Representation of model uncertainty in Ensemble Prediction Systems
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Scientific basis for Ensemble Prediction

In a nonlinear dynamical system, the finite-time growth of initial uncertainties is flow dependent.

ECMWF EPS initial perturbations evolve to the leading major axes of the pdf of
short-range forecast error (singular vectors of M).
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Value of EPS over high-res deterministic forecast for financial weather-derivative trading
based on Heathrow temperature (Roulston and Smith, London School of Economics, 2003)
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EPS systems start to lack spread after D+5

NH 500 mb height
Average for 00Z 01 May 2002 — 00Z 1 July 2002
Dotted lines = spread, Solid lines = rms

0 [ T T T T
4
Forecast days

T

5

T

May-June-July 2002 average RMS error of the ensemble-
mean (solid lines) and ensemble standard deviation (dotted
lines) of the EC-EPS (green lines), the MSC-EPS (red lines) and
the NCEP-EPS (black lines). Values refer to the 500 hPa geopo-
tential height over the Northern Hemisphere latitudinal band
20°-80°N.

Lack of spread particularly noticeable for extended-range prediction. . .

NINO3 SST rms errors - 176 start dates from 01.01,1987 to 01.06.2001
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.. . due to inadequate representation of model uncertainty in the ensemble formulation

Why are models uncertain?

We know the equations of weather and climate well as
PDEs — the uncertainties arise in converting these PDEs to
ODEs

Parametrizations motivated by statistical mechanics (eg
molecular diffusion), but . . . there is no scale separation
between resolved and unresolved scales at NWP trun-
cations

Wavenumber spectra of zonal and meridional velocity com-
posited from three groups of flight segments of different
lengths. The three types of symbols show results from each
group. The straight lines indicate slopes of -3 and -5/3. The
meridional wind spectra are shifted one decade to the right.
(after NMastrom et al, 1984).
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Representations of model uncertainty
s  Multi-model ensembles
* Perturbed parameters
* Stochastic physics
¢ Stochastic-Dynamic Sub-grid models

¢ Forced and parametric singular vectors

DEMETER - Development of a European Multi-Model Ensemble System for Seasonal to Interannual Prediction
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Whilst multi-model ensembles pro-
vide a reasonable pragmatic approach
to the problem of representing model
error, this approach lacks clear scien- NINO3 SST ms enors

Met Office Coupled M

tific underpinning.

Specifically, in multi-model (or per- i ol
turbed parameter) ensembles, there is '
manifestly no representation of comm- ; _
on model deficiencies (eg inadequate ; SRR i e o s
variability associated with blocking,
MJO, intense weather).

spread

MNINDZ2 S5T rms ermors

crror

spread

reeast time (manthe

49



Glenn Shutts (personal communication) o1
st.dev.= 16.78 K/day
* (Calculate exact PDF of sub-grid temperature tendencies 0.8+ Weakly convecting
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ECMWF stochastic physics scheme

X=D + P + eP — Where ¢ is a stochastic variable, drawn from a uniform distribution in [-0.5, 0.5], constant over
time intervals of 6hrs and over 10 x 10 lat/long boxes (Buizza, Miller and Palmer, 1999)

Stochastic forcing e parametrised tendency

Stochastic physics has a positive impact on medium-range EPS skill
P S

hast|c physics

Area under ROC curve. E: precip>40mm/day. Winter- top curves.
Summer - bottom curves
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Buizza et al., 1999
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Stochastic physics has an impact on the mean
state of the ECMWF model

Impact of

T stochastic

“* PD scheme

Could stochastically sampling the probability distribution of the sub-grid tendency, rather than always sampling
the mode, make a difference? Yes, if atmosphere is nonlinear!!
E.g. 1 Ball-bearing in a skewed potential well

Mean state without noise Mean state with noise

E.g. 2 Lorenz (1963) in EOF basis
a,=2.3a,—6.2a,-0.49a,a,-0.57a,a,
a, =—62-2.7a,+0.49a> —0.49a> +0.14a,a,

a; =—0.63a, - 13a,+0.43a,a, +0.49a,a; 3rd EQF only explains 4% of variance (Seften, 1995). Parametrize it?

Lorenz (1963) in a truncated EOF basis with parametrization of a;

a,=2.3a,~6.2a, -0.49a,a, -0.57 a,a, Good as a short-range forecast model (using L63 as truth), but exhibits
a,=—62 -2.7a,+0.49 alz -0.49 032 +0.14a,a, major systematic errors compare(_j \:rwth L63_, as, l:_)\/ E’(_Jmcare-Bendlxon

theorem, the system cannot exhibit chaotic variability — system col-
a, =f(a,,a,) lapses onto a point attractor.

Stochastic — Lorenz (1963) in a truncated EOF basis

a,=2.3a,—6.2a,-0.49a,a,-0.57a,a,
a,=—62-2.7a,+0.49a; —0.49a; +0.14a,a,

a,=B \ Lorenz attractor
Stochastic noise

Truncated Stochastic-Lorenz
attractor — weak noise

Error in mean and variance

Truncated Stochastic-Lorenz
attractor

Palmer, 2001
(acknowledgment to
Frank Selten)
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Stochastic-dynamic sub-grid models

1. Embed 2D cloud resolving models in GCM

(eg Grabowski, 2001; Randall, 2003). ‘superparametrisation’.
Very expensive!!

2 Stochastic«dynamic cellular automata

EG Probability of an ‘on’ cell proportional to CAPE and number of adjacent
‘on’ cells — ‘on’ cells feedback to the resolved flow (Pa/mer; 1997)
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convection and climate
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It is envisaged that a stochastic—dy namic cellular-automaton-based sub-grid model will replace the current stochastic
physics scheme in the EPS in 2004 /2005.
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sV representation of
| model uncertainty
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+ parametric singular vectors (collaboration with MIT)

Conclusions

Based on seasonal prediction studies, forecast probability distributions from multi-model ensembles are
intrinsically more reliable than those from single-model ensembles. Multi-model ensembles provide a
useful pragmatic approach to the representation of model uncertainty.

A more complete representation of unresolved and poorly-resolved scales in specific weather/climate
models may be achievable using (computationally cheap) stochastic-dynamic sub-grid models.

Unlike the multi-model approach, stochastic-dynamic parametrisations can impact (and hence potentially
reduce) model systematic error (eg in long-standing systematic errors such as MJO and blocking frequency).

SV techniques could be adapted to determine sensitive aspects of model uncertainty
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