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ABSTRACT

We study the efficacy of spectral preconditioning (of iterative Krylov-subspace solvers) in extreme settings covering a
broad range of scales and physical applications, in the context of a massively parallel nonhydrostatic fluid model. We
find that while elementary spectral preconditioners offer advantages in certain classes of applications, in general, their
performance strongly depends on the integration time step, number of processors versus size of the problem, and the
physical problem at hand.

1. Introduction

Elliptic problems arising in numerical simulation of atmospheric/oceanic flowsaretypically poorly conditioned,
nonseparable, and non self-adjoint — features related to domain anisotropy, effects of planetary rotation, ambi-
ent stratification, the use of general curvilinear coordinates in the governing equations, or imposing partial-slip
conditions along an irregular lower boundary. Such elliptic problems are difficult; that is, a robust, univer-
saly effective expert-type approach for their solution does not yet exist. In effect, each particular problem of
interest may require the user’s intervention in customizing the elliptic solver, in order to achieve ajudicious
compromise between the accuracy and computational expense of numerical solutions. Although this status quo
may be acceptable in research models, it is hardly affordable in community models and production codes (e.g.,
weather prediction models) that are required to perform reliably for amultitude of users and/or simulated flow
conditions.

Among the most effective methods reported for solving difficult elliptic problems are the preconditioned non-
symmetric conjugate-gradient-type (alias Krylov-subspace; hereafter “Krylov”, for brevity) iterative schemes
— for aconcise introduction to Krylov methods, including derivations from variational principles see an earlier
ECMWEF paper [26]. There exist a number of optional nonsymmetric Krylov solvers, common in computa-
tional research and engineering [1][7]. Our method of choice is the restarted generalized conjugate residual
GCR(k) agorithm — proven successful in geophysical applications — akin to the popular generalized mini-
mum residual GMRES(k) solver [5][18][23][24][20]. For convenience, GCR(K) is summarized in the following
section, where we aso introduce necessary terminology, notation, and a notion of preconditioning (left) used
throughout this paper; a brief discussion of line-relaxation preconditioners is also included.

Designing an artful preconditioner is important as it can dramatically accelerate solver convergence. In prin-
ciple, the preconditioner %2 can be any linear operator such that .2 271 is definite, where .# symbolizes the
original elliptic operator implied by the physical problem at hand. The role of the preconditioner isto substitute
the governing dlliptic problem . (W) — Q = 0 with an auxiliary problem #7-1(.Z(W) — Q) = 0 that converges
faster (than the original problem) due to a closer clustering of the eigenvalues of the auxiliary elliptic operator
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P12, where W and Q symbolize the dependent variable and the rhs, respectively. In other words, the role
of the preconditioner is to circumvent the stiffness of the governing elliptic problem. For the preconditioner to
be useful, the convergence of the auxiliary problem must be sufficiently rapid to overcome the effort associated
with “inverting” the preconditioner itself (i.e., computing #7~1(-)). In general, the closer the preconditioner
approximates the original operator, the faster the solver converges but the more difficult it isto compute 7°1(-).

There is no general method for designing an optimal preconditioner ([1], section 7). The full complexity of the
multi-scale atmosphere and oceans necessarily requires taking into account the anisotropy of the mediain the
vertical. For instance, the shallowness of the Earth’s atmosphere dictates condition numbers k () ~ ¢'(16°)
for contemporary general circulation models; recall that k (.#) can be interpreted as the squared ratio of the
longest to the shortest wave present in the system. Because the asymptotic convergence rate of conjugate
gradient type methods is proportional to k(.Z) /2, a direct preconditioner in the vertical is the ‘ categorical
imperative' of an effective iterative solver for all-scale atmospheric models, [L5][20][34][27]. Here, asin earlier
works, we take this preconditioning strategy in the vertical for granted, and focus on the horizontal component
of #.

Thomas et al. [36] reported advantages of spectral preconditioners, in the context of the serial-code of the
Canadian MC2 model (a semi-Lagrangian, semi-implicit elastic, nonhydrostatic all-scale research/weather-
prediction type model [34]). Encouraged by this experience we have incorporated spectral preconditioners, in
the spirit of [36], in the massively-parallel, nonhydrostatic anelastic, optionally Eulerian or semi-Lagrangian
deformable-grid model EULAG for multi-scale research of geophysical flows; cf. [29][17][37] and the refer-
ences therein. The massive parallelism, flux-form formulation of the Eulerian option, and the grid adaptivity
(to either flow features or irregular boundaries of the domain) al affect the performance of spectral precondi-
tioners, thereby making an a priori assessment of their efficacy virtually impossible. Furthermore, the departure
of the preconditioner %2 from the governing elliptic operator .’ can be quite substantial compared to simple
line-relaxation schemes,! whereupon applications can be encountered for which spectral preconditioners are
unsuitable.

In order to learn more about the potential of spectral preconditioners for multiscale problems in geophysical
flow simulations, we have tested their performance in extreme settings covering a broad range of scales and
physical applications. from a canonical decaying turbulence problem in a triply periodic box, through ho-
mogeneous flows past large-amplitude undulating boundaries, mesoscale flows past long winding valleys, to
idealized climates. Our present results are far less optimistic than those reported in B6]. In particular, we do
not observe universal superiority of spectral preconditioners (over simple line relaxation schemes) found in the
context of MC2. While elementary spectral preconditioners offer advantages in some applications, their per-
formance strongly depends on the integration time step (viz. the relative importance of the first guess), number
of processors versus size of the problem, and the physical problem at hand.

