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ABSTRACT

Herein, we review our effort to date with the development of a deformable-coordinates multi-scale anelastic model.

The model is designed using a synergetic interaction between the rules of continuous mapping and the strengths of

nonoscillatory forward-in-time (NFT) numerical schemes. This approach leads to an efficacious computational model

that is highly accurate and capable of simulating a wide variety of flows.

1. Introduction

Geophysical flows are generally characterized by enormous ranges of scales. An elementary example is pro-
vided by a convective atmospheric storm — where the scales of significant physical processes that occur range
from water/ice droplet condensation/evaporation/sublimation � 10�5 m to the outer convective dynamics of
the storm � 105 m — a staggering ratio of ten billion to one. Effective parameterizations of the microphysical
processes may eliminate the dependency upon sub-meter scales; however microphysical processes are known
to depend sensitively upon local environmental conditions. From the simulation viewpoint the outstanding
question is then just how finely must local environments be resolved? The answer depends in a complicated
way upon the processes being simulated. For cloud parameterizations in regional to global atmospheric models,
the minimum resolution may be cloud system-resolving � 1km [20]. While this is well beyond current state of
the art global simulations, advances in computational hardware and software will likely make such resolutions
attainable in a reasonably-near future. We believe that mesh adaptivity should play a significant role in this
development as well as in other high performance computations of geophysical problems.

With mesh adaptivity for simulating complex geophysical flows in mind, we have developed a generalized
mathematical framework for the implementation of deformable coordinates in a generic Eulerian/semi-Lagrangian
format of nonoscillatory-forward-in-time (NFT) schemes [19][34][29]. The key element of the framework is a
time-dependent coordinate transformation, implemented rigorously throughout the governing equations of the
nonhydrostatic anelastic model for simulating a broad range of idealized atmospheric/oceanic flows on scales
from micro to planetary [28]. A computational model that is designed from the bottom up combining NFT
algorithms and generalized coordinates is ideally suited for continuous grid adaptation. The robust perfor-
mance of NFT methods enables the ability to mimic “nested” grids [19] and to accommodate large-amplitude
undulations of the model boundaries [34][29]. Furthermore, since NFT methods offer a means of implicit
subgrid-scale (SGS) modeling,1 even an explicitly-inviscid model formulation can be quite effective in assur-
ing a quality large-eddy-simulation (LES) of high Reynolds number geophysical flows [28]. Together with
the momentum/velocity representation of the governing equations and the associated discrete elliptic problem,
these properties facilitate turbulent-flow studies in generalized coordinates by obviating the task of evaluating
the more cumbersome of the differential expressions such as vorticity, scalar Laplacian, and viscous stress.

1For a theoretical rationale and result analysis see [11] and [12][5], respectively.
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Although not essential for simulating geophysical flows, rigorous and accurate representation of the vector
differential calculus in generalized coordinates is important. The curl operator, ∇ �, is required for accurate
evaluation of vorticity/potential-vorticity budgets — a discriminating tool for analyzing complex vortical flows
(see [21] for an example). The strain-rate tensor, �∇ v� ∇ vT �, is a key element of direct numerical simulation
(DNS). Knowledge of its exact form in generalized coordinates allows one to extend the expertise of mete-
orological models to low Reynolds number flows, in the spirit of laboratory studies which often supplement
research on the dynamics of atmospheres and oceans (e.g., [21][28][35]). Also, it is a key element of explicit
SGS models that are useful, beyond standard LES studies, for diagnosing SGS fluctuations and flow uncertain-
ties. Finally, because the curl and gradient operators emphasize important aspects of fluid flows, they may serve
well as discriminating indicators for driving the grid adaptivity itself.

The fundamental differential operators have a tangible, physical existence that is independent of any coordinate-
based description. However, coordinate-based representations are necessary for computing the explicit form
of all requisite terms. Since the precise form of the terms depends upon the coordinate system being used, a
tensor representation is preferable. The latter reveals [19] three distinct forms of velocity (physical, contravari-
ant, and solenoidal) helpful for designing an efficient, high Reynolds number NFT fluid solver in generalized
coordinates. Applications involving vorticity and/or strain rate also require consideration of the covariant form
[29]. With the four distinct forms of velocity and numerous identities — which arise from the coordinate-
invariance of geometric properties of the time-evolving physical domain — there are a number of various
coordinate-dependent operator representations. Although they are all analytically equivalent, they lead to vari-
ous numerical approximations that are not equally effective.

Herein, we review our effort to date with the development of a deformable-coordinates multi-scale anelastic
model designed from the bottom up relying on the strengths of nonoscillatory transport methods. In the follow-
ing section we outline the governing anelastic-model equations and summarize the computational approach.
In section 3, we discuss extensions for curvilinear representation of the vorticity, Fickian diffusion, strain,
and stress as well as tensor identities complementing the preceding development. Theoretical discussions are
illustrated with examples of idealized flows. Remarks in section 4 conclude the paper.

2. Anelastic luid model in deformable coordinates

2.1 Motivation

For research studies of all-scale geophysical fluids — including nuances of coordinate transformations and
associated numerical issues — we have found the anelastic nonhydrostatic system beneficial. Although the
nonhydrostatic anelastic equations have been shown to be accurate for modeling the elements of weather and
climate up to synoptic scale [17], their suitability for global weather and climate prediction has been often
criticized — lately, using arguments of linear normal mode analysis [4]. Notwithstanding, our recent numerical
results [27][8] document that the anelastic equations do adequately capture a range of idealized planetary flows.
This has important practical consequences. Inherent in the anelastic system are (i) the Boussinesq linearization
of the pressure gradient forces and the mass fluxes in the momentum and mass continuity equations, respec-
tively, and (ii) the anelasticity per se, equivalent to taking the limit of an infinite speed of sound. Working in
concert, these two approximations greatly simplify the design of second-order-accurate, flexible, and compu-
tationally efficient (viz., implicit with respect to inertia-gravity waves) research models for a broad range of
geophysical flows. From the perspective of numerical engineering, the anelastic model code forms a basis of
several other modeling systems, since it converts easily into either compressible/incompressible Boussinesq
or incompressible Euler flow solvers [27], or even into a fully compressible solver for high-speed flows [30].
The rigor imposed by the associated boundary value problem for the anelastic pressure equation benefits the
accuracy of the converted models.
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2.2 Analytic Formulation

