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ABSTRACT

An adaptive grid technique has been applied to a revised version of NCAR/NASA’s next generation dynamical core for
climate and weather research. This hydrostatic so-called Lin-Rood dynamics package is based on a conservative and
monotonic finite volume discretization in flux form. The adaptive model design utilizes a spherical adaptive-grid library
which is based on a cache-efficient block-structured data layout. The dynamical core is run in two configurations: the full
3D hydrostatic dynamical core on the sphere and the corresponding 2D shallow water model. This shallow water setup
serves as an ideal testbed for the horizontal discretization and the 2D adaptive-mesh strategy. The static and dynamic
adaptations are tested using a standard shallow water test suite and two idealized 3D baroclinic wave test cases.

1 Introduction

Adaptive Mesh Refinement (AMR) techniques provide an attractive framework for atmospheric flows since
they allow improved spatial resolutions in limited regions without requiring a fine grid resolution throughout
the entire model domain. The model regions at high resolution are kept at a minimum and can be individually
tailored towards the atmospheric conditions.

The advantages of using nonuniform grids with increased resolution over areas of interest have been dis-
cussed in the context of atmospheric regional modeling for decades (see alsoFox-Rabinovitz et al.[1997] for
an overview). In particular, nested grids, stretched grids and dynamically adaptive mesh refinement methods
have been discussed in the literature. Nested-grid approaches are widely used at National Weather Centers for
detailed local forecasts. Here, a finer grid is permanently embedded in a coarse resolution model, which peri-
odically updates the initial and lateral boundary conditions of the refined region. Even multiple nested movable
grids are feasible as demonstrated byWang[2001] with a primitive-equation model. This nested-grid configura-
tion makes it possible to combine realistic large-scale simulations with mesoscale forecasts for selected regions.
Such approaches can be either implemented in a one-way interaction, as inMiyakoda and Rosati[1977], or as
a two-way interactive system (Zhang et al.[1986]). The former is the simplest nested-grid approach since the
fine grid information does not affect the solution on the coarse grid. The latter includes a feedback mechanism
that updates the coarse grid fields with the fine grid solution at any location where the two grids coincide.

Other variable-resolution models are based on the so-called stretched grid approach which can be implemented
as either a statically or dynamically stretched mesh. Grid intervals outside a fine-resolution area of interest
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are then stretched uniformly over the globe (e.g.Staniforth and Mitchell[1978], Côté et al. [1998]). As a
consequence, a single global variable-resolution grid is obtained that is, in the static case, held fixed during
the model integrations. Non-uniform resolutions can also be achieved when applying a stretching coordinate
transformation (like the Schmidt transformation proposed bySchmidt[1977]). Such a method together with a
rotation of the poles has been investigated byCourtier and Geleyn[1988] andHardiker [1997]. Dynamically
stretched grids offer additional flexibility with respect to the chosen features of interest. They do not require
prior knowledge about refinement regions and can therefore be viewed as a globally adaptive variant of the
AMR approach. Dynamic grid deformations are based on time-dependent global coordinate transformations.
As in the statically stretched case, the total number of grid points stays constant during the model run, but
grid points can now be dynamically focused according to user-defined criteria. In atmospheric modeling, this
continuous dynamic grid adaptation technique was first applied byDietachmayer and Droegemeier[1992].
More recent examples include the adaptive advection tests byIselin et al.[2002] and the 3D anelastic, non-
hydrostatic dynamics package with grid deformations byPrusa and Smolarkiewicz[2003].

Dynamic AMR techniques have long been used in astrophysical, aeronautical and other computational fluid
dynamics problems (Berger and Oliger[1984], Berger and Colella[1989]). However, in atmospheric science
they were first applied in the late 80s whenSkamarock et al.[1989] andSkamarock and Klemp[1993] published
their adaptive grid techniques for 3D limited-area models in Cartesian coordinates. Recently,Bacon et al.
[2000] andBoybeyi et al.[2001] introduced the adaptive non-hydrostatic regional weather and dispersion model
OMEGA which addresses atmospheric transport and diffusion questions. This model is based on unstructured,
triangulated grids with rotated Cartesian coordinates that can be dynamically and statically adapted to features
of interest. Meanwhile, OMEGA has been used as a limited-area hurricane forecasting system in spherical
geometry (Gopalakrishnan et al.[2002], Bacon et al.[2003]). Furthermore, several statically and dynamically
adaptive 2D shallow water models have been proposed in the literature. Statically adaptive shallow water
models on the sphere were developed byRuge et al.[1995], Fournier et al. [2004] and Barros and Garcia
[2004]. Dynamically adaptive shallow water models in the Cartesian x-y plane were designed byBehrens
[1998] andHess[1999]. The former uses adaptive grid triangulations whereas the latter is based on a block-
structured data layout. Recently, the first AMR shallow water codes in spherical geometry have been introduced
by Jablonowski[2004] andLäuter [2004].

