Overview of predictability related work at NCEP

Zoltan Toth, Environmental Modeling Center NOAA/NWS/NCEP

Acknowledgements

Colleagues at EMC, HPC, CPC, and outside collaboratorshttp://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html

Outline / summary

Recent changes, current configuration, research / plans and usage notes for

- Global Ensemble Forecast System
 - 4 times per day, increased resolution from Dec. 2003
 - North American Ensemble Forecast System
- Regional ensemble forecast system
 - Multiple model versions
- Coupled ocean-atmosphere forecast system
 - New coupled model, experiments with bred vectors
- Winter storm reconnaissance program
 - Operational program to adaptively collect observations
 - THORPEX connection similar concept tested in Atlantic Regional Campaign

North American ensemble forecast system project

Goals: Accelerate improvements in operational weather forecasting *through Canadian-US collaboration*. Seamless (across boundary and in time) suite of products *through joint Canadian-US operational ensemble forecast system*

Participants: Meteorological Service of Canada (CMC, MRB), US National Weather Service (NCEP)

- Planned Ensemble data exchange (June 2004)
- activities: Research and Development (2003-2007)
 - *Statistical post-processing, Product development, Verification/ Evaluation* Operational implementation (2004-2008)

Potential project	Shared interest with THORPEX goals of		
expansion / links:	Improvements in operational forecasts; International collaboration		
	Expand bilateral NAEFS in future, Entrain broader research community,		
	Multi-centre / multi-national ensemble system, MOA with Japan Meteorological Agency		

3-WAY INTERCOMPARISON: RESEARCH ECMWF, MSC, NCEP Buizza, Houtekamer et al. LESSONS LEARNT FOR NCEP

NAEFS - Benefits, J.-G. Desmarais et al.

Two independently developed systems combined, using different: *Analysis techniques, Initial perturbations, Models Joint ensemble may capture new aspects of forecast uncertainty* Procedures / software can be readily applied on other ensembles: *ECMWF, JMA, FNMOC, etc Basis for future multi-centre ensemble*

Collaborative effort

Broaden research scope - *Enhanced quality* Share developmental tasks - *Increased efficiency* Seamless operational suite - *Enhanced product utility Framework for future technology infusion (MDL, NOAA Labs, Univs.)*

THORPEX objectives – international program

Science goal:

Promote research leading to new techniques in: Observations (*Collect data*), Data assimilation (*Prepare initial cond.*), Forecasting (*Run numerical model*), Socioeconomic Applications (*Post-process, add value, apply*)

Scientific research must enable service goals

Service goal:

Accelerate improvements in utility of 1-14 day forecasts for high impact weather

THORPEX answer:

Develop new paradigm for weather forecasting through enhanced collaboration: *Internationally, among different disciplines, between research & operations*

Example: North American Ensemble Forecast System (NAEFS)

PREDICTABILITY EXPERIMENTS WITH COUPLED MODEL G. Yuan

NCEP Short-Range Ensemble Forecast System (SREF), J. McQueen, J.Du, B. Zhou, B. Ferrier

Operational system

- 15 Members out to 63 hrs
- 2 versions of ETA & RSM
- 09 & 21 UTC initialization
- of Q 21 OTC minualization
- NA domain•48 km resolution
- Bred initial perturbations
- Products (on web):
 - Ens. Mean & spread
 - Spaghetti
 - Probabilities
 - Aviation specific
- Ongoing training

Plans

- More model diversity -5+2 model versions
- 4 cycles per day (3&15 UTC)
- 32 km resolution
- New products
- Aviation
- AWIPS
- Winter Weather Experiment
- Transition to WRF

Parallel SREF Systems (32km)

a_bmj_ctl> same a_bmj_n1> same a_bmj_n2> same a_bmj_n2> eta_ras_n2 a_bmj_p2> eta_ras.mic_p2 m_sas_ctl> same m_sas_n1> same m_sas_n2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ctl> same			physics ensemble
a_bmj_n1> same a_bmj_p1> same a_bmj_p2> eta_ras_n2 a_bmj_p2> eta_ras.mic_p2 m_sas_n1> same m_sas_n1> same m_sas_n2> rsm_ras_n2 m_sas_n2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same	REF_I)	(SREF_II)
a_bmj_p1> same a_bmj_n2> eta_ras_n2 a_bmj_p2> eta_ras.mic_p2 m_sas_ctl> same m_sas_l> same m_sas_p1> same m_sas_p2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same	a_bmj_ctl	>	same
a_bmj_n2> eta_ras_n2 a_bmj_p2> eta_ras.mic_p2 m_sas_n1> same m_sas_n1> same m_sas_n2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ct> eta_Fer_ctl a_kf_n1> same			
a_bmj_p2> eta_ras.mic_p2 m_sas_ctl> same m_sas_n1> same m_sas_n2> rsm_ras_n2 m_sas_n2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same			
m_sas_ctl> same m_sas_n1> same m_sas_p1> same m_sas_p2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same	a_bmj_n2	>	
m_sas_n1> same m_sas_p1> same m_sas_n2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same	a_bmj_p2	>	eta_ras.mic_p2
m_sas_p1> same m_sas_n2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ct> eta_Fer_ctl a_kf_n1> same	m_sas_ctl	>	same
m_sas_n2> rsm_ras_n2 m_sas_p2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same			same
m_sas_p2> rsm_ras_p2 a_kf_ctl> eta_Fer_ctl a_kf_n1> same			same
a_kf_ctl> eta_Fer_ctl a_kf_n1> same	m_sas_n2	>	rsm_ras_n2
a_kf_n1> same	m_sas_p2	>	rsm_ras_p2
	a_kf_ctl	>	eta_Fer_ctl
a kf n1> same	a_kf_n1	>	same
	a_kf_p1	>	same
a_kf_n2> eta_kf_fulldetr_n2	a_kf_n2	>	
a_kf_p2> eta_kf_fulldetr.freqcon_p2	a_kf_p2	>	eta_kf_fulldetr.freqcon_p2