To address a broad class of geophysical flows in a variety of domains, — with, optionally, Dirichlet, Neumann,
or periodic boundaries in each direction —we formulate (and solve) the governing equations in transformed
coordinates �t�x�y�z� within a computational domain St with, in general, cuboidal, toroidal, or a spheroidal
topology implied by the physical boundary conditions. The coordinates �t�x�y�z� in the physical domain Sp

are assumed orthogonal and stationary — Cartesian or spherical are typical examples. The physical domains
admitted under the diffeomorphism

�t�x�y�z�� � t� E�t�x�y�� D�t�x�y�� C�t�x�y�z� � � (1)

cover a range from the canonical Cartesian box, to spherical shells with irregular undulating boundaries. In
the latter case, the topology of the cuboid is still an option. By removing an arbitrary small circle about
the poles, the traditional differentiation across the pole is replaced with Neuman boundaries on the circle,
thereby simplifying the use of the same model both for global and small-to-mesoscale applications. This option
is important for improving communications in the massively-parallel variant of the model code when a grid
deforms in the vicinity of the poles. The assumption in (1) that the transformed horizontal coordinates �x�y� are
independent of the vertical coordinate z follows the primary hydrostatic structure of the atmosphere and oceans
and simplifies the metric terms. Examples of mappings embedded in (1) include the classical terrain-following
coordinates of Gal-Chen and Somerville [7], their time dependent extensions [18][34], as well as a horizontal
stretching whereby the horizontal coordinates in St are arbitrary (in theory subject to C2 continuity; cf. [19])
functions of the time and horizontal coordinates in Sp.

Given the transformation (1) the anelastic equations of Lipps and Hemler [9] can be written as follows

∂ �ρ�vsk
�

∂xk � 0 � (2)

dvj

dt
�� �Gk

j
∂π�

∂xk �g
θ �

θb

δ3
j �� j �� j � (3)

dθ �

dt
��vsk ∂θe

∂xk �� � (4)

where the physical and geometrical aspects intertwine each other. Insofar as the physics is concerned: vj

denotes components of the physical velocity (defined in Sp);2 θ, ρ, and π denote potential temperature, density,
and a density-normalized pressure; g is the acceleration of gravity; �j symbolizes the deviation of inertial
forces (e.g., Coriolis and geospherical metric accelerations) from the geostrophically-balanced ambient (or
environmental) state vj

e, θe; whereas � j and � symbolize viscous dissipation of momentum and diffusion
of heat, respectively. Primes denote perturbations with respect to the environmental state, and the subscript

b refers to the basic state, i.e., a horizontally homogeneous hydrostatic reference state of a Boussinesq type
expansion around a constant stability profile (cf. section 2b in [3], for a discussion).

The geometry of the coordinates in (1) enters the governing equations as follows: ρ� :� ρbG,3 G denoting the
Jacobian of the transformation (defined in the subsequent paragraph), and j�k � 1�2�3 correspond to “x”, “y”,
“z” components, respectively, in either Sp or St . In the momentum equation (3), �Gk

j :�
�

gj j�∂xk�∂x j� are

renormalized elements of the Jacobi matrix where summation is not implied over j, and δ3
j is the Kronecker

delta. The coefficients gj j are the diagonal elements of the conjugate metric tensor of Sp (defined below). The
2In meteorological applications, the physical velocity is typically defined using a local Cartesian system and so has dimensions of

length/time; a distinct representation of the physical velocity, vj �� v j, also exists for the transformed coordinate system; cf. [19].
3We use :� to mean defined as, to distinguish from � (identically).
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total derivative is given by d�dt � v�i
�∂
Æ

∂xi�, where v�i :� dxi�dt :� ẋi is the contravariant velocity in St .
Here i � 0�1�2�3; and i � 0 refers to time t. Appearing in the mass continuity (2) and potential temperature (4)
equations is the solenoidal velocity,

vsk :� v�k � ∂xk

∂ t
� (5)

so named for distinction, because of the form mass continuity takes with it. This solenoial form readily follows
— given ρb � ρb�x�, and the time-independent coordinate system in Sp — from the tensor invariant form of

anelastic mass continuity equation G
�1∂ �ρbGv�i

�
Æ

∂xi � 0 see [19] and the references therein for a discussion.4

Since the identity transformation is specified for the time coordinate (1), the solenoidal velocity for the time
coordinate vanishes, i.e., vs0 � 0. For this reason the indices in (5) indicate the usual three spatial elements,
whereas the contravariant velocity is defined more generally as a 4-element 1-form (1-forms have one index, 2-
forms have 2 indices,...). Use of the solenoidal velocity facilitates the solution procedures because it preserves
the incompressible character of numerical equations. While numerous relationships can be derived that express
any velocity (solenoidal, contravariant, or physical) in terms of the other, in either transformed or physical
coordinate system [19], a particularly useful transformation

vs j
� �G j

k
vk � (6)

relates the solenoidal and physical velocities directly.

The elements of the metric tensor of the transformed coordinates are gmn � gpq�∂xp
Æ

∂xm� ��∂xq
Æ

∂xn�, where
gpq denotes the metric tensor of the physical coordinate system (which need not be Cartesian). The Jacobian
is then G � �gmn�1�2. The elements of gpq may be computed from the definition of the fundamental metric
ds2 � gpqdxpdxq by employing geometrical arguments. In particular, for Sp with orthogonal coordinates, the
Pythagorean Theorem may be used to construct ds2 within an infinitesimal volume element. The elements of
the conjugate metric tensor, needed in (3), are then computed from gj j � 1�gj j since gpq � 0 for p �� q.5 Note

that unlike gpq, the metric coefficients �Gq
p appearing in Eq.’s (3) and (6) are not symmetric (i.e., �Gq

p �� �Gp
q).