The paper is organized as follows. The next section contains brief descriptions of the GCR(K) solver and of
the line-relaxation and spectral preconditioners. The anelastic model employed in this study is summarized
in section 3, including discussions of the analytic formulation, computational approach with implied elliptic
problem, and parallelization strategy. Section 4 is devoted to comparative analysis of the efficacy of the spectral
and line-relaxation preconditioners for a series of diverse applications. Remarksin section 5 conclude the paper.

IFollowing [36] we assume for & a separable constant-coefficient approximation to - by dropping cross derivative terms and
averaging metric coefficients across the domain.
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2. Elliptic solver

2.1 Generalized conjugate-residual approach

In general, we consider alinear elliptic problem

Zldx (;C'de+DLIJ>—ALP:Q, )

with variable coefficients A, CY, D', Q, and either periodic, Dirichlet, or Neumann boundary conditions; and
adopt the following notation. The discrete representation of a field on the grid is denoted by the subscript i;
the discrete representation of the elliptic operator on the Ihs of (1) is denoted by .Z/(W); and the inner product
(6¢) =¥ & ¢ The preconditioner & isalinear operator that approximates .’ to agreater or lesser degree but

iseasier Ito invert. Itsroleisto substitute (1) with an auxiliary problem that converges faster (than the original

problem) due to acloser clustering of the eigenvalues of the auxiliary operator resulting from the superposition
of £ and 271, In this paper, we are primarily concerned with “left” preconditioning that substitutes ()

with an auxiliary problem #2~1(.Z(W) — Q) = 0. Its accelerated convergence exploits spectral properties of
21 Ingenera, “right” preconditioning isalso possible. It augments (1) with. 22~ 1(2(W¥)) = Q, and its
convergence relies on reducing the spectral radius of .2 %71, Left preconditioning assumes & constant during
the iteration process, whereas right preconditioning alows for variable & as, e.g., in the flexible GMRES
(FGMRES) solver of [19].

The GCR(K) method of Eisenstat et al. (1983) may be derived via variational arguments (cf. R3][26]). In
essence, we augment (1) with akth-order damped oscillation equation

P (W) 1 lz(w) 1 02(W)
+ —— 4+
otk T (1) otk? T(1) ot

=2Z(¥)-Q; 2

then discretize (2) in a pseudo-time 1 to form the affine discrete equation for the progression of the residual
errors r; and determine the optimal parameters T;,.., T,_; and integration increment At (variable in 1) that
assure minimization of the residua errors in the norm defined by the inner product (rr). This leads to the
following agorithm.

For any initial guess WP, set r? = £ (¥%) — Q,, p? = 2271(r0); then iterate:

i
Forn=1,2,...until convergence do
forv=0,..,k—1do
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v-i-l_el_i_%alpI ’
z(pv-i-l +Z)al
enddo,

reset (W, r, p, Z(p)If to [¥, 1, p, (P,

end do.

For convergence, the GCR(K) algorithm above requires .Z.271 to be negative definite? but not necessarily
self-adjoint®. Direct evaluation of the elliptic operator on the grid takes place only once per iteration following
the preconditioning e = 7 1(rV*1) that provides an estimate of the solution error &+1 =Wv+1_y_ ..

2.2 Line-relaxation preconditioners

A distinctive feature of meteorological flowsis their anisotropy in the vertical direction — the larger the ratio
of the horizontal scale of the problem to the fluid depth, the stiffer the elliptic problem. A class of simple yet
effective preconditioners that mitigate this aspect (of elliptic problems in meteorology) derives from an implicit
Richardson iteration [26]

ehtl_ et

AT

a redlization of the preconditioning step e = 22 (rV*1) of the GCR(k) solver summarized in section 2.1.
Here, 2" and 7% are the “horizontal” and the “vertical” counterparts of the operator 22, respectively; X isa
parameter of the iteration (a pseudo-time step) based on spectral properties of & [viz., linear stability analysis
of (3)], 4 numbers successive Richardson iterations, and v numbers the outer iterations of the Krylov solver.

= PN+ PH e -t 3)

Assuming 2 identical to the governing operator . in (1) except for neglected cross derivative terms? and
a standard discretization in the spirit of the Arakawa A or C grid, the equation @) leads to a straightforward
linear problem

(7 —DTP?) e =R, (4)

where RH = e + AT("(eH) —rV+1), that can be solved readily using the tridiagonal (Thomas) algorithm.
Alternating implicit discretization between the vertical and horizontal counterparts of &7 in fractional steps of
T leads to aternating-direction-implicit (ADI) preconditioners of [20].

The implicit Richardson preconditioner in (3) can be further improved. Consider extending the Richardson
diffusion scheme with respect to 2" to the diagonally-preconditioned Duffort-Frankel type implicit algorithm

+1_

TETE e - () 4 ) 1 )
where (—1)2 stands for the diagonal coefficient embedded within the matrix representing 4 on the grid.
Note that adding the relaxation term on the rhs of (3) has the effect of replacing the ¢ term with 2(e**1)
in 2" (e#) without complicating flux boundary conditions imposed in constructing '(e) (cf. [26] for discus-
sions). In the limit AT — o, (5) is equivalent to the block Jacobi preconditioner proven effective in meteoro-
logical applications [34][35].

