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Abstract 

We compare the hydrometeorology of the Amazon basin in the ERA-40 reanalysis for 1958-2001 with observations of 
precipitation, temperature and streamflow. After 1979, the reanalysis over the Amazon has a small cool bias of order -
0.35K, and a small low bias of precipitation of order -0.3 mm day-1. In the early years (1958-1972), there is a large 
upward drift in reanalysis precipitation and runoff associated with an upward drift in the atmospheric water vapor in the 
analysis, and a somewhat smaller downward drift of temperature as precipitation increases. In the pre-satellite data, 
there are inhomogeneities in the radiosonde and surface synoptic data; and there were problems with the variational 
analysis of humidity once satellite radiances were introduced. Approximate bias corrections can be made for 
precipitation and runoff on an annual basis, but this also removes some of the interannual variability. The reanalysis 
runoff-precipitation relationship is similar to the observed streamflow-precipitation relation, on an annual water-year 
basis. Compared to observations, ERA-40 precipitation for the Amazon is low by about 1.3 mmday-1 in the rainy 
season, and high by a smaller amount in the dry season. The precipitation bias produces a temperature bias in ERA-40 
of the opposite sign on the annual timescale. The reanalysis has a small cold temperature bias after 1967, but on an 
annual timescale it reproduces the interannual variability of the observations. Although the biases in temperature and 
precipitation in recent decades are small, the difficulties with the analysis of atmospheric water vapor lead to large 
uncertainty in long-term trends of the water cycle. 

1. Introduction 
One of the objectives of the Large-scale Biosphere-Atmosphere Experiment (LBA) is to assess how the 
Amazon functions as part of the climate system (Silva Dias et al. 2002). Data covering the entire Amazon 
basin is sparse, so we depend on models both for data synthesis and to quantify the energy and water cycle. 
LBA is a component of the Global Energy and Water Cycle Experiment (GEWEX), which has the aim of 
improving our ability to simulate both water and energy exchange processes in global climate and weather 
models. One critical question for climate studies is whether the interannual variability and decadal drifts of 
the water cycle are well-represented in reanalyses. On a global scale, Trenberth and Guillemot (1998) have 
evaluated the atmospheric moisture and hydrological cycle in the first NCEP/NCAR (National Centers for 
Environmental Prediction/National Center for Atmospheric Research) reanalysis (Kalnay et al., 1996). Costa 
and Foley (1999), using data from the same reanalysis suggest that the atmospheric transport of water vapor 
through the Amazon basin has decreased in the 20 years, 1976-1996. Roads et al. (2002) analyze the water 
and energy budgets for the continental-scale experiments using the second NCAR/DOE (U.S. Department of 
Energy) reanalysis. Zeng (1999) discusses the seasonal cycle and interannual variability from the NASA 
Goddard Earth Observing System reanalysis (GEOS-1). Marengo (2004b) uses the NCEP/NCAR reanalysis, 
together with precipitation and streamflow data to describe the hydrometeorology of the Amazon during 
recent decades. This paper addresses the limited task of describing the hydrometeorology over the Amazon 
in the recent European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis. In a separate 
paper (Betts and Viterbo, 2005), we use the model data to analyze the coupling of the land-surface, the 
boundary layer and the cloud fields over the Amazon, extending the work of Betts (2004). 

This paper is one of several using the recent ECMWF reanalysis (Simmons and Gibson, 2000) to study 
different river basins. This was designated ERA-40, although it was extended to cover the 45 years from 
September, 1957 to August, 2002. The analysis system uses a recent version of the model physics, including 
the land-surface scheme described in Van den Hurk et al. (2000), and a 3-D variational assimilation system. 
The horizontal resolution of the spectral model is triangular truncation at TL-159, and there are 60 levels in 
the vertical, including a well-resolved boundary layer and stratosphere. Documentation of the Integrated 
Forecast System, cycle 23r4, and a summary and discussion of the observations available at different times 
during the 40-year reanalysis can be found at http://www.ecmwf.int/research/era/ . Surface energy and water 
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budgets, and near-surface and sub-surface variables averaged over river basins, are computed and archived 
(Kållberg et al., 2004) during the analysis cycle at an hourly timescale. Two earlier papers have assessed the 
systematic biases in temperature and the surface energy and water budgets of ERA-40 for the Mississippi 
and Mackenzie river basin (Betts et al., 2003a, b). 

