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1. Introduction 
The advent of wavelet analysis has fuelled an explosion in harmonic and functional analysis, signal 
processing and time-frequency analysis. At the same time, wavelets and related constructs have proved 
themselves useful at the practical level in a wide range of applications, particularly in the field of image 
processing. 

A characteristic of many wavelet applications is that they deal with linear or rectangular domains. This is 
because the extension of wavelet analysis to more complicated domains, such as the sphere, is non-trivial. In 
particular, any wavelet-like basis that retains the symmetry properties of the sphere must necessarily be non-
orthogonal. This fact requires a considerable generalization of the theory, and demands that we consider non-
orthogonal expansions. The mathematical tool for dealing with such expansions is the “frame”. 

The aim of this paper is to present an introduction to the mathematical theory of frames, and in particular to 
the notion of a generalized frame. To put some flesh onto the bones of what is otherwise a rather abstract 
concept, a simple class of generalized frames is discussed. A practical application is presented in the form of 
a covariance model for background error that allows control over both spatial and spectral aspects of the 
variation of background error. 

The paper is laid out as follows. First, a brief introduction to the theory of discrete frames is presented, and 
the concept of a generalized frame (Kaiser, 1990) is discussed. Next, a simple class of generalized frames for 
the sphere is presented, and the decomposition and reconstruction of a function, using a member of this class, 
is demonstrated. After this, an application of frames to background error covariance modelling is discussed. 
This application was already presented by Fisher (2003). This paper clarifies the theoretical derivation of the 
covariance model, and illustrates that the ability of the model to generate good approximations to prescribed, 
spatially varying, Gaussian covariance structures. We conclude with a brief discussion section. 

2. Discrete and Generalized Frames 
Frames were first introduced by Duffin and Schaeffer (1952). However, it is only in recent years, with the 
advent of wavelet analysis, that interest in them has taken off. The reader is referred to Daubechies (1992) 
for a very readable introduction to the subject, on which the remainder of this section is closely based. 

A family of functions { };m m Mψ ∈  in a Hilbert space � , where M is a countable set of discrete indices, is 

called a frame if there exist finite, positive bounds A  and B such that, for any function f  in the space: 

 
22 2

, m
m M

A f f Bψ
∈

≤ ≤∑ f  (1) 

It can be shown (see, e.g. Daubechies, op. cit.), that this condition is sufficient to guarantee the existence of 

another frame, { };m m Mψ ∈� , called the dual frame, with the property: 
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f f fψ ψ ψ ψ
∈ ∈

= = ∀∑ ∑� � f ∈ � . (2) 

Equation (2) states that we may decompose the function f into a linear combination of the elements of the 

frame. The coefficients for this decomposition are the projections of the function onto the elements of the 

dual frame. Alternatively, we may decompose f  into a linear combination of elements of the dual frame, in 

which case the projections onto the original frame provide the coefficients. 

The ability to decompose a function into a linear combination of “basis functions”, and then reconstruct it, 
has clear parallels with orthogonal decomposition. The similarity is even more striking in the case of a “tight 

frame”. That is, a frame for which the bounds A  and B are equal. In this case, the frame and the dual frame 
are identical up to a multiplying factor, and we have: 

 

1
,

where ,
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ψ
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. (3) 

Compare this, for example, with the Fourier series representation of a function defined on an interval [ ],a b : 
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 (4) 

Indeed, orthogonal bases (such as the Fourier basis) are tight frames with the additional constraints that 

1A = and 1m m Mψ = ∀ ∈  (see Daubechies, op. cit.). 

To illustrate that tight frames need not be orthogonal, consider the following example, due to Daubechies 
(op. cit.). The Hilbert space for this frame is the Euclidean plane, and the frame is defined by the vectors: 

 1 2 3

3 1 3
(0,1), , , ,

1

2 2 2
ψ ψ ψ

2

   
= = − − =     −    

. (5) 

Given any vector in the plane, ( ),x yf f f= , we have: 

 

2 2
3 2 2

1

2

3 1 3 1
,

2 2 2 2

3
.