2An operator .7 is said to be definiteif (£.o7(&)) is either strictly positive (positive definite) or strictly negative (negative definite)
foral &.

3An operator <7 issaid to be self-adjoint if (£.7()) = ({.«/(€)) for al & and Z.

4Formally, this amounts to replacing the coefficients C' in (1) by their products with the Kronecker delta 4;-
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2.3 Spectral preconditioning

The motivation behind spectral preconditioning is to alow for the unconditionaly stable pseudo-time dis-
cretization also in the horizontal counterpart of the preconditioning operator on the rhs of 8), and to converge
with 8T — o0; so the resulting fully-implicit Richardson iteration

L;; & _ (e 4 (et v (6)
becomes

() 4 () = v @)
i.e., iteration free.

Assuming in (7) an appropriate Fourier-series representatior? of the aready-updated residual error r'+1 and
the yet-unknown estimate of the solution error & *1

&= 5 8 @ epllk xi1 -y

vl Zm. @ expli(k-x-+1-y)] (®)
leads to A
A dg, . B
g{cﬁk,l (28 + %@z i } expli(k-x+1-y)] =0, 9

and to the corresponding set of independent tridiagonal problems in Fourier space,

2

Yl (Cng (2)+ %y, (3%) & (=", . (10)
In (9) and (10), %4, ,(z) and %, ,(z) symbolize the resulting Fourier-space coefficients of the preconditioning
problem in (7). In order to make the approach practical, we homogenize (here, average in the horizontal) the
coefficients of the eliptic problem in (7).° In general, this may lead to substantial departures of the precon-
ditioner & from the governing operator .. Predicting the impact of the coefficient homogenization on the
solvers' performance is difficult, and its a posteriori assessment is one of the goals of this work.

3. Andlastic model

3.1 Analytic Formulation

The scope of this paper justifies merely abrief symbolic description of the governing anelastic model; for phys-
ical motivation, thorough mathematical exposition, and a complementary summary of the employed numerical
approach refer to the article by Smolarkiewicz and Prusa [31] in this same proceedings volume, and references
therein.

To address a broad class of geophysical flowsin avariety of domains — with, optionally, Dirichlet, Neumann,
or periodic boundaries in each direction —we formulate (and solve) the governing equations in transformed
time-dependent curvilinear coordinates

(t,%) = (t, Z(t,x)) (11)

SParticular realizations depend on the assumed boundary conditions and discretization of the governing model equations.
60therwise, posing the problem entirely in the Fourier space would require transforming the coefficients themselves, and eval uating
the products of the resulting series, while dramatically increasing the computational cost of the preconditioner.
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The key simplifying assumptions are that: i) both physical and transformed domains are topologically either
cuboidal, toroidal, or spheroidal; ii) the coordinates (t,x) of the physical domain are orthogonal and stationary;
iii) time flow isthe same in both domains; and iv) the transformed horizontal coordinates (x;y) are independent
of the vertical coordinate z. Given the transformation in (11), the anelastic equations of Lipps and Hemler [13]
can be compactly written as follows

De(p*v®) =0. (12)
- /
@:—G(Dﬁ)—gg—fvaLMHLD, (13)
dt 6,
!
% = —Velfe+.7, (14)

where, because of the coordinate transformation, the physical and geometrical aspects intertwine each other.
Insofar asthe physicsis concerned: v denotes the physical velocity vector; 8, p, and 1T denote potential temper-
ature, density, and a density-normalized pressure; g is the acceleration of gravity, and f the vector of “Coriolis
parameter”; M symbolizes the inertial forces of geospherical metric accelerations; whereas D and .77 sym-
bolize viscous dissipation of momentum and diffusion of heat, respectively. Primes denote deviations from the
geostrophically-balanced ambient (alias, environmental) state \&, e, and the subscript , refersto the basic state,

i.e., ahorizontally homogeneous constant-stability hydrostatic reference state (cf. section 2b in B]).

The geometry of the coordinatesin (11) enters the governing equations as follows: in the mass continuity equa-
tion (12), p* = pr with G denoting the Jacobian of the transformation; whereas in the momentum equation
(13), G symbolizes the renormalized Jacobi matrix of the transformation coefficients ~ (0%/0x); De=0/dxe ,
and the total derivative is given by d/dt = o”'/df+v* e [1, where V' = dx/dt = X is the contravariant velocity.
Appearing in the continuity (12) and potential temperature (14) equations is the solenoidal velocity (so named
for distinction, because of the form continuity takes with it),
ox
V=V - — 15

that readily follows — given g, = p,(x), and the time-independent coordinate system in the physical space —
from the generic (tensor invariant) form of anelastic continuity

el (‘?g +Te (p*v*)> ~0. (16)

Use of the solenoidal velocity facilitates the solution procedures because it preserves the incompressible charac-
ter of numerical equations. While numerous relationships can be derived that express any velocity (solenoidal,
contravariant, or physical) in terms of the other, in either transformed or physical coordinate system [L7], a
particularly useful transformation

v=G'v. (17)

relates the solenoidal and physical velocities directly. For further details of the metric and transformation
tensors as well as formulating viscous and dissipative terms in the governing equations, the interested reader is
referred to [31] and the references therein.