The goal of AMR is not to move the grid globally, but rather to refine the grid locally in advance of any important
physical process that needs additional grid resolution, and to coarsen the grid if the additional resolution is
no longer needed. Such an approach is expected to not only capture the onset and evolution of small-scale
phenomena but also to simulate the consequent large-scale small-scale flow interactions. These remain mostly
unresolved by uniform grid simulations. An adaptive mesh refinement technique has been applied to a revised
version of NCAR/NASA’s next-generation dynamical core for climate and weather research. The governing
equations and the algorithmic design of this finite-volume dynamics package are briefly reviewed in section2.
Section3 introduces the fundamental ideas behind the adaptive mesh refinement strategy. It discusses the block-
structured data layout and a new spherical adaptive mesh library for parallel computer architectures (Oehmke
[2004]). The adaptive dynamical core is run in two model configurations: the full 3D hydrostatic dynamical
core on the sphere and the corresponding 2D shallow water configuration. This shallow water setup serves
as an ideal testbed for the horizontal discretization and the 2D adaptive mesh strategy. The 2D test cases in
section4.1 are chosen from the standard test suite for the shallow water equations (Williamson et al.[1992]).
Idealized 3D test cases for the adaptive dynamical core are discussed in section4.2. In particular, the evolution
of a growing baroclinic wave is assessed using two newly developed test cases. Section5 provides a summary
of the results and addresses future challenges.

2 The hydrostatic finite volume dynamical core

The hydrostatic so-called Lin-Rood finite-volume dynamical core is built upon theLin and Rood[1996] ad-
vection algorithm, which utilizes advanced oscillation-free numerical approaches to solving the transport equa-
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tion in flux form. In particular,Lin and Rood[1996] extended a Godunov-type methodology to multiple di-
mensions by combining a first-order upwind-biased scheme in advective form with either a second-order van
Leer-type (van Leer[1974], van Leer[1977]) scheme or the third-order piecewise parabolic (PPM) method
(Colella and Woodward[1984]) in flux form. In 1997, the conservative advection scheme became the funda-
mental building block of a 2D shallow water code (Lin and Rood[1997]) which then led to the development of
the current 3D, primitive-equation based, finite-volume dynamics package.

2.1 Governing equations

The 3D dynamical core is based on a 2D shallow water approach in the horizontal plane combined with a
floating Lagrangian coordinate in the vertical direction (see also discussion inLin [2004]). The underlying
hyperbolic shallow water system is comprised of the mass continuity equation and momentum equation as
shown in equations1 and2. Here the flux-form of the mass conservation law and the vector-invariant form of
the momentum equation are selected (see alsoLin and Rood[1997])

∂
∂ t

h� ∇ � �hv� � 0 (1)

∂
∂ t

v�Ωak̂�v� ∇
�
Φ�� �ν D

�
� 0 (2)

wherev is the horizontal (on the sphere) vector velocity with componentsu andv in the longitudinal�λ � and
latitudinal �θ� direction andΩa � ζ � f denotes the absolute vorticity. The absolute vorticity is composed of
the relative vorticityζ � k̂ � �∇ �v� and the Coriolis forcef � 2Ωsinθ with the physical constantΩ = angular
velocity of the earth. Furthermore,k̂ is the outward radial unit vector,∇ represents the horizontal gradient
operator,Φ� Φs�gh symbolizes the free surface geopotential withΦs = surface geopotential,h = depth or
mass of the fluid andg = gravitational acceleration. In addition,� � v�v

2 stands for the kinetic energy,D
is the horizontal divergence andν the divergence damping coefficient. A distinct advantage of this vector-
invariant formulation is that the metric terms, which are singular at the poles in the chosen curvilinear spherical
coordinate system, are hidden by the definition of the relative vorticity.

In three dimensions, the set of equations is very closely related to the shallow water system when replacing
the height of the shallow water system with the hydrostatic pressure differenceδp of a Lagrangian layer.
Furthermore, the thermodynamic equation4 in conservation form is added to the set

∂
∂ t

δp� ∇ � �δpv� � 0 (3)

∂
∂ t
�Θδp�� ∇ � �Θδpv� � 0 (4)

∂
∂ t

v�Ωak̂�v�
1
ρ

∇ p� ∇
�
Φ�� �ν D

�
� 0 (5)

whereδp��ρgδz is bounded by two Lagrangian surfaces in the hydrostatic system with densityρ and height
z. The thermodynamic variableΘ is the potential temperature. The calculation of the pressure gradient forces
1
ρ ∇ p� ∇Φ is based on an integration over the pressure forces acting upon a finite volume. This approach
constitutes the main difference between the shallow water system and the 3D model setup. The underlying
method has been proposed byLin [1997] and was furthermore discussed byJanjić [1998] andLin [1998].