2.3 Numerical Approximations

Given (2), each prognostic equation of the anelastic system (3) and (4) can be written compactly either as a
Lagrangian evolution equation

dψ
dt

� R � (7)

or an Eulerian conservation law

∂ρ�ψ
∂ t

� ∇ � �ρ�v�ψ� � ρ�R � (8)

Here ψ symbolizes vj or θ �, R denotes the associated rhs, ∇ � :� ∂�∂x,6 where x :� �x� y� z�.

The theory and performance of our NFT approach have been broadly documented in the literature; see [28]
for a succint review. In essence, we approximate either (8) or (7) to second-order accuracy in space and time,

4Note that the tensor invariant form has a time derivative even though the anelastic approximation is being used, a result of the time
variation of the geometry of St in (1).

5In choices of Sp with non-orthogonal coordinates, the metric tensor can be computed analytically from its definition, given a map-
ping from a coordinate system with known metric structure to the non orthogonal one. The conjugate metric tensor can be determined
from gpkgkq � δq

p .
6This divergence operator as well as the gradient operator defined for (10) —(12) are compact notations useful for conveying

the structure of the numerical operators; although similar to the tensor invariant forms of divergence and gradient which appear in
subsequent sections, they are devoid of the metric structure of St .
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employing a formal congruency of the Eulerian [24] and semi-Lagrangian [23] optional model algorithms,
respectively. Then either algorithm can be written in the compact form

ψn�1
i � LEi�ψ̃��0�5∆tRn�1

i :� �ψi �0�5∆tRn�1
i ; (9)

where ψn�1
i is the solution sought at the grid point �tn�1�xi�, ψ̃ :� ψn �0�5∆tRn, and LE denotes a two-time-

level either advective semi-Lagrangian or flux-form Eulerian NFT transport operator. In the Eulerian scheme,
LE integrates the homogeneous transport equation (8), i.e., LE advects ψ̃ using a fully second-order-accurate
multidimensional NFT advection scheme [25][28]; whereas in the semi-Lagrangian algorithm, LE remaps
transported fields, which arrive at the grid points �t�xi�, back to the departure points of the flow trajectories�
tn�xo�t

n�1�xi�
�

also using NFT advection schemes [22][23].

For inviscid adiabatic flows, equation (9) represents a system of equations that is implicit with respect to all
dependent variables in (3) and (4), since all forcing terms are assumed to be unknown at n�1. For the physical
velocity vector v � �v1�v2�v3�, it can be written compactly as

vi � �vi�0�5∆t
��G�∇ π��

�
i
�0�5∆tRi�v� �θ� � (10)

where �G �
� �Gk

j

�
with the matrix elements �Gk

j defined in section 2.2, �ζ ∇ ζ :� ∂ζ �∂x (see footnote 6), and

Ri�v� �θ� accounts for the implicit representation of the buoyancy via (4). On grids unstaggered with respect to
all prognostic variables (e.g., A and B Arakawa grids), (10) can be inverted algebraically to construct expres-
sions for the solenoidal velocity components that are subsequently substituted into (2) to produce	

∆t
ρ�

∇ �ρ��GT
��

I�0�5∆tR
�
�1��v�0�5∆t�G�∇ π��

��

i
� 0 ; (11)

that is, an elliptic equation for pressure	
∆t
ρ�

∇ �ρ��GT
���v��I�0�5∆tR

�
�1�G�∇ π���

�

i
� 0 � (12)

where ��v� �
I� 0�5∆tR

�
�1�G�∇ π��� � vs defined in (5), π�� :� 0�5∆tπ�; cf. [19] for the complete develop-

ment. Boundary conditions imposed on vs �n, subject to the integrability condition
�

Ω ρ�vs �ndσ � 0, imply
the appropriate boundary conditions on π�� [19, 34]. Here Ω � ∂St and ndσ is the corresponding area el-
ement with local orientation perpendicular to Ω. The resulting boundary value problem is solved using a
preconditioned nonsymmetric Krylov-subspace solver [26]. Given the updated pressure, and hence the up-
dated solenoidal velocity, the updated physical and contravariant velocity components are constructed from
the solenoidal velocities using transformations (6) and (5), respectively. Nonlinear terms in Rn�1 (e.g., metric
terms arising on the globe) may require outer iteration of the system of equations generated by (9) [27]. When
included, diabatic, viscous, and subgrid-scale forcings may be first-order-accurate and explicit, e.g., assume
SGS�ψn�1� � SGS�ψn����∆t� in Rn�1, see section 3.5.4 in [25]. For extensions to moist processes, see [8].

3. Extensions

3.1 Vorticity

The vorticity, defined as the curl of the velocity field ωωω � ∇ � v, carries physical significance independent of
the choice of coordinate system that one uses to describe a fluid flow. In curvilinear coordinates, one needs
to carefully distinguish between covariant and contravariant (as well as mixed) forms in order that a physical
vorticity with appropriate dimensions may be recovered, for this is what one would observe in a laboratory or
in the field.
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Following the notation of the preceding section, we begin with the formal definition of vorticity in the coordinate-
invariant covariant tensor form, cf. [31]:

ω�

jk � v�k� j � v� j�k � (13)

Here v� j denotes the covariant velocity distinguished from the contravariant velocity v� j only by the index
position7, and indices following a comma refer to covariant differentiation; i.e., evaluating elements of the
gradient operator. In particular, for the covariant velocity

v� j�k �
∂v� j

∂xk �
	

p
j k



v�p � (14)

The term in brackets is a Christoffel symbol of the second kind [31], and it appears due to the twisting and
turning of the curvilinear coordinates. It may be computed from:

	
p

j k



� gpq

�
1
2

�∂g jq

∂xk �
∂gkq

∂x j �
∂g jk

∂xq

��
� (15)

The term in square brackets is a Christoffel symbol of the first kind, and is denoted as � jk�q� [31]. Similar
to j�k, the indices p�q � 1�2�3 correspond to “x”, “y”, and “z”. Equation (15) reveals that both types of
Christoffel symbols are symmetric with respect to indices � j�k�. Because of this symmetry, when (14) is
substituted into (13), the Christoffel terms cancel and the derivatives appearing in (13) may be interpreted
as partial derivatives. However we retain the definition using covariant derivatives since in general partial
derivatives do not correspond to tensor forms.