3.2 Numerical Approximations

Given (16), each prognostic equation that forms the anelastic system (L3) and (14) can be written either as a
Lagrangian evolution eguation

dy
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or Eulerian conservation law

op*y

T +0e(p*'V'Y) =p*R. (19

Here ¢ symbolizes components of v or &, and R denotes the associated rhs.

We approximate either (19) or (18) to second-order accuracy in space and time using the nonoscillatory forward-
in-time (NFT) approach — see [29] for areview. A particular NFT algorithm employed here can be formally
written as

@Mt = LE(Q) + 0.5At R = { + 0.5AtRM (20)

where "+ is the solution sought at the grid point ({“H,Xi), ¥ = ¢"+ 0.5AtR", and LE denotes a two-time-
level either advective semi-Lagrangian [21] or flux-form Eulerian [22] NFT transport operator (viz. advection
scheme).

Equation (20) represents a system implicit with respect to al dependent variables in (L3) and (14), because
al principa forcing terms are assumed to be unknown at n+ 1/ For the physical velocity vector v, it can be
written compactly as

v, =V, — 0.5At (é(ﬁn’))_ +0.5AR (v, 8) (1)

where 1
R (v,8) = —(f x (v=ve)), — 9" (éi +0.5At((GTv) .Eee)i) (22)

b

accounts for the implicit representation of the buoyancy via (14), and the superscript n+ 1 has been dropped
as there is no ambiguity. On grids unstaggered with respect to all prognostic variables (e.g., A and B Arakawa
grids), (21) can be inverted agebraically to construct expressions for the solenoidal velocity components that
are subsequently substituted into (12) to produce

{%E-p*éT [(l —05AtR) M (V— o.5Até(En’))} }i =0; (23)

that is, an elliptic equation for pressure

{%ip*éT [6— = o.MtR)*lé(Eﬁ')} } -0, (24)
|

where ¥ — (1— O.5AtR)_l(§(ﬁn”) = V° defined in (15); cf. [17] for the complete development. Boundary
conditions imposed on V° e n, subject to the integrability condition [, p*V°endo = O, imply the appropriate
boundary conditions on 1’ [17, 37]. The resulting boundary value problem is solved using a preconditioned
nonsymmetric GCR(K) solver discussed in section 2 of this paper. Given the updated pressure, and hence the
updated solenoidal velocity, the updated physical and contravariant velocity components are constructed from
the solenoidal velocities using transformations (17) and (15), respectively.

3.3 Massively parallel implementation

The massively-parallel message-passing FORTRAN program of the anelastic model outlined — named EU-
LAG for its Eulerian/semi-Lagrangian optiona integration schemes — and its performance across various
platforms have been discussed in [16]. The parallelization strategy adopted in EULAG exploits the notion that

"Nonlinear terms in R™1 (e.g., metric terms arising on the globe) may require outer iteration of the system of equations gener-
ated by (20) [27]; when included, diabatic, viscous, and subgrid-scale forcings may be first-order-accurate and explicit, e.g., assume
SGS(Y™l) = SGS(YM) + G(At) in R, thereby contributing to the rhs of the resuiting elliptic problem; for extensions to moist
processes, see[8].
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a great majority of numerical simulations of atmospheric/oceanic flows address problems in thin shells. This
characteristic anisotropy of the media favors program parallelization based on 2D domain decomposition, with
one-to-one mapping of the horizontally-partitioned 3D subdomains onto the 2D processor array, while main-
taining the vertical direction unpartitioned. The design of the spectral preconditioner ) in section 2.3 adopts,

essentially, this same strategy based on the horizontal decomposition of the spectral space P]. In principle,

physical and spectral spaces can be decomposed independently. However computationally the most efficient
is to distribute both spaces analogously. Each single subdomain is assigned statically to only one proces-
sor responsible for the calculations in this subdomain. In general, the physical space requires interprocessor
communication for discrete differentiation in the horizontal as well as exchange of global information, viz.
reduction operations such as sums and extrema; whereas in the spectral space, only reduction operations are
required. The interprocessor communication employs Message Passing Interface (MPIl) or Shared Memory
(SHMEM) parall€ libraries.

% AY
~ N /)/J/
AN T\
Z S 0/

distributed 1D FFT distributed 1D FFT

Figure 1. Satic block distribution (SBD) method for computing tensor-product Fourier transforms.

The domain decomposition algorithm adopted in EULAG allows for an arbitrary rectangular processor array to
cover the entire smulated domain. This embodies two optional strategies of the processor (memory) distribu-
tion [2]. The static block distribution (SBD) method is based on two-dimensional equal partition (roughly) of
spectral and physical space in both horizontal directions. In the second method, known as the static local dis-
tribution (SLD) approach, entire columns (or rows) of the spectral- and physical-space matrices are distributed
locally on each processor. In the latter case, each processor independently computes 1D spectral transforms on
locally allocated columns (or rows) with the coefficient serial/vector algorithms (sequential Fourier transforms).
Then for each individual row (or column) 1D Fourier transform is computed in the parallel mode (distributed
transform). In this approach only one parallel phase is computed but the tradeoff between seria- and parallel-
phase work strongly depends on the number of processors used. For the same domain size asin the SBD method
the smaller number of processors can be used. Furthermore, increasing the number of processors decreases the
time of computing the sequential phase but significantly increases the parallel work in the distributed phase.