In this primitive-equation formulation, the prognostic variables of the dynamical core are the wind components
u andv, the potential temperatureΘ and the pressure thicknessδp. The geopotentialΦ, on the other hand, is
computed diagnostically via the vertical integration of the hydrostatic relation in pressure coordinates

∂Φ
∂ p

�
�1
ρ

(6)
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with cell-averaged densityρ. In the presence of orography as a lower boundary condition this integration then
starts at the geopotential levelΦs of the surface field. It is important to note that the hydrostatic relationship is
the vertical coupling mechanism for the 2D dynamical systems in each layer. Furthermore, the pressure level
pn of each Lagrangian surface can be directly derived when adding the pressure thicknesses within the vertical
column

pn � ptop�
n

∑
k�1

δpk for n� 1�2�3� � � � �Nlev � (7)

Heren denotes the vertical index starting from 1 at the lower bounding surface of the uppermost Lagrangian
layer. The pressure at the model topptop is prescribed and set to 2.19hPa in the current formulation. There are a
total ofNlev�1 Lagrangian surfaces that encloseNlev Lagrangian layers. The concept of the floating Lagrangian
surfaces is displayed in figure1. Each layer is allowed to float vertically as dictated by the hydrostatic flow

x-z cross section of the atmosphere

Lagrangian surfaces

Earth’s surface

model top

T = t

flux flux

orography

δp

T = t + dt

Figure 1: Terrain-following Lagrangian control-volume coordinate system of the Lin-Rood dynamical core.
The pressure thicknessδp of a cell is proportional to the total mass. The cell boundaries deform during the
forecast (right) and after specific time intervals they are mapped back onto a fixed Eulerian reference system
(not shown).

and, as a consequence, the two Lagrangian surfaces bounding the finite-volumes will deform over time. The
displaced surfaces are then mapped back monotonically and conservatively to a fixed Eulerian reference system.
Here, a hybrid vertical reference frame as in NCAR’s Community Atmosphere Model CAM3.0 (Collins et al.
[2004]) is chosen. The lowermost Lagrangian surface coincides with the Earth’s surface field. The surface
pressure is therefore automatically determined by the pressurepNlev

at the lowest level. In all 3D simulations
presented in section4.2, Nlev� 26 vertical levels have been selected.

2.2 Algorithmic design

The finite-volume dynamical core utilizes a flux form algorithm for the horizontal advection processes, which,
from the physical point of view, can be considered a discrete representation of the conservation law in finite-
volume space. However, from the mathematical standpoint, it can be viewed as a numerical method for solving
the governing equations in integral form. This leads to a more natural and often more precise representation
of the advection processes, especially in comparison to finite difference techniques. The transport processes,
e.g. for the height of the shallow water systemh (eqn. 1), are modeled by fluxes into and out of the finite
control-volume where volume-mean quantities, as indicated by the overbar, are predicted

h̄n�1
i� j � h̄n

i� j �
∆t

a cosθ j ∆λ i

�
F

i� 1
2 � j
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i� 1
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�
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�
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2
G

i� j� 1
2
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2
G

i� j� 1
2

�
. (8)
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HereF andG denote the time-averaged 1D numerical fluxes in longitudinal and latitudinal direction which
are computed with the upstream-biased and monotonic PPM scheme (see alsoCarpenter et al.[1990] and
Nair and Machenhauer[2002]). ∆t symbolizes the time step,a stands for the radius of the Earth, the indicesi
and j point to grid point locations in the longitudinal and latitudinal direction and the indexn marks the discrete
time level. In addition,∆λi � �λ

i� 1
2
�λ

i� 1
2
� and∆θi � �θ

j� 1
2
�θ

j� 1
2
� represent the longitudinal and latitudinal

grid distances measured in radians. The time-stepping scheme is explicit which allows CFL numbers less
than �CFL� � 1. The underlying finite-volume principle of the Lin-Rood advection algorithm is discussed in
Lin and Rood[1996]. The algorithmic details of the shallow water code and the 3D model are further described
in Lin and Rood[1997] andLin [2004].

The advection algorithm shown in equation8 is the fundamental building block of the horizontal discretization.
It is not only used to predict the time evolution of the mass (eqn.3) and potential temperature field (eqn.4),
but also determines the absolute vorticity fluxes and kinetic energy in the momentum equation (eqn.5).

3 Adaptive mesh refinements in spherical geometry

The AMR design is based on a block-structured data layout in spherical coordinates that allows cache-efficient,
high performance computations with minimal changes to the transport algorithms of the finite-volume dynam-
ical core. The concept of the block data structure is displayed in figure2 that shows an orthographic projection
of the Earth with a regular and block-structured grid point distribution. Each self-similar block comprises a

Figure 2: Distribution of grid points over the sphere (orthographic projection centered at 0E,45N), without
a block-structure (left) and with the block-structure (right). The resolution is5Æ in both figures.

constant number ofNx�Ny grid cells in longitudinal and latitudinal direction. In particular, 9�6 grid points
per block are selected in the examples in section4. The computational grid covering the Earth can then be
viewed as a collection of individual blocks that are independent data units. Here the block-data principle is
solely applied to the horizontal directions so that the whole vertical column is contained in a block in case of
3D model setups. Other block-data approaches, as described inStout et al.[1997], MacNeice et al.[2000] or
PARAMESH.V3.2[2004], employ a 3D strategy that includes a block distribution in the third dimension.

