Space-based measurements of stratospheric aerosols

Larry W. Thomason

NASA Langley Research Center Hampton, Virginia USA

Measurement by Extinction of Solar Radiation

- Stratospheric aerosols are highly variable (10²) on the decadal time scale
- Since 1978, variability has been dominated by a few significant volcanic events
- Loading in 2002 was at the lowest levels ever observed
- Focus of the presentation:
 - How are stratospheric aerosol measured from space?
 - What are the strengths and limitations of these measurements?

SAM II, SAGE I & II Stratospheric Aerosol V6.10 80N 60N 40N 20N EQ 20S 40S 60S 80S_ 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 ×St. Helens ♦El Chichon ▲Ruiz ¥ Pinatubo □Kelut + Hudson 1000-nm Optical Depth <6.x10⁴ 10³ 10¹ >2x10¹ 10

6/17/2003

L. Thomason

6/17/2003

L. Thomason

Aerosol Spectra (Vis)

- SAGE II/III algorithms derive aerosol as a residual
- Spectra are not constrained to fit a predetermined shape
- Spectral artifacts are possible where measurement modeling is deficient

6/17/2003

L. Thomason

5

Occultation Coverage

- Occultation events occur twice an orbit or about 30/day (data rates are low)
- Latitude coverage orbit gendent
 - Sun-Synchronous orbits yield high latitude measurements
 - Mid-inclination orbits cover low and latitudes (30-40 day period)

Measurement by Limb Emission (CLAES/HRDLS)

- Aerosol measured by IR emission observed through the Earth's limb
- Measured continuously through an orbit
- 'Saturation' effects are about the same as for solar transmission measurements.

6/17/2003

L. Thomason

L. Thomason

Modeling Stratospheric Aerosol

- Tends to behave well in θ -potential vorticity space as aerosol extinction ratio (relative to Rayleigh)
- Composed primarily of sulfate
- Complicating factors
 - Measured quantities are often not the most important
 - Condensates (e.g., PSCs)
 - Second order humidity/temperature effects
 - Irreversible processes
 - Post-volcanic aerosol sedimentation
 - PSC formation and sedimentation

6/17/2003

L. Thomason

Observing Volcanic Effects - Initial 1020-nm Extinction; Lats.: 6.1-14.4; 10/21/2002 30 25 Altitude 50

15 June to 25 July 1991

0 Longitude

100

- Initial dispersion as a tracer of transport
- Observations of small volcanic events

-180

-100

180

- Aerosol 'size' appears to maintain persistent memory of volcanic events
 - Processes that control aerosol s. d. must be slow

6/17/2003

L. Thomason

11

Non-Volcanic Aerosol Processes Annual cycle in aerosol observed between 16 25 and 20 km. The 1020-nm Aerosol Extinction (1/km x 10⁵) differences in the phasing 20 between 525 and 1020 15 nm extinction suggests that the cycle reflects the introduction of small aerosol. Also, PSC-related 0 **[_** 1996 199 2000 1998 Year 1999 preferential loss of large aerosol

6/17/2003

L. Thomason

Long-Term Trends in the Stratospheric Background

- Stratospheric record has several 'clean' periods: 1979, 1989, 1998-present
- Relative to the nominal 1979
 'background' period, the current period is ~30% lower except in the vicinity of the tropopause

SAGE II 1020 nm aerosol in Spring 2000 relate to SAGE 1000 nm in Spring 1979

6/17/2003

L. Thomason

13

Inferring Non-Measured Properties

- Most Desirable Properties:
 - Integral properties
 - Surface area density (SAD)
 - Volume density or mass
 - Effective radius
 - Full aerosol extinction spectra
 - Size distribution
 - Composition
- Estimation of non-measured properties of aerosol generally requires a non-linear retrieval algorithm

The Extinction Measurement

6/17/2003

L. Thomason

15

Size/Composition Sensitivity

- Visible wavelength aerosol is ~10 times larger than that in the IR
- Infrared measurements tend to scale with composition and total volume but have little sensitivity to size
- Visible measurements tend to be more size sensitive but very insensitive to composition and aerosol with radii less than 0.1 μm.
- A system with both IR and visible extinction measurements would be a considerably stronger measurement suite than either wavelength set alone

• Many retrieval processes are dependent on assumed size distributions (e.g., log-normal) that can have an enormous impact on retrieval results

6/17/2003

L. Thomason

17

6/17/2003

Assessment of Stratospheric Aerosol Properties (ASAP)

- ASAP is an on-going SPARC examination of stratospheric aerosols
- Topics include:
 - Aerosol precursors
 - Measurements & climatologies
 - 'Filled' data set for 1979present
 - "Trends"
 - Modeling

6/17/2003

L. Thomason

Reconstruction of NH aerosol extinction at 1020 nm during El Chichon from NASA LaRC 48-inch lidar system