4. Results

A suite of model runs® has been adopted from diverse research projects (documented in the literature) to explore
the efficacy of spectral preconditioning outlined in section 2.3. The coefficient homogenization assumed in
our preconditioner leaves no doubt that the approach cannot be universal, and will turn out to be ineffective
at some point. Unless the numerical model at hand is based on spectral transforms, developing a spectral
preconditioner within a massively parallel code is not an effortless task. Thus, to assist the reader in deciding

8All calculations reported were performed on unstaggered grids, with 64-bit real arithmetic.
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Figure 2: Satic local distribution (SLD) method for computing tensor-product Fourier transform.

whether the approach is worth further consideration, we show both its strengths and weaknesses. In contrast to
the suite of problems benchmarked in [36], the numerical experiments discussed here tend to extremes rather
than being representative of contemporary meteorological applications. We begin with the large-time-step
semi-Lagrangian simulation of a flow past rapidly oscillating large-amplitude membranes. Then we follow
with the analysis of transient decaying turbulence in a triply periodic box, addressing both the efficacy and
scalability issues. The third application is a simulation of a moist rotating stratified flow past a long winding
valley in curvilinear domain following the valley, and the last run is a large-eddy simulation of an idealized
climate. Each numerical experiment emphasizes different aspects of the elliptic problem in @4), and of the
preconditioned GCR(K) solver.

4.1 Flapping M embranes

Here, we consider the numerical simulation of aflow of an ideal 3D homogeneous Boussinesq fluid past oscil-
lating membranes. Thistest has been presented originally in [37], to validate the correctness of implementation
of Dirichlet solenoidal velocity boundary conditions (implying Neumann boundary conditions for pressure)
ensuring the integrability condition of the elliptic pressure equation; recall the discussion that follows 24).

The membranes form impermeable free-slip upper and lower boundaries, Fig.3, and their shape is prescribed,

respectively, as

S e

H(x,y,t) = Hy— zs(X, Y1) ,

(25)

withr = \/x2 4+ y2, oscillation period T = 48At, amplitude Z,, = 48Az, the membranes' half-width L = 48Ax,

where Ax = Ay = Az, and Z(t,X,y,2) = H, (z—Z)/(H — z) in (11). Our computational domain consists of

151 x 151 x 120 grid intervals, in the horizontal and vertical, respectively; and the LE operator in @0) is

semi-Lagrangian. The domain deformation is significant, since att = T /4, the upper and lower boundaries are
separated merely by one fifth of the vertical extent of the model. The magnitude of the induced flow and its
variation is approximately 5 and 0.5, respectively, as measured by 4" =|| AtV /AX || and £ =|| AtoV*/0X || —

the (maximal) Courant and “Lipschitz’ numbers (cf. [21] for a discussion).

Lacking diabatic forces, boundary friction, and buoyancy, the experimental setup implies a potential-flow so-
[ution with zero integral pressure force on the bounding walls. Indeed, the authors have verified in B7] that
the pressure drag is on the order of round-off errors. The supplementary vorticity analysis (validating indeed
the vorticity evaluation in curvilinear coordinates) can be found in [31]. Consistent with the accuracy threshold
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Figure 3: Potential flow simulation past 3D undulating boundaries. Flow vectors and isobares are shown
in the central xz plane.

specified for the step “exit if || rV+1||< &” of the GCR(K) solver, the quoted (in [31]) value of the divergence
of the solenoidal vorticity (xdt) is7 orders smaller than 7.

We repeated the experiment as described above, using 16 processors of the IBM SP RS/6000, NCAR “Black-
forest” machine. The GCR(4) solver has been employed with either spectral (SP) or line-relaxation (LR)
preconditioner. For LR two iterations of the block-Jacobi scheme [34][35] were used. The stopping criterion
in the “exit” step of the solver has been set at || (6t/p*)0 e p*V® ||o< 1075, The wallclock time (the ultimate
measure of the solver performance) for smulated timet = 224t, and the average (over the ssimulation) number
of GCR evaluations of the elliptic operator .£(e) (viz. solver iterations) per model time step (NI) are listed in
Table 1.

Table 1: Solver performance; flapping membranes
preconditioner NI wallclock time
SP 17 0:18:16
LR 105 0:42:24

The results listed in Table 1 speak for themselves. However, they provide an opportunity to comment on a
few aspects of the iterative solvers, that every once in awhile appear misconstrued in the literature. Note first
that with the simple block Jacobi preconditioner, the number of solver iterations appears discouragingly high.
However, thisis aspecial experiment where, due to advantageous large-time-step semi-Lagrangian integration,
most of the computational work is in the élliptic solver. In principle, one could design an entirely implicit
integration scheme and seek the solution after an appropriately large yet single time step. Then, the entire work
would be in the elliptic solver, and the number of iterations accordingly higher. Second, although the spectral
preconditioner reduced the number of the solver’siterations sixfold, the wallclock time was reduced only twice.
This shows that the computational cost of a spectral preconditioner is substantialy higher (several times) than
of the simple line-relaxation scheme. In principle, any preconditioned converging iterative solver, can be set
to achieve the specified accuracy threshold in merely a few iterations (e.g., consider increasing the number of
block-Jacobi passes in the LR preconditioner). These observations illustrate the thesis that judging iterative
solvers by the number of iterations required for convergence is misleading. However, reporting the number
of iterations isinformative, as it aids estimating the comparative solver's cost independent of the machine and
implementation.