The block data structure is well-suited for adaptive mesh applications. The basic AMR principle is explained in
figure3. Starting from an initial mesh at constant resolution with for example 3�3 cells per block, a ‘parent’
block is divided into 4 ‘children’ in the event of refinement requests. Each child becomes an independent new
block with the same number of grid cells in each dimension, thereby doubling the resolution in the region of
interest. Coarsening, on the other hand, reverses the refinement principle. Then 4 children are coalesced into
a single self-similar parent block which reduces the grid resolution in each direction by a factor of 2. Both the
refinement step and coarsening step are mass-conservative. In the present AMR design, neighboring blocks
can only differ by one refinement level. This leads to continuously cascading refinement regions that provide a
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Coarsen

Refine

Figure 3: Refinement and coarsening principles with 2 refinement levels. Each block contains 3x3 cells.

buffer zone around the blocks at the finest refinement level.

An example of such a cascading grid projected onto the sphere is given in

1000

Figure 4: Adapted blocks.

figure4. Here a single region of interest, an idealized mountain as indicated
by the contour lines, is refined at a maximum refinement level of 3. The
figure clearly depicts the consequent refinement requests in order to ensure
the adaptation constraint. Here, the blocks adjacent to the pole are held
at a constant refinement level which enables the use of a Fourier-filtering
technique in polar regions.

Each block is a logically rectangular unit with additional ghost cell regions
around its boundaries. As a result, the information along adjacent block
interfaces is shared which allows the use of an iterative solution procedure.
The flow solver is then individually applied to all blocks within the grid
before ghost cell updates along the boundaries become necessary. Here, 3

ghost cells in each direction are added in order to satisfy the requirements of the PPM solution technique. All
ghost cells are at the same resolution as the parent block.

There are two types of interfaces in the adaptive grid setup as illustrated in figures5 and6. If the adjacent
blocks are at the same refinement level (figure5) the neighboring information can easily be exchanged since the

Ghost cells Computational cells

Figure 5: Ghost cell updates for blocks at the same refinement level.

data locations overlap. The ghost cell data are then assigned the appropriate solution values of the neighboring
block which is indicated by the gray-shaded areas. If on the other hand the resolution changes between adjacent
blocks (figure6), interpolation and averaging routines become necessary in order to fill in the missing ghost cell
information at different grid point positions. In particular, a quadratic PPM-like interpolation method is chosen
which is used as a conservative and monotonic remapping technique for all cell-centered scalar variables.
Special attention is also paid to the numerical fluxes across the fine-coarse grid interfaces in order to ensure
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Computational cells

Ghost cells

Figure 6: Ghost cell updates for blocks at different refinement levels.

conservation principles. Here a flux-matching technique is employed that averages two fine-grid fluxes and
overwrites the corresponding coarse-grid flux at the boundary.

It is important to note that the adapted blocks do not overlay each other in the current setup. Instead, each
block is assigned a unique surface patch on the sphere. This is in contrast to alternative AMR block-data
approaches that are presented in the literature (Berger and Colella[1989], Overture.v20[2004]). For example,
Berger and Colella[1989] reported on an AMR principle that concurrently computed the solution on all blocks
at all refinement levels. The fine resolution regions then overwrote the coarse resolution data wherever the
properly nested grids overlapped.

Adaptive blocks are well-suited for parallel computing concepts. Since blocks are treated as independent units
they can easily be distributed among many processors. During the simulation each processor loops over its
assigned blocks in order to solve the model equations on a block-by-block basis. At the end of the time
step procedure the processors are synchronized which allows the update of the ghost cell regions across the
communication network. All adaptive blocks are managed by a newly-developed spherical adaptive grid library
for parallel computer architectures (Oehmke and Stout[2001] and Oehmke[2004]). This library defines the
block-structured sphere, adapts the blocks according to user requests, loops over the blocks, maintains the
adjacency information for all blocks at arbitrary refinement levels and manages the communication and load-
balancing aspects on parallel computer architectures.