2

j y x y x y
m

f f f f f

f

ψ
=

= + − − + −

=

∑ f
 (6) 

Hence, { }1 2 3, ,ψ ψ ψ constitute a tight frame for the Euclidean plane, with frame bound 2 3A = . However, 

the frame is clearly not an orthogonal basis – it consists of three vectors, 120° apart. Proof that the 
“transform property”, i.e. equation (3), holds for this example is left as an exercise for the reader. 

The discrete frames described above restrict the set of functions mψ  to be countable. Recently, Kaiser (1990) 

(see also Kaiser, 1994) has generalized the notion of a frame by removing this restriction. Specifically,  the 
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set M ����������	��	�
����
�����
�����������	�
��
�����	�������	�
���
1. The condition for a frame (equation 

(1)) becomes: 

 
22

, d ( )m

M

A f f m B f fψ µ≤ ≤∫ 2 ∀ ∈ � . (7) 

(Note that if M is c������
���������	�����������������	�
����������
��
��������������(1), so that generalized 

frames include discrete frames as a special case.) 

Most of the properties of discrete frames carry over in an obvious way to the generalized case. In particular, 
we will make use of the generalization of equation (3) for tight frames, which becomes: 

 

1
d ( )

where ,

m m

M
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A

c f
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ψ

=

=

∫
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There is an obvious similarity between this expression and the Fourier transform: 
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However, it is worth stressing that, unlike the complex exponentials of the Fourier transform, the functions 

mψ  in equation (8) are not generally orthogonal. It is nevertheless useful to think of the mc  as coefficients, 

albeit in a non-orthogonal expansion, of the corresponding functions mψ . 

3.  A Class of Tight Generalized Frames on the Sphere 
To make the abstract notion of a generalized frame concrete, we consider in this section the definition of a 
simple class of generalized frames for the sphere. The Hilbert space is the set of complex, square-integrable 
functions on the sphere, equipped with the natural inner product: 

 
1

, ( , ) ( , ) cos( )d d
4

f g f gλ φ λ φ φ λ φ
π Ω

= ∫ . (10) 

Here, denotes the surface of the unit sphere,  and Ω λ φ  denote longitude and latitude, and the complex 

conjugate is denoted by an overbar. The normal�������� ��� ��� �	� �����������
� ��� �����
�
���� �	��� �����

Courtier et al., 1998). 

For the set of indices, M, we choose the set of triples ( ) [ ] [ ]{ }, , ; 0, 2 , 2, 2 ,j jλ φ λ π φ π π∈ ∈ − ∈ � . 

Here,   and λ φ  are real numbers denoting longitude and latitude, whereas j is an integer. We associate with 

M the measure which is the product of the counting measure over and the measure � cos( )d dφ λ φ  over . Ω

Note that there is one function ( , , )jλ φψ  defined for each point on the sphere and for each positive integer j. 

For any given triple, the function ( , , )jλ φψ  is itself a function of latitude and longitude, and we will choose it 

to be a function of great-circle distance from the point ( , )λ φ : 

 (( , , ) )( , ) ( , , , )j j rλ φψ λ φ λ φ λ φ′ ′ ′ ′= Ψ , (11) 

                                                      
1 More rigorously, ��	�� ������� �� �-finite measure space, and the map  must be weakly 

measurable. 

{ },M µ : mmψ �ψ
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where 2 ( )jΨ ∈ ��  and where ( , , , )r λ φ λ φ′ ′ denotes the great-circle distance between the points ( , )λ φ′ ′  

and ( , )λ φ . 