212



SMOLARKIEWICZ, PK.: SPECTRAL PRECONDITIONERS FOR ELLIPTIC SOLVERS

4.2 Decaying tur bulence

Our second benchmark is a simulation of the decaying turbulence of a homogeneous incompressible fluid in a
triply-periodic cube — acanonical problem in turbulence studies. The assumed homogeneity of the thermody-
namics, and the lack of near-wall effects, focus the problem on the nonlinearity of the convective derivatives
vlv in the momentum equation, i.e., the ‘ categorical imperative’ of turbulence. Originally, the problem was set
forth by Herring and Kerr [11], to investigate the rapid enstrophy growth (blowup) in solutions of the incom-
pressible Euler equations. Recently, it has been employed in severa studies to document implicit turbulence
modeling property of NFT schemes [28][29][14][9]. The initial condition is posed in the spectral space, such
that the energy is equipartitioned among the largest eddies with the wave number value || k |,< 4. For illus-

tration, Fig. 2 shows the isolines of vertical velocity in the center xy-plane for the initial condition, and after a
non-dimensional unit time.

at time= 0.00 k= 65 at time= 1.00 k= 65

w
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Figure 4: Decaying turbulence problem

For the physical scenario considered — the problem is posed entirely on a Cartesian domain, and is free of
forces other than the pressure gradient — the preconditioner %2 in (7) is identical to the governing elliptic
operator . in (24). The latter together with direct evaluation of 271, via (10) and synthesis of ein (8), makes
our spectral preconditioner a direct solver of the governing boundary value problem 7). Thus, one might
anticipate the GCR solver to converge to machine precision in asingle iteration [36]. Thisisindeed the case
for the analogous problem but with impermeable boundaries in the vertical. The periodic boundaries assumed
in conjunction with the unstaggered grid discretization employed add some complexity.

In general, periodic tridiagonal systems are more complicated and require more work than their nonperiodic
equivalents [33][32]. For the A-grid discretization of the pressure gradient forces in @1) the resulting tridiag-

onal system (in the vertical) isindeed pentadiagonal and the corresponding Thomas algorithm (cf. section 3.4
in [32]) requires solving not three (like for the compact C-grid type discretization) but five nonperiodic-type
systems aswell asinverting not a2 x 2 but 4 x 4 linear problem to synchronize cyclic boundaries. Furthermore,
on the A grid “2A” maodes belong to the null space of the discrete gradient operator, whereupon the resulting
elliptic operator .Z is only semi-definite. Altogether, this leads to a substantial accumulation of the roundoff
error while solving (10), especialy as the size of the problem increases, and an effective departure of &2 from
Z. Ineffect, it takes not 1 but 3 GCR iterations (i.e., evauations of .#(e)) to solve (24).

In the discussion that follows, we address the efficiency of implementation of the parallel SBD and SLD decom-
positions of the spectral preconditioner algorithm on a distributed memory IBM SP6000 supercomputer with
portable MPI library. We investigate the scalability of the spectral algorithm and compare the results with anon-
and LR-preconditioned (using asingle pass of the block-Jacobi scheme) GCR solver. A series of tests, using the
Eulerian (finite-volume wise) option of the model algorithm, employs two different grid resolutions 128 and
256° grid points, with constant grid intervals x = dy = &z, and non-dimensional time step 6t = 5-104. The
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selected solver option is GCR(2), equivalent to the classical conjugate-residual scheme of Hestenes and Stiefel
[12] — for the problem at hand there are no asymmetries of finite differencing formulae in the computational
domain, whereupon .Z is self-adjoint and using GCR(2) suffices for the optimal convergence.

Convergence test
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Figure 5: Number of iterations required for convergence

Figure 5 shows the number of solver iterations required to reach the specified convergence threshold € = 4t ||
OV || for the 1283 resolution. The upper and lower curves correspond to the non- and L R-preconditioned
GCR(2) solver. Although the preconditioned solver converges faster, it is somewhat (=~ 1.2x) more computa-
tionally expensive than the pure GCR scheme, due to arelatively-high cost of the cyclic tridiagonal agorithm.
Since we observe the spectrally-preconditioned GCR(2) to reach <10~ in 3iterations, regardless of the spec-
ified threshold in the “exit” step of the algorithm, in all subsequent tests we set € = 107 for the convergence
threshold of the L R-preconditioned scheme aswell, to assure the fairness (and meaningfulness) of comparisons.
Thisresults in about 40 iterations of the L R-preconditioned solver.