Self-similar blocks can be used for static and dynamic adaptations. Static refinements are placed in user-
determined regions of interest, like mountain ranges or coastlines, at the beginning of a forecast. This approach
even allows an accurate reinitialization of the initial data after refinements occurred, for example with an im-
proved representation of the orography profile. Another static adaptation option is the reduced grid that stati-
cally coarsens the longitudinal resolution in polar regions. Two examples of such a grid are shown in figure7
which illustrates the reduced grid setups with one and two reduction levels projected onto the sphere. Such a
setup reduces the convergence of the meridians near the poles. Consequently, a longer time step can be used if
the CFL condition near the poles limits the global time step. In addition, the overall workload of the model is
reduced due to the decrease in the total number of grid points. Dynamic adaptations, on the other hand, are a
powerful method when features of interest are to be tracked according to user-defined adaptation criteria. These
adaptation indicators could either be based on flow characteristics or measures of the numerical truncation error.
As an example, flow-dependent indicators could include assessments of the temperature, pressure or geopoten-
tial gradients as well as the vorticity and divergence of the flow field. The adaptations are then triggered if an
empirical threshold is met. In sections4.1and4.2, a vorticity-based dynamic adaptation criterion is tested for
the 2D and 3D model setups.
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Figure 7: Distribution of blocks and grid points over the sphere (orthographic projection centered at
0E,45N). Reduced grid with 1 reduction (left) and 2 reductions (right) in the polar regions. Base resolution
is 2�5Æ�2�5Æ.

4 Test of the AMR design

The adaptive Lin-Rood finite volume dynamical core is tested in two model configurations. First, the AMR
technique is discussed in the 2D shallow water framework which reveals the main characteristics of the 2D
adaptive mesh strategy. Second, the 3D hydrostatic dynamical core is assessed.

4.1 2D shallow water tests

The dynamic and static adaptations in the 2D shallow water framework are tested using theWilliamson et al.
[1992] standard shallow water test suite. Three shallow water tests with increasing complexity are selected that
highlight the characteristics of the AMR design. In particular, the passive advection of a cosine bell (test case
1), a steady-state test case (test case 2) and an idealized flow over topography (test case 5) are shown. The
numbers of the test cases refer to the nomenclature inWilliamson et al.[1992]. This paper also defines the
initial conditions and individual test setups.

First, the passive advection of a cosine bell with rotation angleα � 90 is shown in figure8 that displays the
transport of the bell straight over the poles.

In this dynamically adaptive run a simple threshold adaptation criterion is applied that assesses the value of
the geopotential height at each grid point. In case the geopotential height exceeds the empirical limith� 53m
the block is flagged for refinement. This value corresponds to approximately 5% of the initial peak amplitude
with h� 1000m. If on the other hand the grid points no longer meet the adaptation criterion the coarsening
flag in the corresponding block is set. The refinement criterion is examined during each time step that is held
variable in order to match the�CFL�� 0�95 limit. All adaptations occur consecutively until either the maximum
refinement level or the coarse 5Æ�5Æ initial resolution is reached. This resolution is the base resolution which
can not be coarsened further. Here, a maximum refinement level of 3 is selected which corresponds to the
grid spacing 0�625Æ �0�625Æ at the finest level. It can clearly be seen that the adaptive blocks successfully
capture the transport of the cosine bell as indicated by the overlaid block distribution. There are no visible
distortions of the height field as the cosine bell approaches, passes over and leaves the North Pole. The increased
resolution clearly helps preserve the shape and peak amplitude. A detailed discussion about the performance
of the adaptive advection test with its corresponding error norms is provided inJablonowski et al.[2004b]. In
brief, the adapted advection tests are almost indistinguishable from the high-resolution uniform reference runs
but save considerable amounts of compute time. This result has also been found byHubbard and Nikiforakis
[2003].
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Adaptive blocks can further be used for static adaptations. These are chosen in pre-determined regions of
interest at the beginning of a model run and remain fixed during the simulation. They can be viewed as a two-
way interactive nesting approach that provides consistent inflow and outflow conditions across the interfaces.
The impact of the embedded high-resolution regions on the global domain is examined using the steady-state
shallow water test case 2 with rotation angleα � 45Æ. Here, a high resolution refinement area at refinement
level 2 is placed in the Northern Hemisphere as illustrated in figure9. The figure shows the geopotential height

1200

1600

2000

2000

2000

2000

2400

2400
2400

2400

2800

2800

2800

2800

-90

-60

-30

0

30

60

90

La
tit

ud
e

0 90 180 270 360
Longitude

Figure 9: Geopotential height at day 14 (test case 2,α � 45Æ) with static refinements (refinement level
2) centered at 135E,30N. The distribution of the blocks is drawn in red. Base resolution is2�5Æ, contour
interval is 100 m.

field with overlaid blocks at model day 14. The base resolution in this example is a 2�5Æ�2�5Æ grid so that
the finest resolution represents a 0�625Æ grid spacing. This highly idealized balanced flow pattern represents a
challenge for the nested grid setup since the flow field is already well-resolved on the coarse mesh. Therefore, it
is not expected that the numerical solution improves significantly in the refined region. On the contrary, the test
is chosen to evaluate the model behavior at the coarse-fine grid interfaces. It can be seen that the flow passes
through the refined area without noise and distortions, despite the fact that the refinements are purposely placed
in a region with strong geopotential gradients. A closer examination of the wind componentsu andv at day 14
in figure10 reveals that only very minor errors are induced at the coarse-fine grid interfaces. These are almost
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Figure 10: (a) Zonal and (b) meridional wind at day 14 (test case 2,α � 45Æ) with static refinements
(refinement level 2). The distribution of the blocks is drawn in red. Base resolution is2�5Æ, contour intervals
are 2.5 ms�1.

invisible although a slight indication of an interface effect can be detected in thev field (subfigure b). Here, the
contour lines of the meridional wind show some minor fluctuations at the outflow boundary east of the refined
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area. The corresponding error norms are thoroughly discussed inJablonowski et al.[2004a].

