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ABSTRACT

The latest generation of sounders has far more channels per profile measurement than we are likely to be able to use,
so that we need to think carefully to make use of the information content of the data with least computation. The ideas
of information theory provide a useful basis on which to understand the information content of measurements, and to
develop methods for making best use of it. Shannon information can be used as a tool for optimising instruments and
data analysis systems. An illustration is presented for channel selection for high spectral resolution instruments. For
developing methods of efficiently assimilating such data, the preservation of information can be used as a constraint on
transformations applied to the data before assimilation. An illustration of such a transformation is discussed.

1 Introduction

The latest generation of sounders has far more channels per profile measurement than we are likely to be able
to use. For example an AIRS spectrum contains about 2400 spectral points, compared with a few tens of points
for a radiometer. IASI will have more, around 8500 spectral points, and the really high resolution instruments,
MIPAS and TES include about 16 spectra per profile, with a total number of spectral elements closer to a
million.

Consequently we need to think carefully to make best use of this kind of data with the computational power
available. We need techniques to make use of the information content of the data with least computation. This
will entail a rethink of the current techniques of assimilation of retrievals and of radiances.

2 Information

We start with the concept of information content itself. There are many definitions, of which three are par-
ticularly useful. The first is Shannon’s Information Content, which is a a scalar quantity which relates prior
knowledge to posterior knowledge, rather like a signal/noise ratio. Consequently it can be used as a target for
optimisation. The second is the Fisher Information Matrix, which is a matrix measure of size and shape of the
region of state space containing the uncertainty of our knowledge of the state. It refers only to posterior knowl-
edge, and not at all to prior knowledge. The third is another scalar, the degrees of freedom for signal, which is
an effective number of independent quantities whose uncertainty has been improved by the measurement, and
so also related prior to posterior knowledge.

These concepts can all be developed from the Bayesian perspective, in which knowledge is represented in terms
of a set of probability density functions (pdfs): P(x), thea priori pdf of the state – describing what we know
about the state before we make the measurement;P(y), thea priori pdf of the measurement;P(x,y), is the joint
a priori pdf of x andy; P(y|x), is thepdf of the measurement given the state – this depends on experimental
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Figure 1: A geometric interpretation of the relationship between the prior state estimate, the measurement
mapped into state space, and the posterior estimate, for a 3D state space and a 2D measurement space. The
large ellipsoid is a contour of the priorpdf, the cylinder is a contour of thepdf of the state given only the
measurement, and the small ellipsoid is a contour of the posteriorpdf.

error and the forward function andP(x|y), thepdf of the state given the measurement – describing what we
know about the state after we make the measurement, as illustrated in Figure1. Information is encapsulated in
the relevantpdfs, and most useful measures of ‘information content’ are functions of thesepdfs.

2.1 Shannon Information

The Shannon information content of a measurement ofx is the change, as a result of making the measurement,
in theentropyof the probability density function describing our knowledge ofx. Entropy is defined by:

S{P}=−
∫

P(x) log2{P(x)/M(x)}dx (1)

whereM(x) is a measure function which we will take it to be constant. Qualitatively, entropy can be thought of
as the log of the volume of state space occupied by thepdf. The Shannon information content of a measurement
is the reduction in entropy between thepdf before,P(x), and thepdf after,P(x|y), the measurement:

H = S{P(x)}−S{P(x|y)} (2)

It can be thought of as the log of the ratio of the posterior to prior volumes of state space (the small and large
ellipsoids in Figure1), i.e. the log of a generalisation of signal/noise ratio, measured in bits. For Gaussianpdfs,
the entropy can be obtained from the covarianceS, and the information content becomes:

H =
1
2

log2 |Sprior|−
1
2

log2 |Sposterior| (3)
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2.2 Degrees of freedom for signal and for noise

The state estimate that maximisesP(x|y) in the linear Gaussian case is the one which minimises

χ
2 = [y−Kx ]TS−1

ε [y−Kx ]+ [x−xa]TS−1
a [x−xa] (4)