The covariant vorticity (13) is the principal form. However, we wish to develop the physical vorticity form as
a function of physical velocity gradients. In general covariant velocities are unavailable in the model, because
they are not required to solve the governing equations. Routinely stored are the physical velocity components
v j expressed in terms of the coordinates x of the transformed space St where the computation is done. In order
to compute in St the physical vorticity defined in Sp in terms of vj we (i) write (13) for the reference system
Sp using the covariant velocities of the reference system v� j, (ii) rewrite the covariant velocities in terms of the
physical velocities using v� j �

	gj jv
j, (iii) transform all spatial derivatives into the curvilinear space St using

the chain rule, and (iv) extract the physical vorticity by rescaling according to ω� jk �
	gj jgkkω

jk. The final
result is:

ω jk �
�

gkk �Gp
j

∂	gkkvk

∂xp �
�

gj j �Gq
k

∂	gj jv
j

∂xq � (16)

Although this expression appears considerably more complicated than (13), our restriction to orthogonal co-
ordinate systems for Sp has resulted in a relatively simple expression. The simplification occurs in the con-
versions from covariant to physical forms, which more generally (for non-orthogonal coordinates) are v� j �

�gjp�
	

gpp�vp for the velocity, and ω�

jk �


gj j�gpp gkpω jp for the vorticity. Unlike the orthogonal conver-

sions used in (16), these more general forms involve a repeating index p [1]. Note that the covariant form (13)
and not the physical form (16) is a coordinate invariant tensor form of vorticity. The covariant form is much
simpler, is already written in conservative form, and will be shown to exhibit the expected symmetries with
the rate of strain tensor in section 3.3. An immediate observation from equations (13-15) is that ω�

jk is skew
symmetric. Thus any three independent elements suffice to describe the vorticity vector (e.g., we could define
ωx � ω23, ωy � ω31, and ωz � ω12). With this structure in mind, (16) may be written more compactly as:

ωq � εq jk

�
gkk �Gp

j

∂	gkkvk

∂xp � (17)

7In any coordinate system, v�k � g jk v� j , an operation termed the lowering of indices.
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where εq jk is the permutation symbol.

Another derivation of interest involves the divergence of the vorticity, ∇ �ωωω � ∇ � ∇ � v � 0, a fundamental
vector differential identity. Since we compute the divergence, the vorticity must be expressed in contravariant
form (see section 3.2, equations (26- 28) for the development of the generalized divergence operator). This
is readily accomplished using (13-17). The key elements are to (i) convert (17) into a contravariant-like form
using ω�q �

	
gqq ωq, and (ii) utilize (13) and (14), both written for Sp, to reorganize the rescaled version of

(17) into the proper tensor form. One then obtains the alternate, contravariant vector form of vorticity:

ω�q � ε�q jkv�k� j� (18)

Here ε�q jk :� εq jk

�
gqqg j jgkk � εq jkG�1 is the third order, contravariant permutation tensor [1], and G is the

Jacobian for Sp. Using equation (28) the tensor invariant form for the divergence of the vorticity vector is then
defined to be:

∇ �ωωω :�
1
G

∂
∂xq

�
Gε�q jkv�k� j

�� 0� (19)

That this expression is indeed indentically zero may be determined by direct computation (expansion). Al-
though (19) and it’s analogue in St are analytically correct, neither is a form that is convenient for numerical
computation. In order to construct a useful expression for the divergence of the vorticity, we begin with (19)
but emphasize the physical vorticity components as given in (17). The chain rule is then utilized to transform
derivatives into the coordinates of St , and the resulting expression is rearranged as follows:

0 � 1
G

∂
∂xq

�
G
	

gqqωq�� 1

G

�
G
G

∂xp

∂xq

�
∂

∂xp

�
G
	

gqqωq� � (20)

which is further rearranged into:

0 � 1

G

∂
∂xp

	�G
G

∂xp

∂xq

��
G
	

gqqωq�
��G
	

gqqωq

G

� ∂
∂xp

�G
G

∂xp

∂xq

�
� (21)

The last term in (21) is identically zero via the tensor identity termed the generalized conservation law or GCL
(see the discussion of (48) in Section 3.4). We simplify the remaining term by defining the solenoidal vorticity,
ωs p :� �Gp

qωq, by analogy with the solenoidal velocity (6). The final result is:

1

G

∂
∂xp

�
Gωs p�� 0� (22)

Of considerable significance is that “other” expressions for the divergence of vorticity — for example using co-
variant, physical, or mixed forms inappropriately; and/or using divergence/curl “operators” without the correct
metric structure will not satisfy the vector identity. In particular, if a non-Cartesian coordinate system is used
to describe Sp, then the physical velocity/vorticity components are not the correct forms to enter directly into
the curl/divergence operators.

Finally we consider how to compute Ertel’s potential vorticity, P � �ωωω � ∇ θ��ρb. For adiabatic, frictionless
flows, P is a conserved quantity, i.e., dP�dt � 0 [2], making it a valuable tracer for dynamical studies. Since P
is a scalar field, and ∇ θ is a pure covariant form, then ωωω must be written in contravariant form. Thus:

P :�
ω� j

ρb

∂θ
∂x j �

ωs j

ρb

∂θ
∂x j (23)

The expression on the extreme right hand side gives a computationally useful form and follows immediately
from the middle form of (23) when one rescales the contravariant vorticity into the physical vorticity, applies the
chain rule to transform to the coordinates of St , and organizes the resulting terms into the solenoidal vorticity
as defined in (22).
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In order to illustrate (17) and (22) at work, we consider the numerical simulation, presented in [34], of a flow
of an ideal 3D homogeneous Boussinesq fluid past oscillating membranes. The membranes form impermeable
free-slip upper and lower boundaries, Fig. 1, and their shape is prescribed, respectively, as

zs�r�x�y�� t� �

	
zs0 cos2 �πr�2L� sin �2πt�T � if r�L 
 1�
0 otherwise�

(24)