The third assessment of the adaptive model design is focused on shallow water test case 5 that defines a flow
over an idealized mountain. Here a dynamic refinement strategy with three refinement levels is evaluated over
a forecast period of 10 days. The simulation starts with a coarse 5Æ� 5Æ base resolution so that the finest
mesh during the model run corresponds to a 0�625Æ � 0�625Æ resolution. The adaptations are guided by a
vorticity-based adaptation criterion. In particular, grid points are flagged for refinement if the absolute value
of the relative vorticity exceeds the empirical threshold�ζ � � 2�10�5s�1. On the other hand, coarsenings are
triggered if all relative vorticity values in an adapted block fall below the threshold and the neighboring blocks
allow the coarsening step (compare to section3). In case of refinements in the mountainous region the mountain
height is reinitialized via analytic expression. This leads to an increase in the peak amplitude of the mountain.
In general, the reinitialization of the orography profile could also be based on interpolated data. The dynamic
adaptation indicator is evaluated every two model hours, which is a suitable adaptation cycle for the selected
slowly evolving features of interest. In principal, an even longer time interval can also be used, for example a
nine hour adaptation cycle as inSkamarock[1988]. These intervals allow the flow to evolve smoothly before
new adaptations are applied. However, the chosen time interval must ensure that the selected feature of interest
can not leave the refined region during the adaptation cycle.

Figure11 shows three snapshots of the evolving geopotential height fields with the incorporated topography
h�hs at model day 1, 5 and 10. The adapted blocks are overlaid. It can clearly be seen that the vorticity
criterion picks out the lee-side wave train effectively and refines the regions with strong curvature in the geopo-
tential height field. These regions are associated with high vorticity values. The criterion detects both troughs
and ridges in the flow field since its absolute value is used for the assessments. Overall, the vorticity-based
criterion is a suitable adaptation indicator for this idealized test scenario and, most importantly, the adaptive
model simulation matches the NCAR high resolution reference solution (Jakob et al.[1993]) . An alternative
refinement strategy, like the assessment of the geopotential gradient, is also a suitable choice (see discussion in
Jablonowski[2004]).

4.2 3D dynamical core tests

The 3D hydrostatic finite volume model is assessed using two newly developed baroclinic wave test cases for
dynamical cores [(Jablonowski[2004] andPolvani et al.[2004]). These deterministic test cases simulate the
evolution of an isolated baroclinic wave disturbance in the Northern Hemisphere. The simulations start from
a steady-state initial data set with a superimposed unbalanced perturbation. After a few days this perturbation
triggers the evolution of a growing baroclinic wave with intense high and low pressure systems and strong
temperature fronts. The wave ultimately breaks after approximately 9-10 model days. For these test designs,
Jablonowski and Williamson[2004] andPolvani et al.[2004]) show that the solutions converge with increasing
resolutions. Therefore, the model results can be compared to high-resolution reference solutions.

Figure12 presents four snapshots of the statically adapted Jablonowski-Williamson test case. Here the surface
pressure of the baroclinic wave with four different refinement levels is displayed at model day 8. The 3D
evaluation of the static adaptations along the storm track in the Northern Hemisphere shows that the evolution
of the baroclinic wave can be successfully predicted without noise or distortions at fine-coarse grid boundaries.
The refinements capture the correct intensification of the wave train with increasing resolution without the need
of a fine resolution in the global domain.

In addition to static adaptations, it is of particular interest to assess the dynamically adaptive approach without
prior knowledge of the flow field. This is the classical application for adaptive mesh refinements. An example
of a dynamically adapted 3D model simulation with the Polvani et al. test case is shown in figure13. Here the
maximum number of refinement levels is set to 1. The integrations cover an 8-day time period and snapshots
of the surface pressure field at day 3, 4 and 8 are shown. In this example the adaptations are guided by a
user-defined refinement criterion. Here a vorticity-based refinement indicator at the model level closest to the
surface (at approximately 992hPa) is selected. In particular, the threshold is set to�ζs f c� � 0�75�10�5s�1.
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Figure 11: Geopotential height field with incorporated topography h�hs at model day (a) 1, (b) 5 and (c)
10 (test case 5). The refinement criterion is the vorticity-based indicator�ζ � � 2�10�5s�1. The adapted
blocks are overlaid.

