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ABSTRACT

A new fast radiative transfer model to compute infrared limb radiances for the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) has been developed and validated, and a first application is presented. The model,
referred to as RTMIPAS, can simulate radiances for all channels of the high-spectral resolution MIPAS instrument in the
685-2000 cm~t wavenumber region. RTMIPAS is part of a wider effort to develop the capability to assimilate infrared
limb radiances into the ECMWF model. The model uses the regression-based methodology of RTTOV, and it can simulate
the effect of variable water vapour and ozone; for other gases included in the model a fixed climatological profile is
assumed.

RTMIPAS can reproduce line-by-line radiances to an accuracy that is below the noise-level of the instrument for most
spectral points and tangent heights, while offering significantly more rapid radiance calculations compared to currently
available radiative transfer models. The comparison of RTMIPAS transmittances with line-by-line model equivalents
indicates that the accuracy of the RTMIPAS transmittance model is comparable to that of similar regression-based radiative
transfer models for the Earth-looking geometry.

Preliminary experiments with simulated data in a 1-dimensional variational analysis scheme highlight the potential of
MIPAS data to considerably reduce analysis errors in the stratosphere. Issues to be addressed for work with real data are
also discussed.

1 Introduction

This contribution describes the development, validation and a first application of a new fast radiative transfer
model for limb radiances from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on-
board the Envisat satellite (e.g., European Space Agency, ESA, 2000) . These are the first steps of a wider effort
to assimilate infrared limb radiances into a numerical weather prediction (NWP) model. MIPAS is a very high
spectral resolution interferometer (0.025 cm~1, unapodised), measuring infrared limb radiances in 5 spectral
bands between 685 and 2410 cm~1 (Table 1), providing a total of 59,605 spectral points (i.e., channels). MIPAS
is designed to provide information on the thermal structure and chemical composition of the upper troposphere
and the stratosphere at high vertical resolution.

The new fast radiative transfer model is referred to as RTMIPAS, and it is based on methodology developed for
the RTTOV fast radiative transfer model for nadir® looking geometry (e.g., Matricardi et al. 2004, Eyre 1991).
In RTTOV, the atmosphere is represented on fixed pressure levels, and convolved level-to-space transmittances
are calculated based on linear regression models for the effective layer optical depths. The linear regressions
are derived from a large transmittance database from line-by-line (LBL) radiative transfer computations. In
the current version of RTMIPAS, only water vapour and ozone are treated as variable gases, but the method
could be extended to other gases if required. The RTTOV approach is used for the direct assimilation of nadir
radiances at ECMWF and a number of other NWP centres.

LIn the following, the term “nadir” is used to refer to the Earth-looking geometry in general, rather than a view with a zenith angle
of 0° only.
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Table 1: Main characteristics of MIPAS.

0.025 cm~1, unapodised

(0.035 cm~1, apodised)

A-band: 685-970 cm~1 (11,401 spectral points)
AB-band: 1020-1170 cm~! (6,001 spectral points)
Spectral bands B-band: 1215-1500 cm~* (11,401 spectral points)
C-band:  1570-1750 cm~1 (7,201 spectral points)
D-band: ~ 1820-2410 cm—* (23,601 spectral points)

Spectral resolution

Nominal tangent altitudes in 6-42 km in 3 km steps; 47, 52, 60, 68 km.
normal scanning mode
Field of view at tangent point approximately 3 km x 30 km

(vertical x horizontal)

The structure of this paper is as follows: first, we summarise RTMIPAS-specific modifications of the RTTOV
method for the radiative transfer parameterisations. We then evaluate the performance of the scheme compared
to LBL computations, before preliminary experiments with a 1-dimensional variational (1DVAR) scheme are
presented. Conclusions are drawn in the last section in which we also give an overview of outstanding issues.

2 Description of the fast model

For a detailed description of the RTTOV methodology the reader is referred to Matricardi and Saunders (1999).
Here, we will briefly summarise the RTMIPAS-specific implementation choices, and a more detailed descrip-
tion can be found in Bormann et al. (2004).