Consider now the “coefficients” mc  of equation (8). There is one coefficient for each point on the sphere and 

for each positive integer j. We will emphasize this by writing ( , , )( , )j jf c λ φλ φ ≡ . That is: 

 ( )( , , )

1
( , ) , ( , ) ( ( , , , ) cos( )d d

4j j jf f f rλ φλ φ ψ λ φ λ φ λ φ φ λ φ
π Ω

′ ′ ′ ′ ′ ′ ′= = Ψ∫ . (12) 

We may regard ( , )jf λ φ as a function jf  of location on the sphere, and equation (12) shows that jf  is the 

result of a convolution: 

 j jf f= Ψ ⊗ . (13) 

We seek a tight frame. The condition (equation (7) with A=B) is: 

 
2 2

( , , ), cos( )d dj
j

f A fλ φψ φ λ φ
∈ Ω

= ∀ ∈∑ ∫
�

�f . (14) 

Writing the inner product as ( , )jf λ φ , we see that equation (14) is simply: 

 
2 2

j
j

f A f
∈

=∑
�

. (15) 

That is: 

 
2 2

j
j

f A f
∈

Ψ ⊗ =∑
�

. (16) 

We now invoke Parseval’s identity, and write equation (16) in terms of the coefficients, ˆ ( , )f m n  (etc.) of 

the spherical-harmonic expansions of f (etc.). Courtier et al. (1998) show that the spherical harmonic 

coefficients of the convolution j fΨ ⊗  are: 

 ( )� 1 ˆˆ( , ) (0, ) ( , )
2 1

j jf m n n f m n
n

Ψ ⊗ = Ψ
+

. (17) 

Thus, equation (16) gives: 

 
2 2

0 0

1 ˆˆ ˆ(0, ) ( , ) ( , )
2 1

n n

j
j n m n n m n

n f m n A f m n
n

∞ ∞

∈ = =− = =−

Ψ =
+∑∑ ∑ ∑ ∑

�
. (18) 

Noting that equation (18) must hold for all functions 2 ( )f ∈ Ω� , we see at once that the condition for a 

tight frame reduces to: 

 
21 ˆ (0, )

2 1 j
j

n A n
n∈

Ψ =
+∑

�
∀ . (19) 

The “transform” (equation (8)) for the particular frame under consideration, is: 

 ( , , )

1
( , ) ( , ) ( , ) cos( )d dj j

j

f f
A λ φλ φ λ φ ψ λ φ φ λ φ′ ′

∈ Ω

′ ′ ′ ′ ′= ∑ ∫
�

. (20) 

Writing ( , , )jλ φψ  in terms of jΨ , we see that the integral is another convolution. Thus: 
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1

where .

j
j

j j

f f
A

f f

∈

= Ψ ⊗

= Ψ ⊗

∑
�  (21) 

We may verify that equation (21) holds by considering an arbitrary th( , )m n  coefficient of the spherical-

harmonic expansion of the sum in equation (21). The convolution becomes a product, so that: 
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 
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. (22) 

But, jf  is itself the result of a convolution with jΨ , so that we may write equation (22) as: 
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Eliminating using equation (19), and dividing through by A gives: 

 . (24) 

Since two square-integrable functions whose spherical-harmonic coefficients are all equal must themselves 

be equal (see e.g. Davis, 1963), it follows from equation (24) that . 

4. Example 
In this section, we present an example of the decomposition and reconstruction of a scalar field using a tight 

frame from the class defined in the preceding section. We begin by defining a set of functions  that 

satisfy the condition for a tight frame, equation (19). 

Let us choose a sequence of wavenumbers  with  and . For each , we 

regard the wavenumbers  as nodal points for a spline interpolation, and define in terms of B-

spline basis functions as: 

  (25) 

where the B-spline basis functions of order p are defined by: 

  (26) 

In particular, for  we have: 
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  (27) 

1 1 1

1 1 1
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0 otherwise.

j j j j j

j j j j j j

n n N N N N n N
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

ˆ2 1 (0, )jn n+ Ψ 0,2,4,8,16, 512�

,j pB 1[ , )j j pN N + +

jf

1j p jN n N− +≤ < jf

12 jN +

( )12 1 2jN + +

jf

jf ( , )λ φ

( , , )jλ φψ ( , , )jλ φψ

( , )λ φ

( , , )jλ φψ

ˆ2 1 (0, )
j

n n+ Ψ
j

N

Figure 1 shows the functions  defined by equation (27) for the nodes . 