244



JABLONOWSKI, C. ET AL.: ADAPTIVE GRIDS FORWEATHER AND CLIMATE MODELS

(a
) 

 n
o 

st
at

ic
 r

ef
in

em
en

ts
, f

in
es

t r
es

ol
ut

io
n 

5
o x

5o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

Lo
ng

itu
de

97
2

98
4

99
6

10
08

S
ur

fa
ce

 p
re

ss
ur

e 
[h

P
a]

(b
) 

 1
 s

ta
tic

 r
ef

in
em

en
t, 

fin
es

t r
es

ol
ut

io
n 

2.
5

o x
2.

5o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

Lo
ng

itu
de

97
2

98
4

99
6

10
08

S
ur

fa
ce

 p
re

ss
ur

e 
[h

P
a]

(c
) 

 2
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
1.

25
o x

1.
25

o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

Lo
ng

itu
de

97
2

98
4

99
6

10
08

S
ur

fa
ce

 p
re

ss
ur

e 
[h

P
a]

(d
) 

 3
 s

ta
tic

 r
ef

in
em

en
ts

, f
in

es
t r

es
ol

ut
io

n 
0.

62
5

o x
0.

62
5o

-3
00306090

Latitude

0
90

18
0

27
0

36
0

Lo
ng

itu
de

97
2

98
4

99
6

10
08

S
ur

fa
ce

 p
re

ss
ur

e 
[h

P
a]

F
ig

u
re

1
2

:
S

u
rf

a
ce

p
re

ss
u

re
a

t
d

a
y

8
fo

r
d

yn
a

m
ic

a
lc

o
re

ru
n

s
w

ith
(a

)
n

o
,
(b

)
1

,
(c

)
2

a
n

d
(d

)
3

st
a

tic
re

fin
e

m
e

n
ts

u
si

n
g

th
e

Ja
b

lo
n

o
w

sk
i-
W

ill
ia

m
so

n
te

st
c

a
se

.
T

h
e

a
d

a
p

te
d

b
lo

ck
s

a
re

ov
e

rl
a

id
,t

h
e

fin
e

st
re

so
lu

tio
n

is
in

d
ic

a
te

d
in

th
e

tit
le

s.
C

o
n

to
u

r
in

te
rv

a
ls

a
re

6
h

P
a

.

245



JABLONOWSKI, C. ET AL.: ADAPTIVE GRIDS FORWEATHER AND CLIMATE MODELS

994 996 998 1000 1002
Surface pressure [hPa]

(a) Day 3

0

30

60

90

La
tit

ud
e

0 90 180 270 360
Longitude

994 996 998 1000 1002
Surface pressure [hPa]

(b) Day 4

0

30

60

90

La
tit

ud
e

0 90 180 270 360
Longitude

920 940 960 980 1000 1020 1040
Surface pressure [hPa]

(c) Day 8

0

30

60

90

La
tit

ud
e

0 90 180 270 360
Longitude

Figure 13: Surface pressure at (a) day 3, (b) day 4 and (c) day 8 for dynamical core runs with 1 dynamic
refinement level using the Polvani et al. [2004] test case. The adapted blocks are overlaid, the finest
resolution is1�25Æ�1�25Æ. The refinement criterion is�ζs f c� � 0�75�10�5s�1. Contour intervals are (a,
b) 1hPa and (c) 10hPa.
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This rather sensitive threshold for the absolute value of the relative vorticity is chosen in order to capture the
evolution of the wave early in its developing stages. In this setup the first adaptations are triggered at model day
3. It can be seen that the refinement region clearly identifies and tracks the developing wave. As in the statically
adapted case the additional resolution leads to a more accurate representation of the wave train in comparison
to a uniform-grid high-resolution reference solution (not shown).

5 Conclusion and outlook

Climate and weather systems are true multi-scale phenomena that are characterized by widely varying spatial
and temporal scales. Solving such a problem more efficiently and accurately requires variable resolutions that
track small-scale features embedded in a large-scale flow.

A block-structured adaptive grid technique has been applied to a revised version of NCAR/NASA’s finite vol-
ume dynamical core for climate and weather research. Static and dynamic adaptations have been assessed both
in the 2D and 3D model framework. The 2D shallow water tests with static refinements in user-determined
regions of interest have revealed that refinement regions can be successfully placed at arbitrary positions within
the model domain. The flow passes through the interface boundaries without noise or significant distortions for
at least a 7-14 day time period. Such a time period represents the typical duration of a weather prediction fore-
cast. Furthermore, it was shown that dynamic refinements can successfully track a selected feature of interest.
The transport of a cosine bell was well-captured and the developing wave train behind the idealized mountain
in shallow water test case 5 was reliably detected by a vorticity-based adaptation criterion.