In RTMIPAS, the radiative transfer equation is solved numerically based on 81 fixed pressure levels. No surface
term is needed in the case of the limb geometry. The pressure levels are given in Bormann et al. (2004) and
displayed in Figure 1. The spacing of the levels is similar to that used by Matricardi (2003), and it has been
chosen by taking into account typical temperature lapse rates and the expected future vertical resolution of the
ECMWEF forecast model. As in RTTOV, linear regression models for suitable predictors are used to compute
effective channel optical depths for each layer defined by the given discretisation. Only water vapour and
ozone are treated as variable gases, whereas contributions from all other relevant gases are based on fixed
climatological profiles (John Remedios 2003, pers. communication).

In the limb geometry, ray tracing is required to obtain the ray path and the atmospheric conditions along the path
for a given atmospheric state and the satellite’s pointing information. Note that a given ray will not necessarily
cross all the layers introduced in RTMIPAS, and the ones which are crossed are crossed twice (Fig. 1). As
a result, regressions for the effective layer optical depths for N = 160 layers are required. The ray tracing is
performed using the methods of Healy and Eyre (2003). We consider only such rays whose tangent heights
lie on the 34 selected layer boundaries indicated in Fig. 1, and we use the field of view convolution described
below to calculate the radiances for any other tangent height viewed by MIPAS. The hydrostatic equation is
used to obtain the geometric height if it is not provided by the user.

The predictors used in the transmittance parameterisation have been specifically developed for the limb ge-
ometry, and they are discussed in detail in Bormann et al. (2004). The predictors are originally based on
Matricardi (2003), and a necessary first adjustment was to replace the secant of the satellite zenith angle with
the actual layer path length.

The transmittance database used to derive the regression coefficients for RTMIPAS was generated using the
Reference Forward Model (RFM; Dudhia et al. 2002b). Line data were taken from the 2000 edition of the
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Figure 1: Schematic representation of the levels (horizontal lines) and pencil beams (curved lines) used in
RTMIPAS, mapped into a plane-parallel view. An atmospheric mean profile has been used to convert the
RTMIPAS pressure levels to heights.

HITRAN molecular database. As in RTIASI, a separate parameterisation is used for the water vapour contin-
uum, based on the CKD 2.4 continuum model (Clough et al. 1989). Monochromatic LBL calculations were
performed at a resolution of 0.0005 cm~1. These high-resolution spectra were subsequently convolved with
the MIPAS ILSs, apodised using Norton-Beer strong apodisation (Didem Alpaslan and Rob Koopmann 2003,
pers. communication). Note that we consider only MIPAS channels in the wavenumber range 685-2000 cm 2,
as the channels in the 2000-2410 cm~! region of the spectrum are contaminated by solar radiation and also
show a low signal-to-noise ratio.

The LBL computations were performed for a set of 46 diverse atmospheric profiles, assuming horizontal homo-
geneity in the calculations. The profiles were sampled from the 60 level ERA-40 reanalysis (e.g., Simmons and
Gibson 2000) using the method of Chevallier (2002), maximising the variability in the stratosphere and upper
troposphere above 550 hPa. The profiles provide thermodynamically consistent values of pressure, temperature,
and mixing ratios for water vapour and ozone. The number of profiles used in the training set is comparable to
that typically used in the derivation of regression coefficients for fast models for the nadir viewing geometry,
such as in Matricardi et al. (2004).

One added complexity in radiative transfer models for MIPAS is that the FOV convolution in the vertical has
to be taken into account. This requires the computation of radiances for rays with infinitesimal FOV (“pencil
beams”) over a range of tangent heights, and the subsequent convolution of the radiance versus tangent height
relationship with the instrument’s normalised FOV function. In RTMIPAS, we found it sufficient to calculate
pencil beam radiances for the tangent heights indicated in Fig. 1 only, and then evaluate the FOV integral based
on a cubic fit to the radiance profile. Similar approaches are used for the operational ESA retrievals.
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3 Validation of thefast model

In this section we study the accuracy of RTMIPAS by comparing pencil beam radiances and transmittances
from RTMIPAS with RFM equivalents for the dependent profile set and for a set of profiles independent of
the regression coefficients. Note that we validate RTMIPAS against results from the same LBL model used in
the training phase, thus characterising the “fast model errors” only, i.e., the errors introduced through the fast
transmittance parameterisation.