H�x�y� t� � H0� zs�x�y� t� �

with r �
�

x2 � y2, oscillation period T � 48∆t, amplitude zs0 � 51�2∆z, the membranes’ half-width L �

51�2∆x, where ∆x � ∆y � ∆z, and C�t�x�y�z� � H0 �z� zs���H� zs� in (1). The computational domain consists
of 160� 160� 128 grid intervals, in the horizontal and vertical, respectively; and the LE operator in (9) is
semi-Lagrangian. The domain deformation is significant, since at t � T�4, the upper and lower boundaries are
separated merely by one fifth of the vertical extent of the model. The magnitude of the induced flow and its
variation is approximately 5 and 0.5, respectively, as measured by � �� ∆tv��∆x � and � �� ∆t∂v��∂x � —
the (maximal) Courant and “Lipschitz” numbers (cf. [23] for a discussion).

Figure 1: Potential flow simulation past 3D undulating boundaries. Flow vectors and isobars are shown in
the central xz plane.

Table 1: Vorticity errors in a potential flow simulation
field Max ��� Average Standard deviation
∆tω1 6.99�10�2 -4.87�10�18 1.90�10�3

∆tω2 6.98�10�2 -3.19�10�17 1.90�10�3

∆tω3 7.62�10�3 2.20�10�18 1.71�10�4

∆t∇ �ωωωs 2.94�10�5 -7.52�10�18 3.75�10�7

Lacking diabatic forces, boundary friction, and buoyancy, the experimental setup implies a potential-flow so-
lution with zero integral pressure force on the bounding walls (D’Alembert paradox, cf. [14]). Indeed, the
authors have verified in [34] that the pressure drag is on the order of round-off errors. We have computed
ωωω∆t as implied by (17), using standard centered finite-difference approximations. Since the simulated flow
is clearly potential, the residual vorticity is primarily due to the truncation error of evaluating (17) itself. In
general, we find the domain averaged residual vorticity(�∆t) on the order of round-off errors, with standard
deviations �

�
2 � 10�3 — i.e., 3 and 2 orders smaller than the flow magnitude as measured, respectively, by �

and� . Furthermore, divergence of the solenoidal vorticity, evaluated from (22), is 7 and 6 orders smaller than
� and � . Thus our numerical results satisfy the vector identity for the vanishing of the divergence of curl
to a high level of accuracy.8 For emphasis, Table 1 shows statistics from t � T�4 when the displacement of

8The residual of the divergence of curl depends upon the level of pressure convergence.
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membranes is maximal but flow weak (� � 1�2 and � � 0�14) thereby representing the worst-case scenario.

3.2 Scalar Diffusion

Scalar diffusion is of paramount importance in many geophysical processes, ranging from the transport of
water vapor in the atmosphere to salt in the oceans and heat in both. We begin the generalized formulation by
considering an arbitrary scalar field φ with diffusion flux proportional to the gradient of φ, defined in Sp as

Φ�

j :� ρbαφ� j � (25)

Here α is a diffusivity coefficient (with the dimension length2�time�1), and φ� j denotes the partial derivative9

with respect to xj. Note that the flux Φ�

j is a pure covariant form.

In order to compute the “ρbα -modified Laplacian” of φ, � �φ�, we take the divergence of Φ�

j , first raising
it’s index [31], since the argument for the generalized divergence operator must be a contravariant form. The
divergence of Φ� j � gjkΦ�

k is defined to be the covariant derivative of Φ� j contracted on j [1], i.e., Φ� j
� j

. Thus

� �φ� :� Φ� j
� j

where

Φ� j
� j �

∂Φ� j

∂x j �

	
j

j k



Φ�k � (26)

The difference in sign of the Christoffel term compared to (14) is due to taking the covariant derivative of a
contravariant form rather than a covariant form. It is possible to eliminate the Christoffel term in (26) and
rewrite the divergence in conservative form by employing the identity	

j
j k



� 1

G
∂G
∂xk � (27)

cf. section 2.5 in [31]. Thus we may write the divergence as:

Φ� j
� j �

1
G

∂GΦ� j

∂x j � (28)

and the Laplacian as:

� �φ� �
1
G

∂
∂x j

�
αρbg j jG

∂φ
∂x j

�
� (29)

The scalar advection-diffusion equation can now be readily generalized from its typical form in Cartesian
coordinates to the orthogonal coordinates of Sp. Using (29), it must be:

dφ
dt

� Sφ �
1

ρbG
∂

∂x j

�
αρbg j jG

∂φ
∂x j

�
� (30)

where the scalar field Sφ accounts for sources/sinks. The total derivative on the left hand side of (30) is in fact
the material derivative when the transported field is a scalar. It is also an invariant form as revealed by:

dφ
dt

:�
∂φ
∂xi v�i �

∂φ
∂xm

∂xm

∂xi v�i �
∂φ
∂xm v�m �:

dφ
dt

� (31)

The range of index m � 0�1�2�3 is the same as that of i; note that given the identity transformation for time
in (1), that v�0 � 1. Equation (30) is not quite the fully generalized invariant form required for St . The total
derivative may be immediately rewritten in terms of St given (31). The Laplacian is transformed using exactly

9The notation of the previous section suggests that it is the covariant derivative that is needed here. In principle this is correct,
however for the scalar field φ the contribution from Christoffel terms vanish, and one is left only with the partial derivative.
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the same procedure as was used for the divergence of the vorticity, cf. equations (20) and (21), i.e., starting
with (29), we employ the chain rule to change coordinates and reorganize as:

� �φ� �
1

G

∂
∂xp

	�G
G

∂xp

∂x j

��
αρbg j jG

∂xq

∂x j

∂φ
∂xq

�

� 1

G

�
αρbg j jG

∂φ
∂x j

� ∂
∂xp

�G
G

∂xp

∂x j

�
� (32)

As in (21), we note that the second term on the right hand side of (32) vanishes because of the GCL (48).
Recognizing the metric tensor element gpq among the remaining coefficients in the first term yeilds:

� �φ� �
1

G

∂
∂xp

�
αρ �gpq ∂φ

∂xq

�
� (33)

Substituting (31) and (33) into (30), one obtains the generalized form:

dφ
dt

� Sφ �
1
ρ�

∂
∂x j

�
αρ �gjk ∂φ

∂xk

�
� (34)

The source Sφ does not require any modification. This is the coordinate invariant form of the advection-diffusion
equation, and since φ is a scalar, it is simultaneously in physical form.