Systems (32km) hysics ensemble RFFF II)

KFETA SLP(MB) 1004emb Spgt 24H fast from 062 09 JUL varitying time: 06z, 07/10/2005

Outline / summary

Recent changes • Current configuration • Research / plans • Usage notes for

- Global ensemble forecast system
 - 4 times per day, increased resolution from Dec. 2003
 - North American Ensemble Forecast System
- Regional ensemble forecast system
 - Multiple model versions
- Coupled ocean-atmosphere forecast system
 - New coupled model, experiments with bred vectors
 - Winter storm reconnaissance program
 - Operational program to adaptively collect observations
 - THORPEX connection
 - similar concept tested in Atlantic Regional Campaign

NOAA POES data delivery study

Stacie Bender, Stephen Lord, Zoltan Toth

Introduction and Methodology

- Data assimilation systems rely on timely data delivery
 - NCEP Global Forecast System
 - T + 2:45 (00, 06, 12, 18 UTC)
 - Early cycle (15 day forecast)
 - T + 6:05 (00 UTC), T + 5:50 (06, 18 UTC), T + 8:05 (12 UTC)
 Late cycle (6 h forecast for Early and Late cycle background)
 - NCEP Regional (Eta) System
 - T + 1:10 (00, 12 UTC), T + 0:50 (06, 18 UTC)
 Early cycle (84 h forecast)
 - T + 10:40 (t-12 EDAS 00, 12 UTC), T + 11:20 (t-12 EDAS 06, 18 UTC)
 Late cycle (3 h forecast from t-12 to t-09)
 - T + 7:40 (t-09 EDAS 00, 12 UTC), T + 8:20 (t-09 EDAS 06, 18 UTC)
 Late cycle (3 h forecast from t-09 to t-06)
 - T + 4:40 (t-06 EDAS 00, 12 UTC), T + 5:20 (t-06 EDAS 06, 18 UTC)
 Late cycle (3 h forecast from t-06 to t-03)
 - T + 2:00 (t-03 EDAS 00, 12 UTC), T + 2:20 (t-03 EDAS 06, 18 UTC)
 - *Late cycle* (3 *h forecast from t-06 to t-03 for Early and t-12 Late cycle background)* POES observations transmitted orbitally
- Continued user pressure to deliver forecasts earlier
- Possible earlier data delivery in NPOESS era
- Earlier data assimilation cut-off conflicts with data receipt
- This study
 - Considers POES availability at NCEP
 - Quantifies operational data receipt for various cut-off times
 - Simulates operational data preparation process
 - Retrieves POES radiances from operational data storage files
 - Duplicate checking
 - Prepares data for use in assimilation cycle

NOAA POES Observations Availability - Platforms and Instruments

NOAA Satellite	Instrument
NOAA-14	HIRS-2 MSU
NOAA-15, 16, 17	HIRS-3 AMSU-A AMSU-B

Reported data counts for each instrument are sum of all platforms

Data Cut-off Times

00 UTC	T + 1:00 (Regional), T + 2:45 (GFS Early), T + 6:00 (GFS Late), T + 9:00 (ECMWF)
06 UTC	T + 1:00, T + 2:45, T + 5:50 (GFS Late), T +13:00 (ECMWF)
12 UTC	T + 1:00, T + 2:45, T + 7:15 (ECMWF),T +8:05 (GFS Late)
18 UTC	T +1:00, T + 2:45, T + 5:50 (GFS Late), T + 14:30 (ECMWF)

• Data counts are one-month means except T+1:00 & ECMWF (16 days)

Conclusions

- POES data delivery gives all data at ECMWF cut-off times for all cycles
- · Ramp up to total data counts is cycle dependent
 - 12 UTC is slowest delivery and affects NCEP GFS early cycle most
- NCEP GFS
 - Late cycle receives typically 90-95% of ECMWF
 - Early cycle receives typically 70-75% of late cycle
- · Regional models affected most due to short data cut-off

Other Factors

- 'Blind orbit problem'
 - Delays transmission for all POES instruments at 06 UTC
- NOAA-15 affected most at 06 UTC
- 'Priority' satellite data transmission
 - NOAA-15 deemed lower priority
 - Important due to NOAA-17 AMSU-A demise
- · Impact on assimilation system performance untested