The r.h.s. has initiallym+ n degrees of freedom, of whichn are fixed by choosingx to bex̂, so the expected
value ofχ2 is m. Thesem degrees of freedom can be assigned to degrees of freedom for noisedn and degrees
of freedom for signalds according to:

dn = E{[y−Kx̂]TS−1
ε [y−Kx̂]} (5)

and
ds = E{[x̂−xa]TS−1

a [x̂−xa]} (6)

Degrees of freedom for signal is a measure of the number of independent quantities for which information is
greater than noise. With some manipulation we can find

ds = tr((KTS−1
ε K +S−1

a )−1KTS−1
ε K)

= tr(KSaKT(KSaKT +Sε)−1) (7)

dn = tr((KTS−1
ε K +S−1

a )−1S−1
a )+m−n

= tr(Sε(KSaKT +Sε)−1) (8)

2.3 Independent measurements

If the measurement error covariance is not diagonal, the elements of they vector will not be statistically in-
dependent, and similarly for anya priori. Further, the measurements will not be independent functions of the
state ifK is not diagonal. It helps to understand where the information comes from if we transform to a dif-
ferent basis. In the context of Figure refball, we scale state space so that the large ellipsoid is spherical, then
rotate to the principal axes of the scaled small ellipsoid. At the same time, we scale measurement space so that
the measurement error ellipsiod is spherical. First, statistical independence. Scale the state and measurement
spaces to define:

ỹ = S
− 1

2
ε y x̃ = S

− 1
2

a x (9)

The transformed covariancesS̃a andS̃ε both become unit matrices, and the forward model becomes:

ỹ = K̃ x̃+ ε̃ (10)

whereK̃ = S
− 1

2
ε KS

1
2
a . The solution covariance becomes:

ˆ̃S= (In + K̃TK̃)−1 (11)

Now makeK̃ diagonal. Rotate bothx andy to yet another basis, defined by the singular vectors ofK̃ :

ỹ = K̃ x̃+ ε̃ → ỹ = UΛVT x̃+ ε̃ (12)

Define:
x′ = VT x̃ y′ = UT ỹ ε

′ = UT
ε̃ (13)

The forward model becomes:
y′ = Λx′+ ε

′ (14)
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The Jacobian is now diagonal,Λ, and thea priori and noise covariances are still unit matrices, hence the
solution covariance becomes:

ˆ̃S= (In + K̃TK̃)−1 → Ŝ′ = (In +Λ2)−1 (15)

which is diagonal, and the solution itself is

x̂′ = (In +Λ2)−1(Λy′+x′a) (16)

not x̂′ = Λ−1y′ as you might expect from (1).

We can summarise by noting that elements for whichλi � 1 or(1+λ 2
i )−1� 1 are well measured, and elements

for which λi � 1 or (1+λ 2
i )−1 � 1 are poorly measured.

2.3.1 Shannon Information in the Transformed Basis

Because it is a ratio of volumes, the linear transformations do not change the Shannon information content.
Thus information in thex′, y′ system is given by

H = S{S′a}−S{Ŝ′}

= −1
2

log(|In|)+
1
2

log(|(Λ2 + I)−1|)

= ∑
i

1
2

log(1+λ
2
i ) (17)

2.3.2 Degrees of Freedom in the Transformed Basis

The number of independent quantities measured is qualitatively the number of singular vectors for whichλi �
1. The degrees of freedom for signal is

ds = ∑
i

λ
2
i (1+λ

2
i )−1 (18)

In the example of Figure1, it is clear that there would be two smallλ ’s, and one large one (close to unity), so
that the number of degrees of freedom for signal would be near two.

Thus for each independent componentx′i , the information content is12 log(1+λ 2
i ), and the degrees of freedom

for signal isλ 2
i (1+λ 2

i )−1

3 Data Subsetting for Retrieval/assimilation Efficiency

High spectral resolution instruments provide more channels than can be used, or are needed. There is duplica-
tion of information. We need a means of selecting the channels or microwindows which contain most of the
information.