2. Data sources 
For ERA-40, averages over selected basins are output for hourly time intervals (accumulated from the full 
time resolution data) for selected river basins. We averaged the hourly data up to one month, as discussed 
below. The representation of the Amazon River basin in ERA-40 is shown in Figure 1. The ERA-40 
averages are over all grid-points, indicated as dots over land, inside each polygon, which are approximations 
to the actual river basin boundaries shown. Basin 41 includes several rivers flowing into the main stem of the 
Amazon, including the Tapajos and Xingu rivers; 42 is the Madeira river; 43 is Amazonas; 44 is the Rio 
Negro; basin 45 is several tributaries to the Amazonas, including the Jurua and the Purus. (Basin 40 for La 
Plata we do not analyze here.) We then averaged the five basins using the areas in Table 1 to give a monthly 
mean for the Amazon for comparison with data. Table 1 lists the basin drainage areas in the ECMWF model 
and their mean elevation, as well as the standard deviation (SD), maximum and minimum heights, all 
calculated on the model grid. The western basins rise in the Andes, but most of the Amazon basin is at a low 
elevation. 

 
Figure 1 ERA-40 South American basins 

Model Elevation(m) 
Sub-Basin ERA40 Area (km2) 

Mean SD max min 

41 Tapajos, Xingu  1375016 226 121 525 23 

42 Madeira 1292581 456 647 2998 55 

43 Amazonas 1520348 770 993 4064 41 

44 Negro 639117 205 177 751 34 

45 Purus, Jurua 881229 211 375 2440 23 

TOTAL AREA 5708291     

Table 1 Amazon sub-basin areas in ERA-40. 
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2.1 Monthly averages from short-term forecasts 

The model analysis cycle uses 6-hour forecasts from analyses at 00, 06, 12, and 18 UTC. From the 00 and 12 
UTC analyses, forecasts were extended to 36 hours. Monthly averages were constructed from twice-daily 
segments of the 0-12, 12-24, 24-36 hour forecasts, verifying at the same time. We shall mostly show monthly 
means from pairs of 0-12h forecasts (FX) from the 00 and 12UTC analyses, and only show the 24-36h FX in 
a discussion of the spin-up of the model precipitation and evaporation. We also constructed monthly 
averages from the four 6-hourly segments of the analysis cycle, which we shall use to show the modification 
of soil moisture in the analysis cycle. For a few years (1958, 1973, 1989-1994), which were at the beginning 
of the separate ERA-40 analysis streams, basin averages of the 06 and 18 UTC 6-hour forecasts were not 
archived, so we don’t have a complete water budget for the analysis cycle. Fortunately, combining the two 0-
12 hour forecasts from 00 and 12 UTC gives almost the same daily precipitation fluxes as combining the 
four 0-6 hour forecasts, so we use these. 

2.2 Distribution of vegetation in ERA-40 

The land-surface scheme in ERA-40 has separate tiles for high (that is forests) and low vegetation classes, 
that are treated differently (Van den Hurk et al., 2000). In ERA-40, each grid square has a fraction and type 
of both high and low vegetation. Table 2 shows the model vegetation classes in the Amazon basin (with their 
identifying numbers in square brackets) and their distribution by class and basin. Basins 41, 44 and 45 are 
more than 90% forested, while basins 42 and 43 have about 15% low vegetation.  

Basin 41 42 43 44 45 

HIGH VEGETATION 94 85 83 93 97 

deciduous broadleaf [5]  3    

evergreen broadleaf [6] 80 5 78 91 97 

interrupted forest [19] 14 77 5 2  

LOW VEGETATION 6 15 17 7 3 

crops/mixed farming [1] 1 2 5 0 0 

short grass [2] 0 3 4 0 0 

tall grass [7] 4 9 7 6 3 

tundra [9]   0   

deciduous shrubs [17] 0     

Table 2. Distribution of vegetation across the Amazon in ERA-40 as % of basin. 