The diffusion of heat, symbolized by the � term on the rhs of (4), is a particular realization of the general
problem for scalar diffusion in (34). It is defined in Sp as a divergence of the diffusion flux of the scalar field
θ �. Consequently,

� �
1
ρ�

∂
∂x j

�
αρ �g jk ∂θ �

∂xk

�
� (35)

thereby expressing � solely in St , cf. [7].

3.3 Momentum Dissipation

Our use of a curvilinear, though orthogonal and stationary, reference space represents a significant departure
from earlier transformation methods (e.g., [33][7]) where all relevant formulae were derived assuming Cartesian
Sp. Although our strategy — merely optional for Euclidean spaces — greatly simplifies designing all-scale
models for geophysical flows, it calls for rederiving all relevant formulae. This is particularly tedious for the
� j term on the rhs (3).

The derivation of the viscous stress starts with the development of the strain rate tensor. Forthcoming from
geometric principles, we begin by defining the relative strain rate tensor, ε�jk in terms of the time rate of change
of distance elements when co-moving with the flow. In the co-moving coordinates, denoted by x� j, the relative
strain rate tensor is defined by:

ε �jkdx� jdx�k :�
1
2
�

�t �
�
ds�2

�
� (36)

Here the operator ���t� denotes the time rate of change while keeping the co-moving coordinates x� j constant;
and is known as the convected derivative [1], [16]. This time derivative is distinct from the total (see (31) in
section 3.2) and material derivatives (see (46) in section 3.4) that are formulated independently of any particular
system of coordinates. Assuming ds�2 � g�jkdx� jdx�k, the metric tensor in co-moving coordinates contains all
required information about the internal kinematics of fluid elements. Given this fundamental metric, (36) may
be rewritten as

ε �jk �
1
2
�

�t �
�
g�jk
�

� (37)
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It remains to transform this expression into the coordinates of St . The transformation for the convected deriva-
tive is more involved than that for the material derivative because one must also include covariant derivatives
of the velocity to account for the shift from co-moving coordinates. Following [1],[16],

ε�jk �
1
2

�
gjk�iv

�i �gjmv�m
�k �gnkv�n

� j

�
� (38)

The first term on the right hand side includes the covariant derivative of the metric tensor — it is identically
zero by Ricci’s lemma [1]. Note this lemma implies that the metric tensor can be treated as a constant with
regards to covariant differentiation. The remaining two terms can then be rearranged, e.g. gjmv�m

�k � �g jmv�m��k.
The parenthetical term in this expression is simply the covariant velocity, thus we write the principle form of
the strain rate tensor as:

ε� jk �
1
2

�
v�k� j � v� j�k

�
� (39)

the symmetric complement of the rotation (viz. half of the vorticity in Eq.13) to the gradient of the covariant
velocity. These are the objective forms (viz. observer independent [15]). An important observation to make
about this form is that it is covariant; i.e., geometric considerations lead to the conclusion that the strain rate
tensor should be defined as a 2-form covariant tensor. In order to compute the covariant strain rate components,
(39) is (i) written for Sp, (ii) (14) is used to expand the covariant derivatives, (iii) the covariant velocities are
rescaled into the physical velocities, and (iv) the chain rule is used to rewrite the derivatives in terms of St . The
final result is:

ε�jk �
1
2

��
gj j

�Gp
j

∂	gkkvk

∂xp �
	

gkk
�Gq

k

∂	gj jv
j

∂xq

�
�	

gmm

	
m
j k



vm � (40)

If needed, this expression may be rescaled to yield the physical strain rate, εjk �
�

gj jgkkε�jk. Except for the
Christoffel terms (which do not cancel in this case), the physical strain rate strongly parallels the form for
physical vorticity (16).

Assuming a Newtonian fluid, the deviatoric (or viscous) stress in Sp may be written in the mixed tensor form

ρbτ � j
k :� 2µε� j

k �λ v�m
�mδ j

k � (41)

Here µ and λ are the molecular and bulk viscosities, respectively; the default relationship between the two is
set by the Stokes hypothesis. The mixed strain rate tensor ε� j

k may be generated by raising an index on the
covariant form given in (40), and v�m

�m ��vsm∂ ln�ρ���∂xm from (2). Defining the principle form of deviatoric
stress as a mixed tensor comes naturally from the definition relating physical ρbτττ , total stress S, and pressure;
S j

k
:� ρbτ j

k
� pδk

j .

The viscous force, with components � j on the rhs of (3), is proportional to the divergence of the viscous
stress tensor ∇ � �ρbτττ �. Since all terms in the momentum equation have the form of acceleration, and the
divergence operator consumes one contravariant index with its inner product, then ρbτττ must be expressed as a
contravariant 2-form. This associated form may be determined from (41) by raising an index. The computation
of it’s divergence is more complicated than shown earlier in (28), because it requires evaluating covariant
derivatives of 2-forms (cf. section 2.5 [31]). The result is:

τ � jk
�k

�
1
G

∂Gτ � jk

∂xk �

	
j

k p



τ �kp � (42)

In order to determine the coefficient for (42) in � j of (3), it is necessary to know the generalized, contravariant
form of the momentum equations. In Sp, they take on the form