For an instrument like AIRS or IASI, where the forward model computes radiances separately for each channel,
the basic strategy is to select channels independently and sequentially. Starting with no channels selected:
(1) Compute the information content of each channel not yet selected, relative to those selected; (2) Select the
channel providing the most information; (3) Repeat until enough information has been gathered. The effect is
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Figure 2: A residual information spectrum, before (upper) and after (lower) selecting the channel with the
most information. This example for AIRS uses an early set of early weighting functions supplied by Allen
Huang. The detailed algebra and numerical method for this process can be found in Rodgers (1996).

illustrated in figures2, 3 and4. In figure2, the top curve is the information content of each channel considered
individually. The channel with most information is a window channel at number 2316. The other curve is
the information content of the remaining channels after 2316 has been selected. It can be seen, for example,
that nearby channels no longer have significant information and that other window channels elsewhere in the
spectrum also have reduced information. This is because they are very similar to the one selected, and convey
more or less the same information. Figure3 shows the same two curves, plus the residual information after
10, 100 and 1000 channels have been selected. A cumulative information spectrum is shown in figure4. This
indicates that almost all of the information can be obtained with a relatively small number of channels. It
is generally found that the cumulative information content of the channels selected increases approximately
logarithmically with their number.

For an instrument like MIPAS, where the forward model computes the spectrum monochromatically on a fine
grid, and then convolves with a spectral response function, there is a computational advantage in computing
several adjacent spectral points, or ‘microwindows’. The same applies to adjacent vertical points for a limb-
sounder with a finite field of view function. The basic strategy is then: (1) Select a ‘seed’ channel from the
whole spectrum, providing most information; (2) Select adjacent channels (spectrally or in tangent altitude)
providing the most information; (3) When no significant increase in information is obtained, or the microwin-
dow reaches a predetermined size, select a new seed for a new window.

The simple approach outlined applies to instruments where the error analysis is complete and the retrieval is
optimal. The sub-optimal case includes for example situations where there are systematic errors not included
in the error covariance used in the estimator. In these cases, the effective information content of the retrieval
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Figure 3: Residual information after selecting 0, 1, 10, 100 and 1000 channels.

Figure 4: Cumulative information content as each channel is selected. The tallest spikes correspond to the
channels first selected.
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must be calculated with the priorpdf, and a posteriorpdf that includes all known errors, notionally:

H =
1
2

log2 |Sprior|−
1
2

log2 |Sposterior+Ssystematic| (19)

It is possible for the information content to be negative in these circumstances, so we add another stopping cri-
terion for selecting microwindows: when the incremental information is not positive. Details of the calculations
required can be found in Dudhia et al. (2002).

4 Data Transformation for Assimilation

We can also use the ideas of information content to develop an efficient way of assimilating data from in-
struments with large numbers of channels. We can construct a representation of the information content of a
measurement using a number of pseudo-channels corresponding approximately to the number of degrees of
freedom for signal.

To assimilateanyobservation we need a forward model for the observation, a Jacobian of the forward model
and the error characteristics of the observation. The usual approach to assimilating retrievals as observations
involves approximations: the retrieved profile is taken to be an estimate of the true profile, the forward model
is a unit matrix (at its simplest) or, more generally, an interpolation operator, the error covariance is taken to be
diagonal and the error covariance is taken to be constant. However the retrieval contains a priori, and often has
poor vertical resolution. If it is regarded as an estimate of the true profile, then its error depends on the profile,
and its error covariance neither diagonal nor constant.

4.1 Assimilating radiances

A better approach is to assimilate radiances, for which we need: a forward model for the observed radiances; a
Jacobian of the forward model and error characteristics of the radiances. This looks conceptually more straight-
forward, but the forward model is much more complex than for assimilating retrievals. It involves modelling
such things as: radiative transfer equation with several absorbers; instrument spectral response; instrument field
of view response and instrument scan strategy. It is particularly time consuming for an instrument such as AIRS
with around 2300 channels or MIPAS with∼ 106 channels per observation. especially as the Jacobian must be
computed at the same time.