In addition, the 3D evaluations of the static adaptations along the storm track in the Northern Hemisphere have
shown that the evolution of the baroclinic wave can be successfully predicted without noise or distortions at
fine-coarse grid boundaries. The wave was correctly intensified due to the increase in the model resolution
without the need of a fine resolution in the global domain. The dynamically adaptive baroclinic wave test
confirmed that the flow is well-captured by the adapted blocks with increased accuracy in the refined region.
Nevertheless, the selection of the optimal adaptation criterion and threshold is highly problem dependent and in
addition, balances the computational efficiency and accuracy of the run. In general, the AMR has the potential
for significant computational savings in comparison to fine-grid uniform resolution runs despite some additional
workload for the AMR design.

Dynamically adaptive general circulation models on the sphere are not standard in the atmospheric science
community. They are a current research trend that is pursued by research groups at the National Center for
Atmospheric Research (NCAR, Boulder, Colorado, USA), the University of Cambridge (Great Britain), the
Center for Atmospheric Science (Science Applications International Corporation, Virginia, USA) and the Uni-
versity of Michigan (Ann Arbor, MI, USA). In the future AMR climate and weather codes might offer an
interesting alternative to today’s uniform and nested grid approaches. If adaptive grids are capable of actually
resolving selected features of interest as they appear, such as convection in tropical regions, then the corre-
sponding parameterizations can locally be dropped and replaced by the underlying physics principles. This
poses new and interesting questions concerning the small-scale large-scale flow interactions as well as possible
hydrostatic and non-hydrostatic model interplays. A non-hydrostatic finite volume model is currently under
development at the University of Michigan.

In the future the adaptive finite volume dynamical core will be coupled to NCAR’s CAM3.0 physics package
in order to assess the physics-dynamics interactions in an adaptive grid application. Here new questions about
the validity of the physics parameterizations over varying grid scales will arise.
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Côté, J., S. Gravel, A. M´ethot, A. Patoine, M. Roch, and A. Stanisforth, The operational CMC-MRB Global
Environmental Multiscale (GEM) model. Part I: Design considerations and formulation,Mon. Wea. Rev., 126,
1373–1395, 1998.

Courtier, P., and J. F. Geleyn, A global numerical weather prediction model with variable resolution: Appli-
cation to the shallow water equations,Quart. J. Roy. Meteor. Soc., 114, 1321–1346, 1988.

Dietachmayer, G. S., and K. K. Droegemeier, Applications of continuous dynamic grid adaptation techniques
to meteorological modeling. Part I: Basic formulation and accuracy,Mon. Wea. Rev., 120, 1675–1706, 1992.

Fournier, A., M. A. Taylor, and J. J. Tribbia, The spectral element atmospheric model: High-resolution parallel
computation and response to regional forcing,Mon. Wea. Rev., 132, 726–748, 2004.

Fox-Rabinovitz, M. S., G. L. Stenchikov, M. J. Suarez, and L. L. Takacs, A finite-difference GCM dynamical
core with a variable-resolution stretched grid,Mon. Wea. Rev., 125, 2943–2968, 1997.

Gopalakrishnan, S. G., et al., An operational multiscale hurricane forecasting system,Mon. Wea. Rev., 130,
1830–1847, 2002.

248



JABLONOWSKI, C. ET AL.: ADAPTIVE GRIDS FORWEATHER AND CLIMATE MODELS

Hardiker, V., A global numerical weather prediction model with variable resolution,Mon. Wea. Rev., 125,
59–73, 1997.

Hess, R., Dynamically adaptive multigrid on parallel computers for a semi-implicit discretization of the
shallow-water equations, GMD Tech. Report 9, GMD – German National Research Center for Information
Technology, St. Augustin, Germany, 1999.

Hubbard, M. E., and N. Nikiforakis, A three-dimensional, adaptive, Godunov-type model for global atmo-
spheric flows,Mon. Wea. Rev., 131, 1848–1864, 2003.

Iselin, J. P., J. M. Prusa, and W. J. Gutowski, Dynamic grid adaptation using the MPDATA scheme,Mon. Wea.
Rev., 130, 1026–1039, 2002.

Jablonowski, C., Adaptive grids in weather and climate modeling, Ph.D. dissertation, University of Michigan,
Ann Arbor, MI, 2004, Department of Atmospheric, Oceanic and Space Sciences, 266 pp.

Jablonowski, C., and D. L. Williamson, A baroclinic instabilitiy test case for atmospheric model dynamical
cores, 2004, to be submitted to Mon. Wea. Rev.

Jablonowski, C., M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, and B. van Leer, Adaptive grids for
Atmospheric General Circulation Models: Test of the dynamical core, 2004a, to be submitted to Mon. Wea.
Rev.

Jablonowski, C., M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, B. van Leer, and K. G. Powell, Block-
structured adaptive grids on the sphere: Advection experiments, 2004b, to be submitted to Mon. Wea. Rev.

Jakob, R., J. J. Hack, and D. L. Williamson, Solutions to the shallow-water test set using the spectral trans-
form method, NCAR Tech. Note NCAR/TN-388+STR, National Center for Atmospheric Research, Boulder,
Colorado, 1993, 82 pp.
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