Dv� j

Dt
:�

dv� j

dt
�

	
j

p q



v�pv�q � ρ�1

b �ρbτ � jk��k �gjkπ�

�k � ��� � (43)
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where only the surface forces have been explicitly included on the right hand side. On the extreme left hand side
is the material derivative of the contravariant velocity, i.e., the acceleration of the fluid particle in contravariant
form. Following the discussion of (46) in section 3.4, the material derivative may be broken apart into a total
derivative and Christoffel terms10; as is shown in the middle terms of (43). The Christoffel terms are absorbed,
after suitable rescaling, into the term� j of (3). These terms are apparent Coriolis and centrifugal accelerations,
familiar from global geophysical problems. This leaves only the dv� j�dt term on the left hand side of the
momentum equation. The physical velocity appearing in (3) may be computed from the contravariant velocity
via the rescaling v� j �

�
gj jv j. Expanding, one finds dv� j�dt �

�
gj j�dvj�dt ��v j�

�
gj j�d

�
gj j��dt. Thus

the momentum equation (43) needs to be divided by
�

gj j (or equivalently, multiplied by 	gj j given the

orthogonal coordinates of Sp) after rescaling in order to transform it into (3). The terms �vj�
�

gj j�d
�

gj j�dt,
additional apparent accelerations, are absorbed into the �j term. In summary, � j � 	gj jρ�1

b �ρbτ � jk��k. It
only remains to (i) transform (42) and the rescaled and reorganized version of (43) from Sp to St using the
chain rule, and (ii) further reorganize terms utilizing the CGL (48) to recover the conservative form for the
stress divergence. The details are ommitted here but closely follow previous developments for (21) and (32).
Following those manipulations we arrive at

�
j �

1
ρ�

∂
∂xp

�
ρ� �Gp

k

�
gj jgkkτ

� jk
�
� τ � jk ∂	gj j

∂xk �
�

gj j

	
j

l m



τ �lm � (44)

with

τ � jk � 2νgj jgkkε� jk �κ gjkv�m
�m � (45)

where ν :� µ�ρ is the kinematic viscosity and κ :� λ �ρ is the density normalized bulk viscosity. The last
two terms on the rhs of (44) vanish in Cartesian Sp; the first of them arises because we use the physical rather
than the contravariant velocity as dependent variable in (3), whereas the second reflects the intrinsic curvilinear
nature of Sp.

To illustrate the complete development at work, we highlight the simulation of an idealized stratified rotating
flow past a long winding valley. The Froude and Rossby numbers — respective measures of the relative
importance of the inertial to buoyancy and Coriolis forces — are both about 0.6, thereby indicating significant
nonlinearity of the simulated flow. In spite of the relevance to weather conditions in densely populated areas,
this is a poorly understood and unexplored problem — primarily, we believe, because of the lack of adequate
mathematical tools. The horizontal model domain in Sp is bounded by two sinusoids of the same x-wavelength
Lx � 400 km, separated by constant increment 200 km in y. A cosine-shaped valley with the depth and half-
width 0.8 km and 30 km, respectively, is centered in the model domain. The vertical domain is 9 km deep. The
ambient wind is �U�0�0� with U � 5 m/s, and the buoyancy frequency N � 0�012 s�1 and relative humidity
92% are assumed (for a discussion of moist thermodynamics and its numerical representation, see [8] and
references therein). Boundary conditions are periodic in both horizontal directions. Lower boundary assumes
partial slip with typical (for mesoscale simulations) drag coefficient Cd � 10�3, and the uniform normal heat
flux Ho � �0�01 oKms�1. The boundary-sink of heat and momentum is felt in the vertical via an arbitrarily
specified “eddy viscosity”. Its surface value ν � α � 0�25∆z2�∆t is attenuated exponentially to zero with
e-folding scale 2∆z. The transformed model domain St is covered with 100� 50� 60 grid increments. The
simulation covers 8 h of physical time with ∆t � 60 s. Figure 1 displays the solution after 8 h. The results
obtained have been verified against linear estimations, and corresponding 3D/2D simulations on rectangular
domains. The benefits of the advocated approach are obvious: the narrower the winding valley, the more
prohibitive the cost of standard simulations on rectangular domains. Here, the gain is about a factor of 2.

10The reduced range in the lower indices of the Christoffel terms compared to (46) occurs because the coordinates of Sp are fixed.
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Figure 2: Vertical velocity (outer left panel) and cloud water mixing ratio (inner left panel) in the yz cross
section at x� 120 km and cloud-water mixing ratio at bottom surface of the model (right panel); two dotted
lines along the center of the sinusoidal domain outline the extent of the valley.

3.4 Tensor Identities

Developments discussed in this paper make use of numerous tensor identities and properties. While most have
been introduced as needed, here we highlight a few others that we have found particularly useful both for ma-
nipulating analytic tensor fields into forms preferred in the numerical model and for evaluating transformation
coefficients in the model code11.

The first identity involves a generalization of the material (also known as substantial) derivative — defined as
the time rate of change in fluid property when one follows the flow — to coordinate invariant form. In section
3.2, cf. (31), we noted that for scalar fields the total derivative (defined in section 2.2) is an invariant form and
is equivalent to the material derivative. The material derivative of an arbitray tensor field may be constructed
by replacing the partial derivatives in (31) with covariant derivatives. In particular, the generalized form of
material derivative for the contravariant velocity is:

Dv� j

Dt
:� v� j

�mv�m � dv� j

dt
�

	
j

i m



v�iv�m � (46)

Recall that j � 1�2�3 whereas �i�m� � 0�1�2�3. This expression is not equivalent to the total derivative, hence
we use a different notation to distinguish it. More generally, the tensor form (46) is a special case of the intrinsic
or absolute derivative [1] [31].12 If one wishes to compute the material derivative of a covariant form, then the

11For examples, see discussion surrounding Eq.(13) in [34] and the proof of (48) below.
12In general the coordinate t can be replaced with the arc length s along any particle path described by xi � xi�s�; the contravariant

velocities being replaced with dxi�ds.
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expression for the covariant derivative of a covariant form (14) would be used in (46) instead of (26). For mixed
tensors, additional terms are added to (46) in accord with the covariant and contravariant nature of the tensor
(2.516-2.518 in [31]).