3.1 Dependent profile set

For the dependent profile set, RTMIPAS can reproduce the RFM radiance spectra to an accuracy that is below
the noise level of the MIPAS instrument for most channels and pencil beams over the range considered by
RTMIPAS. Figures 2 and 3 show the standard deviation of the RTMIPAS-RFM radiance differences, normalised
by the apodised instrument noise (i.e., error-to-noise ratio). For the noise specification, in-flight values of the
well-studied orbit 2081 have been used. For display purposes, we show the maximum and the mean error-to-
noise ratio for each 80-channel interval (2 cm~1) for each pencil beam. More than 92% of the channels typically
show standard deviations of less than half the instrument noise for each pencil beam (e.g., Fig. 4), with an even
better performance for the higher pencil beams. Radiance biases are also usually small (typically less than 1—10th
of the instrument noise), except for the lowest pencil beams (e.g., Fig. 4).

As expected, the performance of RTMIPAS changes with spectral band (Figures 2 to 4). Overall, the MIPAS
B- and C-band with strong water vapour absorption show the smallest error-to-noise ratio. This is largely due
to the small variability of water vapour in the stratosphere. The AB-band with predominantly ozone absorption
shows the poorest statistics, particularly in the regions of strong ozone absorption around 1020-1075 cm—1,
or in the 1070-1170 cm~1 region at lower tangent heights. Further investigations reveal that these errors are
predominantly introduced by the ozone transmittance model in RTMIPAS. Similarly, the fast model errors
and biases in the 750-800 cm—* wavenumber region of the A-band are also mainly introduced by the ozone
transmittance model. Biases tend to be most pronounced at lower levels in the A- and AB-band (e.g., Fig. 4),
whereas the other bands exhibit negligible biases throughout.

Root mean squared (RMS) differences between RTMIPAS and the RFM transmittances are typically around
10~4—10~°, and the maximum RMS difference rarely exceeds 0.005 (Fig. 5). The errors are comparable to
those found in Matricardi (2003), indicating that the quality of the fast transmittance model in RTMIPAS is
comparable to the one for a similar regression-based model for the nadir viewing geometry.

3.2 Independent profile set

We will now characterise the fast model errors for RTMIPAS for an independent set of 53 profiles. As for the
training set, this set has been sampled from ERA-40 data, but it provides profiles from atmospheric conditions
taken from different times and locations. Note that, as a result of using the same source for sampling the
profiles, the independent set may share some statistical characteristics with the training set.
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Figure 2: Standard deviation of the RTMIPAS-RFM radiance differences, scaled by the MIPAS noise, for the
dependent profile set. The plot shows the mean error to noise ratio over 80-channel intervals (i.e., 2 cm~1)
as a function of wavenumber and pencil beam pressure. Spectral regions not covered by MIPAS are hatched.
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Figure 3: As Fig. 2, but for the maximum error to noise ratio of 80-channel intervals.
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Figure 4: a) Distribution of the number of channels [%] in the MIPAS A-band versus the standard deviation
of the RTMIPAS-RFM radiance differences, scaled by the MIPAS noise. The statistic is based on the depen-
dent profile set. Results for 8 selected pencil beams are shown, with their tangent pressures [hPa] indicated
in the legend. The binning interval is 0.2. b) As a), but for the mean RTMIPAS-RFM radiance difference,
scaled by the MIPAS noise. Binning interval is 0.04. c) As a), but for the MIPAS AB-band. d) As b), but for
the MIPAS AB-band. e) As a), but for the MIPAS C-band. f) As b), but for the MIPAS C-band.
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Figure 6: As Fig. 4, but for the independent profile set.