The spline function  is identically zero outside the interval . It follows that the functions 

 defined in equation (13) are strictly band-limited. Their spherical harmonic coefficients are zero outside 

the range of wavenumbers . As a consequence, each  is exactly determined by its values 

at a finite set of points on the sphere (for example, the points of a “Gaussian grid” with  longitudes 

and  latitudes). 

The correspondence between total wavenumber and spatial scale implies that each of the functions  may 

be thought of as representing a particular spatial scale. At the same time, in the tight frame interpretation 

described above, we regard the value of  at a particular point  as representing the coefficient of 

. For this interpretation to be meaningful, we require that the function  should be localised 

around the point . Although strict compact support is not possible for band-limited functions, the plots 

of  shown in Figure 2 and Figure 3 demonstrate that for practical purposes the functions are well 

localised. 

 
Figure 1: The functions defined by equation (27)  for one choice of nodes . 
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Figure 2: The functions  for a point  over Sicily, and for , corresponding to the 

spectral coefficients shown in Figure 1. 
( , , )jλ φψ ( , )λ φ 1 6j = �

7 10j = �

jf

 
 

Figure 3: As in Figure 2, but for . 

To illustrate the decomposition and reconstruction of a function on the sphere, we will consider the 

orography of the ECMWF TL511 model, shown in Figure 4. The functions , corresponding to the 

convolutions of the orography with the functions shown in Figure 1, are shown in Figure 5. It is clear that the 
convolutions achieve a separation of spatial scale, while retaining the local nature of the features they 
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describe. This is consistent with the interpretation of each point in each of the plots shown in Figure 5 as the 
coefficient of a function that is simultaneously spatially and spectrally localised. 

 
Figure 4: The orography of the ECMWF TL511 model. 

 
Figure 5: The functions fj  for the orography field. 
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The result of convolving each function  with the corresponding function  is shown in Figure 6. The 

sum of these fields (not shown) is identical to the original orography. Importantly, the reconstruction of  

from the functions  retains the local nature of the features shown in Figure 5.  

jf jΨ

f

jf

j j
fΨ ⊗

 
Figure 6: The functions . Summing the fields shown in this figure reconstructs the original 

orography. 

5. Application to Background Error Covariance modelling 
A background error covariance model based on the generalised frame decomposition described above was 
discussed by Fisher (2003), and dubbed “Wavelet Jb”. In this section we examine this covariance model in 
further detail, and provide evidence of its ability to capture important aspects of the spatial and spectral 
variation of the covariance of background error. We begin by briefly reviewing the variational form of the 
data assimilation problem. 

Variational data assimilation estimates a discretization of the true state of a system (e.g. the atmosphere) as 
the vector x that minimizes the cost function: 
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Here, xb is a prior (background) estimate for x. The vector y is a vector of observations, and H is an operator 
that attempts to map the state vector to the space of the observations. The matrices R and B are covariance 

matrices of observation error and background error. 

Typically, direct minimization of the cost function defined in equation (28) is numerically very poorly 
conditioned. For this reason, it is usual to define a control vector, , which diagonalizes the background 

error covariance matrix. The state vector, x, is determined as an affine transformation of : 

 . (29) 

Written in terms of , the cost function becomes: 

 . (30) 

Note that the background error covariance matrix does not appear explicitly in equation (30). Rather, it is 

defined implicitly by the choice of the matrix L. It is straightforward to show that minimization of and 

 give identical state estimates if B=LLT. Thus, modelling of the background covariances in variational 

assimilation is achieved in practice by choosing a suitable control variable  and transformation matrix L. 