2.3 Amazon basin estimates of temperature, precipitation and river flow 

The observations available to evaluate the model are limited, since data is sparse. Our monthly temperature 
time-series is from Jones and Moberg (2003), and our primary monthly precipitation time-series is from 
Chen et al. (2002): these were area-averaged over the Amazon basin by Dai et al. (2004). We have a separate 
estimate of annual precipitation from Marengo (2004 a, b), who used 164 stations across the Amazon basin 
to derive a mean precipitation for the period 1970-1998. Both precipitation time-series have similar mean 
values: 5.8 mmday -1 for the corresponding period of 1970-1998, but they differ significantly in their total 
precipitation for some years. For streamflow, we used the data from Marengo (2004b) derived from 
streamflow measurements at Obidos; which have a mean of 2.6 mm day-1 for the period 1970-1998. 
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3. Comparison of ERA-40 water budget with observations 
The concept behind renanalysis is to use one recent ‘frozen’ data assimilation system to cover the entire 
period, in contrast to operational analyses in which the modeling system is revised on a frequent basis (as 
improved numerical or data assimilation schemes and physical parameterizations are introduced, along with 
increases in resolution). However, although the model is frozen, the data going into the reanalysis has 
changed markedly over the years from 1958 to 2001, and this has a major impact on the analyses. There are 
three important epochs in ERA-40: 1958-1972, “before satellite data”, when the upper air analysis depends 
on the sounding data; 1973-1986, starting with the assimilation of the radiances from the first satellite 
infrared channels on the Vertical Temperature Profiler Radiometer (VTPR) and from late 1978 infrared and 
microwave sounders from the Television and Infrared Observational Satellite Operational Vertical Sounder 
(TOVS) suite of instruments; 1987-2001, with the addition of information of radiances from the satellite 
microwave channels of the Special Sensor Microwave Imager (SSM/I) to the atmospheric water vapor 
assimilation over the ocean. 

As satellites are replaced, they are compared during their overlap period, and bias corrections are introduced 
for each satellite. However, these corrections do not remove all the inhomogeneities in the record. There are 
changes in the conventional data: in particular, there are very few Brazilian radisosondes N of 20 S before 
May, 1966. In addition, there are fundamental problems in ERA-40 in the variational analysis over the 
tropical oceans in areas of high density observations, such as satellite radiances (Troccoli and Kållberg, 
2004), which impact precipitation over the tropical oceans, as well as over land. Aerosols from volcanic 
eruptions, such as Pinatubo in 1991-1992, affect the infrared emission, and have not been properly accounted 
for. In the next sections, we show how the model precipitation has changed markedly with time, and how it 
is closely related to the atmospheric moisture analysis. 

3.1 Change of ERA-40 Amazon annual precipitation and runoff with time 

Figure 2a shows terms in the annual surface water budget for the whole Amazon basin in units of mm day-1. 
For precipitation, P, and evaporation, E, we show values derived from the 0-12h FX and the 24-36h FX, 
labeled P12, P36, E12 and E36. We show also an estimate of precipitation, the sum (VIMC + E12) of the 0-
12h FX evaporation and VIMC, which is the vertically integrated moisture convergence for the Amazon 
basin, derived from the four analysis times at 00, 06, 12 and 18 UTC. The other terms are runoff, R12, from 
0-12h FX, the annual change of column soil moisture storage, CSM and the increment of column soil 
moisture added by the analysis. In the tropics, unlike at high latitudes (Betts et al, 2003b), the change of 
precipitation (spin-up or spin-down) is small in the first 36 hours of the forecast (and evaporation and runoff 
change even less), although this is not true of atmospheric total column water vapor, TCWV (see Figure 2b). 
However model precipitation and runoff both increase sharply from low values in the 1960s to peak in the 
mid-1970s, and then decline slightly after 1980. These large changes of precipitation and runoff with time 
are spurious and are caused by errors in the atmospheric moisture analysis. The reanalysis model is run only 
in short-term forecast mode, so it does not ‘drift’ with time in the sense of a free-running climate model. 
Instead, every 6h analysis increments are added as it assimilates a global data set. However, precipitation in 
short-term forecasts depends strongly on the precipitable water in the analysis, which has a large variation 
with time (see next section). 

