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1. Introduction 

The dynamical part of the ECMWF atmospheric forecast model has been developed over a number of years 
jointly between ECMWF and Météo-France. Many people have contributed, both from the scientific and 
from the technical points of view, to the continual improvements of both its accuracy and its efficiency.  

A basic requirement of the model code from its inception has been its portability, having to run efficiently in 
both vector and scalar computers and in single processors or massively parallel architectures. This gives 
ECMWF freedom in the process of choosing a new supercomputer when the need arises. 

The main characteristics of the present operational atmospheric forecast model are: 

• The vertical coordinate is a hybrid pressure-based coordinate. 

• It uses the hydrostatic and the shallow-atmosphere approximations in the governing equations. 

• The time integration is a two-time-level semi-Lagrangian semi-implicit scheme. 

• The horizontal representation is spectral using spherical harmonics as basis functions. 

• The vertical integrals are performed with an operator developed using the finite-element (pseudo-
spectral) technique. 

• In both the horizontal and the vertical, the transform method is used to compute non-linear terms. 
The corresponding grid in physical space is non-staggered. 

• A fourth order horizontal diffusion is applied to reduce the amplitude of the shortest scales of 
motion. 

These characteristics of the ECMWF forecast model are described in more detail in sections 2 to 10 below. 

2. The vertical coordinate 

The vertical coordinate � is a pressure-based coordinate very similar to the “hybrid” coordinate described by 
Simmons and Burridge (1981). It is chosen to have the value 0 at the top of the atmosphere (p=0) and the 
value 1 at the surface of the model. 

The coordinate is defined as a monotonic function of pressure specified by means of two arbitrary functions 
A(�) and B(�) so that: 

 
( ) ( )

s

p dA dB
p

d d

∂ η η= +
∂η η η

 (1) 

where p is the pressure and ps the surface pressure. A(�) is zero near the surface of the model, and therefore 

the � coordinate is a � coordinate there, which follows the contour of the orography. The shape of function 
B(�) is chosen to vary smoothly from 1 at the surface to zero in the upper atmosphere. In the region of the 
atmosphere where B(�)=0, � is a pure pressure coordinate. 
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In order to have the value of � equal to 1 at the surface of the model, or expressed differently, that the 
pressure at the surface, as found by integration of (1) from the top of the atmosphere (�=0) to the surface 
(�=1) is ps,, the two conditions 

 
1 1

0 0

0 ; 1
dA dB

d
d d

η = η =
η η∫ ∫ d  (2) 

should be accurately fulfilled with the numerical integration scheme used in the vertical in the model. 

The number of levels in the operational model is 60, with the top level at 0.1 hPa. A new distribution is being 
tested in which the resolution is increased everywhere but mostly near the tropopause. The total number of 
levels in the new distribution is 91, with the topmost level at 0.01 hPa. 

3. Governing equations of the forecast model 

We use the hydrostatic primitive equation set, with the momentum equations written in vector form to avoid 
pole problems. The equations are written in Lagrangian form, i.e. using total time derivatives, consistent with 
the semi-Lagrangian treatment of the advection (see later). The evolution equations, using the hybrid vertical 
coordinate � described in Section 2, are (see Ritchie et al 1995) 

Momentum equation: 

 lnh
h h d v h V

dV
fk V R T p P K

dt
= − × −∇ φ− ∇ + +
� � �

V  (3) 

Thermodynamic equation: 

 
(1 ( 1) )

v
T T

TdT
P K

dt q p

κ ω
δ

= +
+ −

+  (4) 

Hydrostatic equation: 

 
1

(ln )s d vR T p
η

dφ φ η
η
∂= −

∂∫  (5) 

Continuity equation: 

 0h h

p p p
V

t
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�
�  (6) 

Humidity equation: 

 q

dq
P

dt
=  (7) 

Ozone equation: 

 3

3

o
o

dr
P

dt
=  (8) 

Here hV
�

 is the horizontal wind vector, Tv the virtual temperature, �h the “horizontal” gradient operator 

(along surfaces of constant �, which are the model levels), � the pressure vertical velocity ( /dp dt≡ ), 

v/ , /d pd p pdR c c cδ≡ ≡κ , � the geopotential, Px the contributions from the physical parameterizations 

and Kx the contribution from the horizontal diffusion. 

The term lnh d v hR T p∇ φ− ∇  is called the pressure-gradient term. 

2 



HORTAL, M.: OVERVIEW OF THE NUMERICS OF THE ECMWF ATMOSPHERIC FORECAST MODEL 

The continuity equation is integrated in the vertical to give: 

a)  the surface pressure tendency: 

 
1
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where 
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b) the pressure vertical velocity: 

 
0

( )h h

p
V d V p

η

ω η
η

∂= − ∇ ⋅ + ⋅ ∇
∂∫
� �

 (10) 

c) the vertical velocity in the hybrid coordinate system, needed for the semi-Lagrangian computation of 
the vertical trajectory: 

 
0

( )h

p p p
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t

η

η η
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∂ ∂ ∂= − − ∇ ⋅
∂ ∂ ∂∫

�
�  (11) 

In all equations, the only vertical operator is the vertical integral from the top of the atmosphere (�=0) to the 
model levels, where all the variables are kept (no vertical staggering), and to the surface (�=1). The integral 
in the hydrostatic equation (5), which is an integral from the surface to the model levels, can be computed by 
the difference between the integral from the top of the atmosphere to the model level minus the integral to 

the surface. Notice that 
p

η
∂
∂

 is computed with (1), not by vertical differentiation. 