The error characteristics are generally simpler than for retrievals, the covariance is usually taken to be diag-
onal and constant, but systematic errors should really be taken into account, These are not diagonal, and are
correlated between successive observations.

4.2 What else could we assimilate?

For simplicity and efficiency of assimilation, we would like a data representation to: have a trivial forward
model, preferably linear; have no more observation elements than the number of degrees of freedom; have
a diagonal error covariance; have noa priori component; represent all of the information contained in the
measurement and have the bulk of the calculation done offline, before the assimilation, and preferably by the
data supplier

Any information-preserving transformation of the data can be used, provided it has a forward model, a Jacobian
and an error analysis. A critical insight is that any linearisation need be valid only over an appropriate range of
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the parameters, and this range is, in effect, the error bounds of a retrieval.

Possibilities include a linearised and prewhitened radiance model, evaluated at an offline retrieval, and an
averaging kernel representation of a retrieval, prewhitened. Either of these can be compressed by the use
of singular vectors of the linear model, and both contain all of the information of the measurement, and are
algebraically simple for the assimilator.

We note that if a transformation preserves the relative sizes and shapes of the prior and posterior probability
density functions, then the information in the measurement is preserved. Any full-rank linear transformation
will do this, e.g. rotations and scale changes in state space. Any complete description of the posteriorpdf
contains all of the information in the measurement relative to the prior.

We should also note that for assimilation, we only want to preserve the information content (i.e. thepdf) of the
measurement– the prior doesn’t matter. But the only part of thepdf that matters is that part of the priorpdf
that lies in the (smaller) region of the posteriorpdf.

4.3 A transformed retrieval

The retrieval characterisation contains all of the information of the measurement:

x̂ = xa +A(x−xa)+Gεy (20)

wherexa is a priori, A is Averaging kernel,G is the Kalman gain andεy is the measurement error. Thus the
retrieval can be interpreted as providing a measurementx̂ of x with a linear forward modelxa +A(x−xa) and
errorsGεy.

Now definez = S
− 1

2
x̂ [x̂+(A− I)xa], whereSx̂ is the covariance ofGεy. This has a forward model

z = S
− 1

2
x̂ Ax + εz (21)

whereεz has covarianceI . We note thatz contains noa priori contribution and contains all of the information
content of the original measurement. The representation will be valid as long as the radiance forward model is
linear within the error bounds of the retrieval.

It may be possible to simplify further by using a singular vector expansion,S
− 1

2
x̂ A = UΛVT . Then:

z = UΛVTx+ εz (22)

We can now definez′:
z′ = UTz = ΛVTx+UT

εz (23)

The covariance ofUTεz is still unity. The elements ofz′ corresponding to small singular values can be ignored.
The number kept should be approximately equal to the degrees of freedom for signal. (This derivation has been

slightly simplified. we can be more rigorous by prewhiteningx with S
− 1

2
a .)

4.4 Comments

The procedure to be carried out on the raw data before assimilation is to: retrieve a profile by any appropriate
method in order to find a linearisation point, carry out the above transformations, and provide the assimilation
with the truncatedz′ as a measurement withΛVT providing the forward model.
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The complex part of the retrieval, radiative transfer, is done only once. It is not needed for every iteration of
the assimilation, and can be done offline, before the assimilation. The retrieval method need not be optimal,
as long as it is within linear reach of the true state, and has a proper characterisation and error analysis, and
preserves information. Retrievala priori does not pollute the information given to the assimilation. It is only
used to provide a linearisation point. A similar process can be carried out for radiances, based on the linearised
radiance forward model

y = f(x0)+K(x0)(x−x0)+ εy (24)

wherex0 is any linearisation point, e.g. a retrieval. Finally, the approach will not be optimal for grossly
nonlinear retrieval problems, but in that case, a direct assimilation also is not optimal.

5 Summary

Information Content is a useful conceptual tool for optimisation, it can be applied effectively to selection of raw
data for retrieval and assimilation, and can also be applied to the preparation of data for optimal assimiliation
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