Column soil moisture (CSM) increases from the 1960s to the 1970s, as model precipitation increases and 
then changes little annually. The ERA-40 analysis modifies soil water in the first three soil layers (0-7, 7-28 
and 28-100 cm), subject to certain constraints, based on analysis increments of 2-m temperature and 
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humidity (Douville et al., 2000). The CSM analysis increment averages about 0.35 mm day-1. It is reduced 
during the high precipitation period of the mid-1970s, and it is missing in Figure 1 for some years, because 
of missing forecasts from the 06 and 18UTC analyses in this river basin archive (see section 2a). This soil 
water analysis effectively nudges soil water based on the optimal interpolation of errors in the screen level 
variables, so this helps reduce biases in soil water and evaporation, although some can still be seen in Figure 
1. We show dotted reference lines corresponding to P, E, R = 5.7, 3.5, 2.5 mm day-1, which are close to long-
term means for the Amazon (see Figure 4, later).  

The precipitation estimate from VIMC is close to the model precipitation except for the period, 1973-1987, 
when it is much lower. The reason for this lies in the large model analysis increments for atmospheric water 
vapor during this period. Figure 2b shows that the difference between (P12-E12), a forecast quantity, and 
VIMC, an analysis quantity, is very close, after 1972, to the mean of the analysis increments. In the mid-
1970s, the analysis is adding about 1.4 mm day-1 to the atmospheric total column water vapor (TCWV). The 
third curve (solid) is the change of the model atmospheric water storage term, TCW, (including a tiny 
contribution from cloud water and ice) in a 24h forecast (with the sign reversed). This too closely follows the 
analysis increment in the period 1972-1986. We conclude that during this period the analysis adds TCWV, 
which is rained out in the first 24h, which increases the model precipitation. 

 
Figure 2 a) Terms in the surface water budget in ERA-40 for the Amazon, b) Comparison of (P-E-VIMC) 
with TCW analysis increment and 24h forecast tendency. 
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3.2 Comparison of ERA-40 precipitation and runoff with observations for water years 

The next two figures compare ERA-40 annual precipitation and runoff with data for the Amazon. Our year is 
now the ‘water year’, running from September to August; with the water year ending in August 1959 labeled 
as 1959. Figure 3 (upper panel) shows (left-hand-scale) both annual precipitation and the bias of ERA40 
from the Dai et al. (2004) observational record (offset by the 44-year mean of 5.7mm); and (right-hand-
scale) atmospheric total column water vapor, TCWV. It is clear that changes in the model precipitation over 
the Amazon and the bias from observations are both closely correlated with changes in TCWV in the 
analysis, which shows a large increase from the 1960s to the mid-1970s. The pattern of the TCWV analysis 
increments in Figure 2b is also similar to the pattern of TCWV in Figure 3a for the period 1973-1986. 

The lower panel (b) shows the regression lines for annual P and R and the bias of P from the observations 
against TCWV. These large changes in TCWV during the period of ERA40 are due to humidity analysis 
errors, not to real circulation changes (Troccoli and Kållberg, 2004). The large1972-1973 discontinuity 
occurs with the introduction of the humidity radiance channel on the first VTPR satellite. There was a 
fundamental problem in the variational analysis of humidity over the tropical oceans in areas of high density  

 
Figure 3 (a) Annual precipitation, precipitation bias and total column water vapor in ERA-40; (b) 
Regression of annual precipitation, precipitation bias, and runoff against mean total column water vapor. 
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satellite radiance observations. Troccoli and Kållberg (2004) propose a method to correct oceanic 
precipitation, which shows significant but smaller changes with time, linked to the overall usage of remote 
sensing information. The time-trends shown here over the Amazon can also be seen at high latitudes over the 
Mackenzie River basin (Betts et al., 2003b). The smaller discontinuity in ERA-40 between 1966 and 1967 in 
Amazonian P and TCWV (and E in Figure 2a) may be linked to a major change in the conventional data. 
Before May, 1966, there are very few Brazilian radiosondes in ERA-40 north of 20oS (although there is pilot 
balloon data), and the Brazilian surface synoptic data is not included before January 1967. 