Table 2 summarizes the relative cost of spectral preconditioner components for the different number of SBD
processors (PE) and 128° resolution. The tridiagonal solver requires no parallel work, so it scales well for
any number of processors. The Fourier synthesis (FT-1) tends to be less computationally expensive than the
analysis (FT) due to a smaller number of global sums (8 for the analysis but only 5 for the synthesis). In both
cases the algorithm scales up to 16 processors; above 16 PE, the efficiency of the parallel work deteriorates.

Table 2: Relative cost of the SP components
PE FT 3dg-solv. FT1
1 17.36 4.63 18.62
4 237 1.04 2.23
8 138 0.43 1.08
16 1.04 0.17 0.63
32 133 0.06 0.76
64 1.79 0.03 0.59
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Table 3 compares the LR and SP preconditioners for the 128 grid resolution runs. For affordability, the numer-
ical data from only the first 10 time steps of each run are analyzed; which is representative, because the work
required to solve the elliptic equation (24) remains (roughly) constant over the course of the simulation, due
to the transience of the physical problem at hand. Because the number and length of sums invoked in Fourier
transformations — and thus the efficiency of spectral preconditioning — depend on the boundary conditions
imposed, the comparative tests are also included that assume Neumann boundaries (for pressure) in x or y;
labeled X0 and YO, respectively, for distinction from cyclic X1 and Y 1. This comparison documents that the
spectral preconditioner is substantially cheaper for Neumann boundaries, the sole option of the development in
[36]. This contrasts with the performance of the LR preconditioner, which appears more efficient for periodic
boundaries. The increase in execution time for the single-processor run with the LR preconditioner (entries
4650, 7920, 7535, and 10659 in Table 3) was accompanied by the increasing number of iterations (respec-
tively, 112, 179, 178, and 241). Such an unusualy high number of iterations is due to the small value of the
convergence threshold assumed (g = 10~7; unnecessary from the physical accuracy viewpoint [24]) as well as
the enforcement of the Neumann boundaries, leading to development of the near-boundaries discontinuities in
the initially periodic fields® Because of the minor relevance and high computational expense, only the single
processor runs were conducted for the L R-preconditioner with Neumann boundaries; mostly for the purposes
of illustration. The numbers PX and PY show the horizontal distribution of al processors (PE) in x and y,
respectively.

Table 3: Parallel performance of LR and SP preconditioners; 1282 grid
PE PX PY X1Y1l X1y0 XO0Y1l XO0YO0 X1yl Xi1YO0 X0yl XOYoO
1 1 1 4650 7920 7535 10659 591 519 459 503

4 2 2 648 - - - 123 115 111 79
8 2 4 336 - - - 93 61 53 45
8 4 2 348 - - - 121 57 62 46
16 4 4 214 - - - 54 36 32 28
32 4 8 163 - - - 40 29 25 29
32 8 4 179 - - - 45 29 28 25
64 8 8 92 - - - 47 44 34 36

The results in Table 3 show that the parallel program with the spectral preconditioner scales up to 32 proces-
sors, while the scaling for the program with the line-relaxation preconditioner is good for any number of the
processors. Asthe size of the problem increases (Table 4) the scaling of the spectral preconditioner improves.

Table 4: Parallel performance of LR and SP preconditioners; 256° grid
PE PX PY X1Y1l X1yl XOYO
64 8 8 1553 380 252
128 16 8 961 350 212
256 16 16 529 358 212

Spectral methods relying on global basis functions are often criticized as being inappropriate for modern,
distributed-memory parallel architectures. Certainly, our results show that relatively poor scaling of Fourier
transforms degrades the scaling properties of the entire model code. Nonethel ess, regardless of apoorer scaling,
the parallel program with the spectral preconditioner is up to several times faster, for the problem at hand, than
the equivalent program that uses the LR preconditioner with good parallel performance. Thisillustrates that the
scaling arguments should be taken with caution when assessing the utility of spectral methods.

9Since the spectral preconditioner isa direct solver, it is essentially insensitive to the spectral composition of the elliptic problem’s
rhs.
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4.3 M esoscale valley flow
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Figure 6: Valley flow. Vertical velocity contours in xy cross section at z=9kmi (left pannel) and on the
vertical ribbon aligned with the center of the valley.

The two applications discussed in the preceding subsections both showed advantages of spectral precondi-
tioning. Here, we address a rotating, stratified, mesoscale type flow with substantial variability of ambient
parameters in all three directions. The particular problem at hand isadry inviscid variant of the long-winding
valley problem, employed in [31] to illustrate grid adaptivity via a continuous mapping approach. The horizon-
tal model domain in the physical isbounded by two sinusoids of the same x-wavelength Ly = 400 km, separated
by constant increment 200 km iny. A cosine-shaped valley with the depth and half-width 0.8 km and 30 km,
respectively, is centered in the model domain. Here, the vertical domain is 18 km deep. The ambient wind is
(U,0,0) with U = 10 m/s, and the buoyancy frequency N = 0.012 s™1. Boundary conditions are periodic in
both horizontal directions. The transformed model domain is covered with 200 x 100 x 60 grid increments.
The simulation covers 10 h of physical time with At = 60 s. Figure 4 displays the Eulerian model solution after
10 h.