There is no requirement for the matrix L to be invertible, or even square. Fisher (2003) took advantage of 

this fact, and chose: 

 . (31) 

Here,  are exact discrete representations, on appropriate grids, of the band-limited functions  

defined in the preceding section. 

Whereas Fisher (op. cit.) demonstrated how a three-dimensional covariance model could be constructed, in 

this paper we describe a two-dimensional covariance model. To cast things into discrete form, let us define 

the diagonal matrix with diagonal elements . Then, letting  represent the discrete 

spherical transform from the grid associated with , the spectral representation of the convolution 

 may be written as . 

The transformation matrix L defining the covariance model will be defined as: 

 . (32) 

Here, the matrices  are diagonal in grid space. Their elements determine both the spatial and the spectral 

variation of the standard deviation of background error. 

The background error covariance matrix (in spectral space) associated with L is: 

  (33) 
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Consider the special case . In this case, the matrices  and  commute, and equation (33) 

reduces to . This is a diagonal matrix whose elements vary only with wavenumber n. The 

diagonal elements of B are therefore modal variances (see Courtier et al. 1998), and are given by: 
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λ φ
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+ − +
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+ − +∑

max 511N =

( )2

max 1N +

 . (34) 

If the functions  are defined using splines, as in equation (26), then equation (34) is: 

 . (35) 

Thus, for , the Wavelet Jb covariance model is identical with the two-dimensional covariance 

model defined by Courtier et al. (1998), with the restriction that the modal variances, , are defined by a 

spline interpolation between values  specified at the nodal wavenumbers . At intermediate 

wavenumbers, the modal variances are interpolated. Since the spline functions are positive, the 

interpolated variances are also positive. Hence, B represents a valid covariance model. 

Analysis of the case where the elements of vary is difficult. However, the local nature of the functions 

 implies that at any given point  on the sphere, the covariance with neighbouring points will be 

determined by the values of  corresponding to points near . That is, we should regard the elements 

of  as a local equivalent of the modal variance. To demonstrate that this interpretation is valid, we 

construct a covariance model whose structures are isotropic and approximately Gaussian, but whose length 
scales vary with location. 

Weaver and Courtier (2001) give the following expression for the modal variances of an approximately 
Gaussian isotropic correlation model on the sphere: 

  (36) 

Here, L is the length scale of the correlation function, and a is the radius of the Earth. 

With this covariance model in mind, let us define the elements of as: 

 , (37) 

where the length scale L is a function of location on the sphere and  is the upper truncation limit. 

The factor  in the numerator of equation (37) is included to give a covariance matrix whose 

variance is, to within the accuracy of the spline interpolation, equal to that of the identity matrix. 
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Figure 7 shows the spatial variation of length scale L used for this example. Note that L is a simple 

combination of trigonometric functions of latitude and longitude, and is not intended to be a realistic 
representation of the actual spatial variation of length scale for background error at any atmospheric level. 

 
Figure 7: Length scale (metres) for the covariance model. 

To reveal the covariance structures defined by the model, we applied the matrix B, defined in equation (33) 

to a field consisting of twelve delta functions. The result, shown in Figure 8, is the sum of twelve rows of the 
covariance matrix. However, since the delta functions are well separated, we expect the covariance structure 
near each delta function to be dominated by the corresponding row of B. It is clear from Figure 8 that the 

covariance model is successful in producing covariance structures with a wide range of length scales. 

Cross-sections along the three lines of longitude containing the delta functions are shown by the solid lines in 
Figure 9. In general, the desired Gaussians (shown in blue) are well approximated. However, the peak 
amplitude is not correct, particularly for longer length scales. This is probably a consequence of inaccuracies 
in the spline interpolation. (Note that for constant L, the total variance implied by equation (37) is 

max

0
(2 1)

N

nn
n b

=
+∑ . Because nb  is interpolated between values specified at the nodal wavenumbers, the total 

variance is only approximately equal to ( )2

max 1N + ). 