However, since the bias of the model precipitation from observations appears linearly related to TCWV 
(lower curve in Figure 3b), a linear correction, based on the slope of the regression lines in Figure 3b, will 
remove much of the model bias in annual P and E. Noting that at TCWV=44.8 kg m-2, the model 
precipitation bias is zero (from the Dai et al., 2004 mean, representative of the period after 1980), we applied 
these corrections to the reanalysis annual precipitation and runoff 

Pc = P – 0.40*(TCWV-44.8)      (1) 

Rc = R – 0.32*(TCWV-44.8)      (2) 

For the recent period, 1980-2001, mean analysis TCWV= 44.1 kg m-2, so (1) increases precipitation by about 
0.3 mm day-1, bringing the model precipitation into agreement with the Dai et al. mean for this period.  

Figure 4a shows P, R, Pc, Rc corrected using (1), (2) together with observed annual precipitation, Pobs, from 
Dai et al. (2004), and precipitation and Amazon streamflow, Sobs, from Marengo (2004b). The correction 
removes the large spurious model changes between the decades, but the residual annual variability of Pc, Rc 
is not that well correlated with the observed Amazon annual precipitation and streamflow. We also show for 
comparison the Southern Oscillation Index (SOI), defined as the difference in sea level pressure between 
Tahiti and Darwin (Trenberth, 1984). Many previous studies have shown the link between the SOI (and 
tropical Pacific sea surface temperatures) and Amazonian rainfall (e.g. Marengo, 1992; Liebmann and 
Marengo, 2001). Figure 4b shows the correlation between annual precipitation, Pc and Pobs and the SOI (for 
the same water years). The SOI is better correlated with the observations than the model, but it appears that 
some of the interannual variability remains in ERA-40. 

Figure 5 shows three relationships. The upper cloud of points, in the right-hand-scale, is the corrected ERA-
40 Pc against the Dai et al. Pobs. Although our correction removes the bias (we show the 1-to-1 line for visual 
reference), the correlation is clearly poor (not shown, R2 = 0.18). Below on the left-hand-scale is ERA-40 Rc 
against Pc, and Amazon Sobs against Pobs, together with the regression lines. The precipitation-runoff relations 
of reanalysis model and the observations are similar on an annual basis, although note that the ERA-40 
hydrology model is a very simple one with primarily deep drainage over non-frozen soils (Van den Hurk et 
al., 2000), no river routing, and no representation of the seasonally flooded regions of the Amazon. The 
model deep drainage lags precipitation by only a few weeks, while the streamflow at Obidos lags basin 
precipitation by several months; but when we compare annual streamflow for water years [September to 
August], the impact of these different lags is minimized. Note that on Figure 4a the two estimates of 
Amazonian rainfall are themselves not well correlated after 1990. The Dai et al. (2004) precipitation time-
series seems more representative, as it is correlated with the annual Amazon streamflow (Figure 5). In 
contrast, the Marengo (2004b) annual precipitation time-series is poorly correlated with the annual 
streamflow (see Figure 4a). In the reanalysis, the correlation between P and TCWV exists on monthly as well 
as annual timescales (see next section), so it is probable that the corrections (1) and (2) remove some real 
interannual variability as well as spurious interannual analysis variability. Our conclusion is that the mean  
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Figure 4 . a) Comparison of corrected annual mean precipitation and runoff in ERA-40 with observations 
for the Amazon for water years, together with Southern Oscillation Index, SOI. b) ERA-40 Pc and Dai et 
al. Pobs against SOI (with regression lines). 

 
Figure 5 ERA-40 Pc against Pobs (with 1 to 1 line), ERA-40 Rc against Pc and Amazon Sobs against 
Pobs (with regression lines). 
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precipitation and runoff over the Amazon from ERA-40 after 1980 are close to (but slightly below) the 
observed mean for the same period, and with a bias correction, there is broad agreement for the 44-year 
period. However uncertainties in the atmospheric water vapor analysis in ERA-40 lead to uncertainty in the 
long-terms trends of precipitation and some uncertainty in the model interannual variability. 