Table 5 compares four numerical experiments, all performed on the IBM SP RS/6000 machine. The GCR(4)
solver has been employed with either spectral or line-relaxation preconditioner. For the line relaxation, the one
pass of the block-Jacobi scheme was used. The stopping criterion in the “exit” step of the solver has been set
a || (6t/p*)0 e p*V® ||o< €. For each selection of the preconditioner SP or LR, the table lists the accuracy
threshold &, number of processors used PE, the average (over the simulation) number of GCR evaluations of
the elliptic operator .Z/(€) per model time step (NI), and the wallclock time for simulated timet = 12000t.

Table 5: Solver performance; mesoscale valley flow
preconditioner £ PE NI wallclock time

SP 10° 20 4 2:54:33
LR 10° 20 10 1:42:24
SP 107 40 13 4:46:21
LR 107 40 87 2:42:02

The outcome of the experiments is clear. For a standard model set up (& = 107>, cf. [24] for discussion), the
simpleline relaxation scheme resultsin anearly atwo times (1.7 x) faster model, in spite of a2.5 larger number
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Figure 7: Instantaneous solutions of the idealized climate problem after 3 years of simulation.

of solver iterations. There is no accuracy trade-off, as tightening the threshold by two orders of magnitude only
worsens the ratio (to 1.8x) although the iteration count ratio improves from 0.4 to 0.15 in favor of the SP
preconditioner.

4.4 |dealized climate

Our last benchmark — the idealized climate problem of Held and Suarez [L0] — has been broadly discussed
in[27]. In general terms, it represents thermally forced baroclinic instability on the rotating sphere. In a sense,
it bears a resemblance to LES studies of decaying turbulence in section 4.2, where small differences in model
setups can lead to totally different instantaneous flow realizations. In other words, these simulated flows are
both turbulent and stochastic. Figure 7 illustrates the overall complexity of the flow. It shows instantaneous
vertical cross-sections in the equatorial plane and surface plots of the isentropes 6 and isolines of zonal ve-
locity u, after 3 years of simulated flow. The results displayed typify the response of an initialy stagnant and
uniformly stratified fluid to a diabatic forcing that mimics the long-term thermal and frictional forcing in the
Earth atmosphere.
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Here, the globe is covered by a uniform spherical mesh with nx x ny = 65 x 32 grid intervals (no grid points
at the poles); the H = 32-10° m deep atmosphere is resolved with nz = 40 uniform grid intervals; and the
time step of integration is At = 900 s. The advection scheme is Eulerian, and the elliptic solver is GCR(4),
with the line-relaxation preconditioner using 8 iterations of the implicit Richardson iteration B); see [27] for

further details of the simulation performed. To assess the relative efficiency of the LR and SP preconditioner,
we have run the experiment (as described) on 24 PE of the IBM SP RS/6000 for 2304 time steps, with the
convergence threshold || (8t/p*)0- p*V® ||»< 10~°. With LR preconditioner, the solver achieved the threshold
in 11 iterations per model time step (on average during the 2304 time steps) and the wallclock time was 0:25:04.
In the run with the spectral preconditioner the elliptic solver failed to converge, stalling at || r |l,~ 103 after

performing hundreds of iterations within afew initia time steps.

The observed failure of the spectral preconditioner amplifies the result reported in P6], where the implicitness
of the Richardson scheme (3) has been extended, by means of spectral decomposition, only in the zonal direc-
tion. There, the relatively more relaxed coefficient homogenization sufficed for the solver’s convergence on the
globe, yet at the rate substantially slower than with the line-relaxation scheme. These results are not unique to
the global problems, and examples can be given of a similar behavior for small-scale thermally homogeneous
flows.

5. Remarks

Our results corroborate the conclusions of [36] that spectral preconditioning provides auseful aternative to line
relaxation schemes. For some problems, afairly simple spectral approach can accelerate solvers convergence
manifold, leading to substantially faster models. On the other hand, the utility of spectral preconditioners is
particular as the coefficient homogenization assumed in the (spectral) preconditioner, for the sake of simplicity
and computational economy, can be detrimental to the solver convergence in problems with substantial vari-
ability of the model coefficients. In other words, spectral preconditioning may turn out well suited for one
single-application model, while inappropriate for another.

The relative efficiency of the line-relaxation and spectral preconditioners is problem dependent. Nonetheless,
some guidelines, for the worthwhileness of the spectral approach, can be offered based on the results reported.
In particular, since spectral preconditioners have substantial overhead compared to the line-relaxation schemes,
it appears counterproductive to use them in problems where the line-relaxation preconditioned iterative solver
converges in several iterations. A broad class of applications falling under this category, are problems with
convergence toward a steady state, where the number of solver iterations typically decreases in the course of
the simulation. Conversely, spectral preconditioners may win big in inherently transient problems, where line-
relaxation schemes cannot take advantage of slow variability of the solution in a portion of the spectral range
(and thus the additivity of error reduction with solver iterations). In general, spectral preconditioners will tend
to be more advantageous in large-time-step integrations requiring numerous solver iterations, or in applications
where the preconditioner is either identical to, or very closely approximates, the governing elliptic operator.

It should be noted that the two-dimensional Fourier transforms employed in the preconditioners exploited the
tensor product nature of the transform, but did not use fast (FFT) techniques in the constituent one-dimensional
transforms. Hence, our conclusions on the relative efficiency of spectral preconditioners may be unduly pes-
simistic. We hope to revisit this question in future work.
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