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1. Motivation 

The current operational deterministic model at ECMWF has a horizontal spectral resolution of T511 
(gridlength ~40 km), and it is planned to increase the resolution to T799 (gridlength ~25 km) in 2005. In 
view of the concerns about the efficiency of spectral methods on the sphere as resolutions become higher and 
higher, it is necessary to keep in mind that a future dynamical core of the ECMWF model might require a 
complete change in the method of horizontal discretization. One possibility, which would circumvent the 
increasing cost of the Legendre transforms without requiring a complete change of technique, would be to 
replace the spherical harmonic basis functions of the conventional spectral technique by double Fourier 
series. This paper reviews the work which has been done on this topic. 

2. Background 

The use of double Fourier series on the sphere is motivated not only by the existence of a fast transform 
algorithm, but also by the close relationship between associated Legendre polynomials and Fourier series. 
The associated Legendre polynomial with zonal wavenumber m and total wavenumber n can be written 
(Swarztrauber, 1979) as 
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where � is latitude and / 2φ θ π= + . 

Thus, if a function can be represented as a truncated series of associated Legendre functions, it can also be 
represented by a similarly truncated series of sines or cosines: 
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Note that the converse is not generally true – for the above equality to hold, the vector of coefficients 

km
f� must be restricted to a subspace of dimension (N + 1-m). 

The use of double Fourier series leads to accurate horizontal derivatives, fast transforms and easy solution of 
constant-coefficient elliptic problems. The principal drawback is that pole problems re-emerge unless further 
steps are taken. 

3. History 

There is a long history of attempts to construct spectral models on the sphere using double Fourier series. 
Merilees (1973) coded a pseudospectral shallow-water model, but encountered instability (the return of the 

pole problem). Orszag (1974) formulated a spectral barotropic vorticity model; no results were shown, but he 
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pointed out the expected stability problem. Boyd (1978) successfully used double Fourier series to solve 
(linear) elliptic and eigenvalue problems on the sphere. Similarly, Yee (1981) demonstrated the use of double 
Fourier series to solve the Poisson equation on the sphere. Fornberg (1995) and Shen (1999) explored the use 
of double Fourier series for various (mainly linear) applications on the sphere. 

Spotz et al. (1998) based a shallow-water model on double Fourier series, stabilizing the computation by 

using a “spherical harmonic projection”. In terms of the above discussion, this projects the vector 
km

f�  into 

the appropriate subspace, so that the model becomes algebraically equivalent to one based on spherical 
harmonics. The computational complexity of the projection is O(N3) per timestep, the same as for the 

Legendre transforms, though the operation count is somewhat reduced. Cheong (2000a) pursued a similar 
idea (“spherical harmonic filtering”) for the barotropic vorticity equation. 

Finally, Cheong (2000b) formulated a double Fourier series shallow-water model, but had to include some 
filtering to prevent instability. Layton and Spotz (2003) built such a model including semi-Lagrangian 
advection, but still found that a spherical harmonic projection was needed to stabilize the results. 

4. Choice of basis functions 

The relationships between associated Legendre polynomials and Fourier series suggest that for odd zonal 
wavenumber m, an expansion in terms of sin kφ  is appropriate. It is easily seen that if a variable (for odd m) 

is expanded in such a series, then both X and /X φ∂  behave correctly (continuously) at the poles. For zonal 

wavenumber m = 0, it is similarly clear that an expansion in terms of 

∂
coskφ   is appropriate. For even zonal 

wavenumber m > 0, Orszag (1974) and most subsequent authors have again chosen an expansion in terms of 

coskφ ; then /X φ∂ ∂  behaves correctly at the poles, but additional constraints have to be imposed in order to 

force X itself to be zero at the poles. Cheong (2000b) has suggested an alternative expansion in terms of 

sin sin kφ φ  for the case m even, m>0 since both X and /X φ∂ ∂  then behave correctly at the poles. 

In the case of expansions in terms of spherical harmonics, it is natural to choose a “triangular” truncation in 
spectral space, since this is equivalent to an isotropic resolution on the sphere. In the case of double Fourier 
series expansions, the appropriate “shape” of the truncation in spectral space (rectangular? elliptic?) will 
have to be determined by experiment. 

5. Example: Poisson equation 

Since the spherical harmonics are eigenfunctions of the Laplacian operator on the sphere, expansions in 
terms of these functions convert the Poisson equation into a simple diagonal problem in spectral space. Yee 
(1981) and, using slightly different basis functions, Cheong (2000a) have demonstrated the use of double 
Fourier series expansions to solve the Poisson equation over the sphere. In this case we obtain, for each zonal 
wavenumber m, a pair of tridiagonal systems to solve in spectral space – one for odd values of the meridional 
index k, and one for the even values. Similar considerations apply for the Helmholtz equation which 

typically results from the use of a semi-implicit time integration scheme.  

6. The pole problem 

For linear problems such as the elliptic equations described above, issues such as the aliasing of nonlinear 
terms or instabilities appearing during time integration do not arise, and the use of double Fourier series is 
relatively straightforward. Things may not be so simple when we move to nonlinear time-dependent 
problems on the sphere. In particular, difficulties are likely to be encountered in the vicinity of the poles. 
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~constant) to give approximately uniform resolution over the sphere (Hortal and Simmons, 1991). There is 
some hope that the reduced grid would be sufficient to control the pole problem when using double Fourier 
series, since such a grid cannot support high zonal wavenumbers near the pole – but this remains to be 
demonstrated in practice. 

7. Context and outlook 

We have nearly completed the coding to test a double Fourier series formulation of the shallow water 
equations on the sphere, including the Williamson et al. (1992) test problems. Some options (e.g., the precise 
choice of basis functions and the shape of the spectral truncation) have been left open for now and will be the 
subject of experimentation. In the meantime, we can take comfort in the fact that at a horizontal resolution of 
T799 (gridlength ~25km) with 91 levels, the proportion of the computation time spent in the Legendre 
transforms is only about 7% of the total timestep - so the “Legendre barrier” to further increases in horizontal 
resolution is still some way distant.  
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