The covariance structures corresponding to the shortest length scales are more sharply peaked than the 
corresponding Gaussian. This is again likely to be a consequence of the spline interpolation. This supposition 
is supported by the dotted black lines in Figure 9, which show cross sections for a covariance model 
constructed using equation (37), but with a larger set of nodal wavenumbers. 

 
Figure 8: Covariance structures at twelve locations generated by the"Wavelet Jb"  covariance model. 
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Figure 9: Cross-sections of the covariance structures along lines of longitude passing through the 
maxima. The dashed blue lines show Gaussians with the desired length scales. The solid black lines show 
cross sections of the structures shown in Figure 8. The dotted black lines show cross sections for a 
covariance model with a different set of nodal wavenumbers. 

6. Discussion 
The theory of generalized frames provides a mathematically rigorous tool for constructing non-orthogonal 
decompositions which share many of the properties of their orthogonal cousins. In particular, they allow 
functions to be transformed into linear combinations of basis functions, and then reconstructed. The range of 
functions available to generalized frames is far wider than the range of orthogonal functions. In particular, it 
is relatively straightforward to construct basis functions that are localised in both space and scale, so that 
frames with many of the characteristics of wavelet bases can be constructed, even for such awkward domains 
as the surface of the sphere. 

The particular generalized frames considered in this paper are rather simple. Indeed, they could easily have 
been discussed without recourse to generalized frame theory, since they are extensions to the spherical 
domain of the perfect reconstruction filter banks (there is one in your MP3 player!) of signal processing 
theory (see e.g. Nguyen, 1995). On the other hand, frame theory produces a particularly elegant derivation, 

and allows an interpretation of the coefficient functions  that is not obvious if, for example, the functions 

 are regarded simply as filters. 

jf

ˆ
jΨ

2 ( )Ω�

There are many different formulations of wavelet, and wavelet-like bases for the sphere. Some formulations 
(e.g. Göttelmann, 1997; Schröder and Sweldens, 1995) define orthogonal bases using refinable griddings of 

the sphere. Although these approaches are capable of producing complete bases for , they necessarily 

suffer from the problem that any finite truncation of the basis contains special points (e.g. the poles). 
Avoiding this problem requires giving up on orthogonality, so that we are forced to consider frames rather 
than orthogonal bases. There are several approaches (see, for example, Freeden and Windheuser, 1996; 
Antoine and Vandergheynst, 1999; and Mhaskar et al., 2000). A very broad family of “spherical wavelets” is 

described by Freeden et al. (1998). This family includes the wavelet-like frames described in this paper. 
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The generalized frames considered in this paper are tight. By removing the tightness constraint, a broader 
class of decompositions may be generated. Such frames use different functions during decomposition and 

reconstruction, making interpretation of the functions  more difficult. For example, it is straightforward to 

define non-tight convolution-based frames that satisfy equations of the form: 

jf

where .

j
j

j j

f f

f f

∈

= Ψ ⊗

= Ψ ⊗

∑
�

�
  (38) 

It is not obvious if such frames have any significant advantages over the corresponding tight frames. 

We have presented a demonstration of the “Wavelet Jb” covariance model. The model was successful in 
producing approximately Gaussian covariance structures with spatially-varying length scales. Some 
problems were noted in reproducing the correct variance, and in generating Gaussian-shaped correlation 
structures for small length scales. It is likely that these problems could be significantly reduced by a more 
careful choice of nodal wavenumbers, and by the use of higher order (e.g. quadratic or cubic) spline 
interpolation. Ultimately, the degree to which both spectral and spatial variation of covariance structure can 
be modelled is limited by the spherical equivalent of the uncertainty principle (see e.g. Freeden et al. 1998). 
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