The second identity, although elementary, has profound implications for the implementation of the operator
calculus in the numerical model. In a four dimensional space, it consists of 16 simultaneous equations —
differential identities — that relate the elements of the Jacobi and inverse Jacobi matrices of the transformation
defining St

δi
m � ∂xi

∂xn

∂xn

∂xm � (47)

The index n has the range 0�1�2�3. Given our specified functional form for the transformation, (1), 6 of these
reduce to trivial statements (i.e., 0=0 or 1=1), leaving 10 equations relating 20 metric coefficients. Since in
our model the problem is solved in St , the physical coordinates of Sp are treated as dependent variables, that
is, xi � xi�xm�. Once the ∂xi�∂xm have been determined (either analytically or numerically), the simultaneous
equations (47) are used to determine the inverse metric coefficients ∂xm�∂xi. The use of these differential
identities is important for ensuring conservative properties and is deeply embedded in the analytical structure
of our numerical model.

The final identity

G

G

∂
∂xi

�
G
G

∂xi

∂xm

�
� 0 � (48)

is termed the geometric conservation law, or GCL.13 The left hand side can be recognized as the divergence
in St of the contravariant form �1�G�∂xi�∂xm multiplied by the Jacobian of Sp. This contravariant form gives
weighted “velocities” (m � 0), or “stretching factors” (m � 1�2�3) between Sp and St . Evidently (48) is a set
of four independent statements about the conservation of space; if it is not satisfied, the conservative properties
of the numerical model will be lost. Various components of the GCL have been recognized as important in
numerical models for 25 years [32].

The easy way to verify the GCL is to begin with any conservation equation written in tensor invariant form.
The conservation equation is then transformed from one coordinate system into another using the chain rule,
and the resulting expressions are regrouped in order to recover the tensor invariant form. Such an effort will
quickly lead to a sole remainder term with a coefficient equal to the left hand side of (48). Only if the GCL is
satisfied does this remainder term vanish and the invariant tensor character of the original conservation equation
maintained. We have already used the GCL twice in this fashion, while evaluating (i) divergence of vorticity
(21), and (ii) scalar advection-diffusion (32).

A proof of (48) via purely geometrical arguments shows the role of tensor identities and transformation laws in
maintaining the conservation of space. We begin by setting the left hand side of (48) equal to a residual � and
by direct expansion and tensor manipulations, prove � � 0. Expanding (48) and reorganizing terms yeilds:

� �
� 1

G

∂G

∂xi

� ∂xi

∂xm �
∂xn

∂xi

∂
∂xn

� ∂xi

∂xm

�
�
� 1

G
∂G
∂xn

��∂xn

∂xi

∂xi

∂xm

�
� (49)

In the first term, the parenthetical expression may be replaced with a contracted Christoffel symbol of the
second kind in St , using (27). In the third term, the derivative of G has been expanded using the chain rule, and
regrouped into two parenthetical expressions. The first one can again be rewritten as a contracted Christoffel
symbol of the second kind, only now in Sp. The second expression is recognized, via (47), to be a Kronecker

13This version of the GCL has been used to derive (2) from the tensor invariant anelastic continuity equation; cf. discussion following
(5).
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delta function. Clearly n must be set equal to m in this third term. After relabeling dummy (repeating) indices,
there results:

� �
� n

n i

� ∂xi

∂xm �
∂xn

∂xi

∂ 2xi

∂xn∂xm �
� n

n m

�
� (50)

The proof is now completed by writing the transformation law for Christoffel symbols of the second kind, and
contracting the upper index to one of the lower ones. The details are tedious but standard, resulting in:� n

n m

�
�
�

∂xo

∂xn

∂xn

∂xl

�
∂xi

∂xm

	
l

o i



�

∂xn

∂xo

∂ 2xo

∂xn∂xm � (51)

The range of indices for l�o is 0�1�2�3. In the first term on the right, the parenthetical expression is recognized
to be another Kronecker delta function, so o must be set equal to l in this term. Then l becomes a dummy index
in the transformed Christoffel symbol and may be relabed n. In the second term on the right, o is a dummy
index and so may be relabled i. The right hand side of (51) is now recognized to be exactly equal to the first
two terms on the right hand side of (50) and we have the desired result � � 0, completing the proof.

We observe that establishing the GCL requires the application of the differential identities (47), as well as
the use of the transformation rule for Christoffel symbols (51). The former requires that care must be taken
in how various metric terms are computed, and the latter that care must be taken in how the derivatives of
various metric terms are computed [34]. If these analytical identities are satisfied by the numerical method,
then source/sinks will not appear in �, and it will not be necessary to attempt to compensate for this effect by
using the components of (48) to generate governing equations for various metric terms such as the Jacobian
[32].

4. Remarks

Our approach to developing dynamic grid deformation capability in numerical models is to rigorously im-
plement a continuous mapping from a physical space Sp where the mathematical model for the problem is
originally posed, to a transformed space St where the problem is solved computationally. The reference coor-
dinate system for Sp may be any fixed orthogonal system, in particular, it can be curvilinear. This represents a
significant departure from earlier transformation methods ([7],[33]) which are limited to Cartesian descriptions
of Sp; and has required careful rederivation of all relevant physical forms.

While in principle one can always transform from Cartesian coordinates to any other topologically equivalent
coordinates, in practice it is easier and more illuminating to use an established reference system that points out
the obvious physics, e.g., spherical coordinates for global problems. By limiting Sp to orthogonal and stationary
systems, we take advantage of important simplifications that are unavailable, if for instance, the problem were
to be cast in St (which a tensor formulation makes eminently possible). In particular, the scale factors are quite
compact, making the computation of the physical forms of the various contravariant and covariant forms that
follow much easier. Additionally, the stationary nature of the reference coordinates reduces the index range in
many operators.

We also depart from most computational works in emphasizing a tensorial description of the model. Our expe-
rience to date is that a tensorial representation is helpful for generating correct and meaningful computational
forms in arbitrary coordinates. Furthermore, the rules of tensor manipulation and attendant identities provide
significant analytical guidance for developing fundamental structure in the core of the numerical model that
helps to preserve local as well as global conservation properties in numerous fields ranging from mass balance
to the conservation of space itself.
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