 
3.3 Correlation of precipitation and TCWV on monthly timescales 

Using Figure 3a as a guide we divided ERA40 into three time periods: 

• 1958-1972, an early “dry period”, corresponding to the pre-satellite data; 

• 1973-1978, a “wet” period, corresponding to the early infrared satellite data and 

• 1979-2001, the recent period when satellite microwave sounding data was also assimilated. (There are 
some differences between 1979-1987 and 1988-2001, but we have chosen not to split this period.)  

 
Figure 6 Monthly precipitation and precipitation bias against TCWV for three time periods of ERA40 

Figure 6 plots (above) monthly ERA40 0-12h FX precipitation against monthly TCWV, with the numbers 
indicating the three time periods, and (below) the corresponding monthly precipitation bias from the Dai et 
al. observations. A relationship between model precipitation and TCWV also exists on monthly time-scales, 
rather similar to the regression fit shown in Figure 3b (reproduced here as the solid line). However, some 
non-linearity can be seen, and there is a distribution shift between the three time periods. The lower 
scatterplots show that the model precipitation has in addition a distinct seasonal bias. For example, for the 
recent period labeled 3, the precipitation bias is positive in the dry season and negative in the wet season. 
The width of the bias distribution is relatively small for this period, 1979-2001. This suggests that ERA-40 
does reproduce some of the seasonal variability of the data, and a more refined precipitation correction 
method could perhaps be developed which accounts for the seasonal variation. 
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3.4 Mean annual cycle of precipitation and TCWV for Amazon 

Figure 7 shows the mean annual cycle averaged for the three periods. The Dai et al. observations in Figure 7a 
show an annual cycle which is rather similar for the three periods, with only slightly more precipitation in the 
mid-1970s, in sharp contrast to the ERA40 0-12h FX precipitation in Figure 7b. The model bias in panel (d) 
however shows a characteristic annual cycle with low precipitation in the rainy season and high precipitation 
in the dry season. The pattern shifts vertically for the different periods, and there is also a sign of extra 
precipitation for the ‘wet’ middle time-period in May-June and September-October (however, since this 
period is the shortest, only six years, this might be sampling effect). For the recent period, when ERA40 has 
a small negative annual bias of precipitation (-0.3 mm day-1), it has a positive dry season bias, peaking at 0.8 
mm day-1 in August and a larger wet season negative bias, peaking at -1.4 mm day-1 in March, compared 
with the Dai et al. (2004) data set. The precipitation estimate in Figure 7c from VIMC + E has less of a bias 
in the dry season, but remains lower than observed in the rainy season. VIMC + E has less of a spread for the 
three periods than the model P, primarily because (VIMC+E) < P from 1973-1986 (Figure 2a), when the 
model TCWV analysis increments are large (Figure 2b). 

 
Figure 7 Mean annual cycle of (a) observed precipitation, (b) ERA-40 0-12h FX precipitation, (c) 
Precipitation estimate from moisture convergence and (d).ERA-40 precipitation bias. 
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4. Temperature comparison 

4.1 Annual mean temperature: correlation with precipitation 

Figure 8a shows the time-series of annual mean 2-m temperature for the Amazon from ERA40 (derived from 
hourly 0-12h forecasts by interpolating between the lowest model level and the surface) and the Dai et al. 
data. There is a marked shift in ERA40 from a warm to a cool bias in 1967 at the same time that the 
Brazilian surface synoptic data is included in ERA-40. The adjacent panel (b) shows that on an annual basis, 
ERA40 temperature is warm when the model annual precipitation is low and cool when model precipitation 
is high. Panel (d) shows the regression of ERA40 T on P, and panel (c) the corresponding regression for the 
data, which has a far smaller range than the model (which suffers from the drifts in TCWV and P shown in 
Figure 3a). Panel (a) also suggests that the reanalysis largely reproduces the annual variability of the data 
after 1966 (note that ERA40 has an additional cool bias in the mid-1970s when model precipitation is 
highest). Figure 9 plots ERA-40 annual T against the data for the period 1967-2001. The wet years of 1974-
1978 are the cool outliers marked. Two lines are shown: the simple linear regression line (fitted to all the 
points), which is essentially the same as the line T:data -0.45. 

