEP EM (ci=8) and STD (ci=0.5) MSC EM (ci=8) and STD (ci=0.5) ECMWF EM (ci=8) and STD (ci=0.25) 3C ANA (ci=8) and STD (ci=0.25)

ﬁ—‘—_—.___ _

* NCEP and MSC ~ twice as large as ANA STD
* ECMWEF has amplitude similar to ANA STD
* Differences in location

R. Bui
uizza First Workshop of TIGGE, ECMWF, March 2005 35




7500 May 2002 EM+STD D+2 for W
NCEP, MSC, ECMWF, Analysis

Z500 - 00UTC May 2002 t+48h (31d) 7500 - 00UTC May 2002 t+48h (31d) Z500 - 00UTC May 2002 t+48h (31d) 4200 - May 2002 (31d) - t+48h

NCEP EM (ci=8) and STD (ci=1) MSC EM (ci=8) and STD (ci=1) ECMWF EM (ci=8) and STD (ci=1)  3C ANA (ci=8) and STD (ci=1)

* MSC has largest amplitude over NH
* ECMWEF has smallest amplitude over tropics

R. Bui
uizza First Workshop of TIGGE, ECMWF, March 2005 36



Discussion of methods

Thought experiment

— If P*a were easily and fully available — how would we generate
perturbations?

Is it important to mimic analysis error?
— Only the growing part?
— A question of time scale?

Are ensemble requirements different for
— Generating 6-hour versus 3-day backgrounds?

How do initial perturbations matter?

— Does calibration offset initial perturbation deficiences and/or effects of
ensemble sizes?

Can/should we assess initial perturbations against analysis error?
— What do we know about analysis error?

— What are characteristics of analysis error in terms of scales,
magnitude, balance, spectra?

First Workshop of TIGGE, ECMWF, March 2005 37
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Differences between techniques W

SVs versus Bred Modes
— The leading SVs explain very little of LVs
— The leading SVs explain almost all growth
— Gelaro/Reynolds/Errico QJ 2002

ExKF techniques

— Why is there a need for inflation? Why is the needed inflation factor
small?

— Which impact has the need for localization on balance issues?
— Why seem/are small ensembles sufficient?
— What are the implications of restriction to small subspaces?

— If ensembles are representative of forecast errors — (why) can they
also be made to be representative of analysis errors by transforming

ensembles (as observations rotate spectra back to smaller scales thus
whitening)?

Is nonmodality important?
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LV Variance Explained by Leading SVs at Initial Time
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Figure 3. Fraction of variance of the leading Lyapunov vetor (LV) explained by subsets of the initial-time,
leading 24-hour singular vectors (SVs) on days 21-40. Resull§ are shown for the leading 5 (§V1-5), 10 (SV1- R. GELARO et al.
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Figure 6. Incremental growth rates of the leading Lyapunov vector (LV) with various leading singular vector
(SV) components of the perturbation removed. The ‘filtered’ incremental growth rates are based on Eq. (6).

aI I g rOWt h Results are shown corresponding to the removal of the leading 5 (no SV1-5), 10 (no SV1-10), 20 (no SV1-20)
and 30 (no SV1-30) SV components from the LV (thin curves), and for the unfiltered LV (bold curve). Values less
than zero indicate that the perturbation decays globally. See text for details.
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TIGGE Considerations / Recommendations

Availability of different initial perturbations
— In standard format (truncation)
— to assess quantitative properties
— to check against analysis error characteristics

Standard set of perturbations
— to be made available for use in different models
— or to be easily generated by standard methods (given P"a)

Model versus initial state error
— What is today’s best estimate?
— What was it ten years ago?
— By which experiments can we refine the estimate?

?

?

First Workshop of TIGGE, ECMWF, March 2005
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Summary

Predictability
— intrinsic error growth plus initial uncertainty

Ensemble Prediction
— flow-dependent uncertainty

Generating Initial Perturbations
— methods
» Breeding, SVs, ensemble Kalman filter

— analysis error and nonmodal finite-time growth of errors

Use of Methods
« NCEP, CDC, NCMRWF, FNMOC, ECMWF, BMRC, MSC, UKMO

Assessment and Discussion of Methods

Recommendations
— availability/exchange of initial perturbations
— assess initial-time perturbation properties
— assume P"a given (simple setup)

First Workshop of TIGGE, ECMWF, March 2005
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Use of Methods W

National Centers for Environmental Prediction (NCEP)
— Breeding

Climate Diagnostics Center (CDC)-NCEP/

National Oceanic and Atmospheric Administration (NOAA)
— Breeding

National Centre for Medium Range Weather Forecasting (NCMRWF)
— Breeding

Fleet Numerical Meteorological and Oceanographic Center (FNMOC)
— Breeding

European Centre for Medium-Range Weather Forecasts (ECMWF)
— SVs

Bureau of Meteorology Research Centre (BMRC)
— SVs

Meteorological Service of Canada (MSC)
— Ensemble Kalman filter

United Kingdom Meteorological Office (UKMO)
— Ensemble transform Kalman filter
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Bayes” Theorem

Data y and a priori estimate x” for the state X to be estimated are available, both with their

respective uncertainties (assuming normal distributions):

Pyix(y) ~ N(Hx,R)

px(x) ~ N (x", B)

(6.4)

(6.5)

B and R are assumed known. Using Bayes™ Theorem the posterior pdf for the state given the

data is obtained as:

Pxly (X) X Pyx(¥) Px(X)

(6.6)

Px|y (X)

I

X eXP —:(J:j}-' ~Hx)'R 'y = Hx) + (x = x")"B '(x — Xj]

\,
%
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The EKF Equations V=

~ AnaysisStep
x(t;) = x"(t;) + K, (yg _ Hi(xb(ti)))

—1

Ki = Pf(ti)H?(Hin(ti)H? + Rg-) — P(t;)HIR; ™!

1 1

—1

P () = (I = KHOPY (1) = P/ (#)]* + HIR; MH, )

~ PredctonStep
XP(tiy1) = Mi(x*(t:)) P (tig1) = MiP*(t)M] + Q(ti41)
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107-3/1073 = 0.0001 %

b1ck time series of NLD psi th=
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Figure 39: KE and TE for blck. NLD experiment 14 May 04.
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QG TE SV spectrum

lambda 1=33.47
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Figure 42: blcg spectrum. OTI 24.0 h: Ay = 0.334732129161647E+02, Aogop —0.212031927289761E-01,

Argaz = 0.100006329799706E+01.
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