The performance of RTMIPAS for the independent set of profiles is similar to that for the dependent set of
profiles, with standard deviations of the RTMIPAS-RFM radiance differences below the noise level of the
MIPAS instrument for most channels and pencil beams (cf, Figures 4 and 6). The largest increases in the
standard deviation or the mean of the RTMIPAS-RFM differences tend to occur for the lowest pencil beams.
Overall, the increase in the errors when moving to the independent profile set is smaller than what is encountered
in Matricardi (2003) for the nadir geometry. The similar performance for the independent and the dependent
sets of profiles suggests that 46 profiles are adequate for the training of RTMIPAS.

4  Preliminary 1DVAR simulations

To highlight a first application of RTMIPAS we will now present results from some preliminary simulations
within a 1DVAR framework. In 1DVAR, we aim to minimise a cost function J of the control vector x given by,

3 = 5 (x %) B x—xg) + 5 (H() ) R H(H () ~y) @

Here, xg denotes the background estimate of the control vector and y the observations; H is the observation
operator, B the background error covariance matrix and R the observation error covariance matrix which in-
cludes the error covariance for the observation operator. The minimum is found by an iterative process which
involves the computation of the gradient of the cost function with respect to the control variable. The latter can
be computed using the adjoint of the observation operator. The observation operator in our case is RTMIPAS,
and we assume horizontal homogeneity in our simulations to reduce the analysis to a 1-dimensional problem.
The 1DVAR scheme used is adapted from Chevallier et al. (2002).
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In the following, we perform Monte-Carlo experiments with simulated observations to test the performance
of the 1DVAR and to highlight the information that can be extracted from a highly idealised set of MIPAS
measurements (similar to Collard and Healy 2003). To generate our “observations” y we used RTMIPAS on a
midlatitude daytime reference profile to produce “true” radiance values which were subsequently perturbed by
Gaussian noise specified by the apodised instrument error covariance matrix. The resulting “observations” pro-
vide 1528 simulated radiance values from 150 selected RTMIPAS channels, taken at up to 17 tangent heights.
The control vector x consists of temperature, humidity, and ozone values at the 81 RTMIPAS pressure levels,
and the error covariances for the background values xg have been interpolated from mean ECMWF background
error covariances. The background values were obtained by perturbing the midlatitude daytime reference profile
with Gaussian noise specified by the background error covariance. We applied the 1DVAR to 500 realisations
of these perturbations. Since the true atmospheric state is known in these simulations, we can accumulate error
statistics for the resulting 1DVAR analyses.

Figure 7 shows the reduction of the errors in the control vector as a result of using the MIPAS observations in our
1DVAR. It can be seen that the error in all control variables is considerably reduced relative to the background
error. Most of the error reduction for temperature is confined to the stratosphere and lower mesosphere above
about 30 km. A considerable reduction of the ozone error is visible in the ozone layer. Due to the relatively
diagonal background error covariance matrix for ozone, the tangent heights of the MIPAS observations (the
regions with the largest information) appear as minima of the analysis error. Mostly, the error estimates obtained
in the 1DVAR simulations agree well with estimates calculated from linear theory (Fig. 7). On the one hand
this gives confidence in the 1DVAR results, on the other it suggests that linear theory provides an adequate
framework for error analysis for MIPAS data.

The above analysis characterises the information content that can be extracted from the selected MIPAS mea-
surements under very idealised conditions given prior information from the ECMWF short-range forecast: the
observation and forward model error is unbiased and equal to the instrument error; the background errors are
unbiased and as specified; all observations are taken in clear-sky conditions over horizontally homogeneous
atmospheres; the pointing information from the satellite is perfectly known; and the height of the lowest level is
perfectly known. In reality, the error reduction from the selected channels is thus likely to be lower. However,
this may be compensated for by using more MIPAS channels. Our preliminary analysis is thus primarily a
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Figure 7: Error analysis from the 1DVAR Monte-Carlo experiments. The solid black line represents the
assumed First Guess errors, the blue dash dotted line the analysis errors as calculated from 500 1DVAR
simulations, and the red dashed line provides an estimate of the analysis error from linear theory.
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qualitative assessment of the MIPAS information content relative to the ECMWF background, and more work
is required for a more quantitative analysis.