 

 
Figure 8 (a) Comparison of annual mean observed and ERA-40 2-m temperature, (b) timeseries of ERA-
40 2-m temperature, temperature bias and precipitation, (c) scatterplot of observed 2-m temperature 
against precipitation and (d) as (c) for ERA-40. 
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Figure 9 ERA-40 annual mean temperature plotted against data. 

4.2 Annual cycle of temperature 

Figure 10 compares the observed annual cycle of temperature with the reanalysis, averaged into three 
periods, changed slightly from those defined in section 3c. We shortened the early “dry warm” period to 
1958-1966; kept the “wet” period of 1973-1978 (although 1973 does not have as cool a temperature bias), 
and composited together the groups of years: 1967-1972, 1979-1991, 1994-2001. The two years 1992-1993 
are incomplete in the observations, so these were omitted. Figure 10a shows that the observed annual cycle 
of temperature is very similar for the three time composites, unlike the middle panel (b) for ERA-40. Panel 

(c) shows the model bias. In the early years, the bias is generally warm, peaking in August at 1.8° C, but 
near-zero at the end of the rainy season. The middle curve, which includes most of the recent years after 
1979, shows that ERA-40 has a cold bias, larger in the rainy season, and rather small in the dry season. The 
cold bias gets larger in the “wet” years of the mid- 1970s, as seen in the annual mean in Figure 9. 

5. Conclusions 
We compare the hydrometeorology of the Amazon basin in ERA-40 for 1958-2001 with observations of 
precipitation, temperature and streamflow. After 1979, the reanalysis over the Amazon has a small cool bias 
of order -0.35K, and a small low bias of precipitation of order -0.3 mm day-1. Although the biases in 
temperature and precipitation in recent decades are small, difficulties with the analysis of atmospheric water 
vapor over the period of the reanalysis lead to great uncertainty in the long-term trends of the water cycle. In 
the early years (1958-1972), there is a large upward drift in the reanalysis precipitation and runoff associated 
with an upward drift in the atmospheric water vapor analysis in the pre-satellite data period, and a 
corresponding downward drift of mean temperature as precipitation increases. In the period of the first 
infrared sounding satellite data (1973-1978), precipitation has a high bias, and temperature a correspondingly 
larger cool bias. Approximate bias corrections can be made for precipitation and runoff on an annual basis, 
which give the correct long-term mean, but this also removes some of the interannual variability, and leaves 
a corrected precipitation time-series that is poorly correlated with observations. Thus this reanalysis cannot 
answer many questions relating to long-term trends in the global hydrological cycle over the past 40 years. 
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Figure 10 Mean annual cycle of (a) observed 2-m temperature, (b) ERA-40 2-m temperature, (c) ERA-40 
2-m temperature bias. 
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On an annual water year basis, the reanalysis runoff-precipitation relationship is similar to the observed 
streamflow-precipitation relation. Seasonally, ERA-40 precipitation for the Amazon (after 1979) is low by 
about 1.3 mm day-1 in the rainy season compared to observations, and high by a smaller amount in the dry 
season. Changes in the annual precipitation in ERA-40 produce an annual temperature bias of the opposite 
sign.  

One significant change in the conventional data impacts the reanalysis. Before May, 1966, there are very few 

Brazilian radiosondes in ERA-40 north of 20°S, although there is pilot balloon data. The Brazilian surface 

synoptic data is not included before January 1967, and with its introduction, there is a marked shift in 
ERA40 from a warm to a cool bias in 2-m temperature. From 1967, the reanalysis model has a small cold 
temperature bias, but on an annual timescale it reproduces much of the interannual variability of the 
observations. Seasonally, the cold bias of the reanalysis is a little larger in the rainy season of the austral 
summer (despite the low precipitation bias) than in the dry season.  

Reanalyses have proved useful for the study of the changes in the atmospheric circulation, but the hope that 
reanalyses could also be used to study climatic trends in tropical precipitation has not yet been realized. A 
further reanalysis of recent decades of the satellite era, incorporating a new humidity analysis, is under 
development, and it is expected that it will improve the description of the tropical hydrological cycle. 
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