5 Conclusions and outlook

This paper summarises the development, validation and a first application of a new fast radiative transfer model
to compute infrared limb radiances for MIPAS (called RTMIPAS). The model uses similar methodology as
RTTOQV, and it has been developed with a view to assimilate limb radiances from MIPAS within the ECMWF
assimilation system. Tangent linear and adjoint routines have also been developed for use in variational data
assimilation.

RTMIPAS can reproduce LBL radiances to an accuracy below the noise-level of the instrument for most spec-
tral points and tangent heights, while offering significantly more rapid calculations compared to currently used
radiative transfer methods for the limb geometry. Root mean square differences between the RTMIPAS and the
RFM level-to-satellite transmittances are very small, typically around 10~* — 10~°, and the maximum RMS
difference rarely exceeds 0.005 for some pencil beams and channels. This good performance is comparable to
that of fast radiative transfer models developed for nadir viewing, based on similar regression-based method-
ology (e.g., Matricardi 2003). The predictors used in the regression models needed to be adapted from the
nadir geometry to limb viewing to achieve this performance, and the final predictor set shows considerable
differences to that used in the models for nadir viewing, while the general form of the predictors is similar.
The model performs similarly well for the set of training profiles taken from ERA-40 data and an independent
set of profiles also sampled from ERA-40 data, suggesting that the model is suitably trained for the expected
atmospheric variability. The small errors introduced by the fast transmittance parameterisation in RTMIPAS
are not going to give a significant contribution to the total forward model error, compared to uncertainties in
the spectroscopy. Preliminary 1DVAR experiments with simulated data highlight the potential of MIPAS data
to considerably reduce analysis errors in the stratosphere.

RTMIPAS shows that a regression-based approach to transmittance modelling can be successfully adapted to
the limb geometry. The experience with regression-based models for the nadir geometry suggests that the
method may be applied to other limb-sounding instruments for the infrared region (such as the High Resolution
Dynamics Limb Sounder, HIRDLS), but also for the microwave region (such as the Microwave Limb Sounder,
MLS), with little or no changes to the set of predictors used.

For progress towards analyses with real data, either in a 1LDVAR framework or within 4DVAR, a number of
issues need to be addressed: In limb sounding, the pointing information provided by the satellite is usually not
considered accurate enough for quantitative analyses, and instead this information has to be retrieved from the
observations. For our purposes, use of the tangent pressure information retrieved in the ESA level 2 product
may be an initial solution to this, and approaches to retrieve the tangent height information from the data in
a pre-assimilation step or within the main analysis could be explored. Also, methods need to be developed to
screen out observations affected by clouds or aerosols which the observation operator currently is unable to
deal with. Also, the selection of channels and tangent heights used in our first experiments needs to be revised,
for instance by using channel selection methods which iteratively maximise a measure of information content.
This step allows to avoid channels with larger RTMIPAS errors, by using channel selection methods which
take into account sources of forward model error (e.g., Dudhia et al. 2002a). Linked to the channel selection
is also the question as to how much benefit could be gained from employing an observation operator which
truly reflects the limb geometry and is able to handle horizontal gradients. The error introduced by assuming
horizontal homogeneity as in our 1DVAR experiments depends on the characteristics of the selected channels,
with channels with weighting functions peaking away from the tangent point introducing the larger errors. The
RTMIPAS method is capable of handling horizontal gradients, but more validation work is required in this
respect. Another question to be answered during the planned assimilation is whether the current formulation
of the background error covariances and the humidity and ozone control variables is adequate to extract strato-
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spheric information from MIPAS radiances directly in a near-optimal way, and what role MIPAS radiances can
play in detecting and correcting biases in the background field in the stratosphere.
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