4. Vertical integration operator 

The finite element methodology is used for constructing an operator that performs the vertical integrals 
needed, as stated in section 3. 

The operation “integral from the top of the atmosphere to a model level” 

 
0

( ) ( )F f x dx
η

η = ∫  (12) 

can be approximated as 

 
2 2

1 1 0

( ) (
K M

i i i i
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)C d c e x dx
η

η
= =

≈∑ ∑ ∫  (13) 

where Ci are the (unknown) coefficients of the expansion of the unknown function F(�) as a linear 
combination of the basis functions di(�), a linearly independent set of compact-support functions (finite 

elements) which form a basis for the domain 0���1. 

The quantities ci are likewise the coefficients of the expansion of the known function f(�) as a linear 
combination of the basis set {ei(�)}, not necessarily the same set as {di(�)}. 

We apply now the Galerkin procedure by requesting that the approximation error in equation (13) should be 
zero in the space spanned by a complete set of test functions {ti(�)} (not necessarily the same set as either 
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the {di(�)} or the {ei(�)}). Therefore, scalarly multiplying eq. (13) by each of the functions of the set {ti(�)} 

converts the approximate equality into an equality: 

 
2 2

1 1

1 1

1 2

0 0 0

( ) ( ) ( ) ( ) for
xK M

i j i i j i
i K i M

C t x d x dx c t x e y dy dx N j N
= =

 
= ≤ 

 
∑ ∑∫ ∫ ∫ ≤  (14) 

In matrix form this set of equations can be written as: 

 =AC Bc
� �

 (15) 

where 
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�
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∫ ∫  and  

1 1 21( , ,...., )M M Mc c c c+=� . From the set of linear equations (15), the coefficients C
�

 can be computed provided 

that matrix A  is invertible: 

 1−=C A Bc
� �

 (16) 
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If the function f(�) to be integrated is given by its values at the model levels, the set of coefficients ci has to 
be computed by projecting f(�) on the space of {ei(�)}. In the case of cubic finite elements, the number of 

basis functions is the number of model levels plus 4, therefore the projection needs a set of 4 boundary 
conditions. In the ECMWF model it is assumed that the value of the function is constant and with zero 

derivative outside the domain spanned by the model levels. Calling  the projection matrix and  the 

matrix to compute the values of F(�) at the model levels plus the surface, given the values of Ci, we can 

finally write (16) as: 

  (17) 

where  is the set of values of f(�) at the model levels, whereas  is the set of values of F(�) at the models 

levels plus the surface.  is called the integration matrix, because applying it to the values of a function to 

be integrated it returns the values of the integral. From this point of view, the integration scheme can be seen 
as a finite-difference algorithm, which has been developed using the finite-element formalism. 

�

The accuracy of the algorithm can be shown to be 8th order (Untch and Hortal 2004) when the basis and test 
functions are chosen to be cubic B-splines. It has also been shown to be 8 times more accurate than solving 

with the same finite-elements the differential equation problem  (Staniforth and Wood 

2004). 

In the operational version of the ECMWF forecast model, the sets {di(�)} and {ti(�)} are chosen to be the 

same, which ensures that matrix  is symmetric and positive definite. This ensures it is invertible. The set 

{ei(�)} is also identical to {di(�)} except at the boundaries. The basis functions d0, d1, and d2 are linearly 

combined with d-1 so that all of them are zero at �=0. This ensures that  is always fulfilled.  

5. The spectral horizontal representation 

Most of the scalar forecast fields in the model are represented as a linear combination of spherical harmonics 

  (18) 
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Here  are the spherical harmonics, the product of a Fourier function in longitude with 

zonal wavenumber m and an associated Legendre polynomial in (where  is the latitude) with 

total wavenumber n. The truncation limit N in the second sum corresponds to a triangular truncation, which 

has the property that it is isotropic, that is, the highest total wavenumber represented is independent of the 
value of the zonal wavenumber and therefore of the direction of the corresponding wavevector. 

( , ) ( )m m im
n nY P e λλ µ µ≡

( sin )µ φ≡ φ

( , )m
nX tη

1 2

1 0

1
( , ) ( , , , ) ( )

4
m m im
n nX t X t P e d d

π
λη λ µ η µ λ µ

π
−

−

= ∫ ∫

2
2

( 1)m m
n n

n n
Y Y

a

+∇ = −

The spectral coefficients  can be computed taking advantage of the orthogonality properties of the 

spherical harmonics as: 

  (19) 

The integral with respect to longitude (direct Fourier transform) can be computed exactly by means of the 
Fast Fourier Transform (FFT) algorithm if points equally spaced in longitude are used in a number of at least 
2N+1 (as in the so called linear grid). The aliasing produced in physical space when two functions are 
multiplied together can be eliminated if we use a number of points in the FFT of at least 3N+1 (quadratic 
grid). Likewise the integral in latitude (direct Legendre transform) can be computed exactly by means of a 
Gaussian quadrature formula using a number of latitudes of at least (2N+1)/2 (case of the linear grid) and the 
quadratic aliasing eliminated if at least (3N+1)/2 latitudes are used. 

A very important property of the spherical harmonics is that they are eigenfunctions of the Laplacian 
operator: 

  (20) 

This property makes solving a Helmholtz equation trivial in spectral space. Also the horizontal derivatives of 
a field can be computed analytically in spectral space.  

The quantities represented in spectral space related with the momentum equation are vorticity and 
divergence, which are true scalars, unlike the wind components, and can therefore be represented in terms of 
spherical harmonics. 

One possible drawback of the spectral method is that the Legendre transforms take a number of operations 
proportional to N3. The cost of the rest of the computations is only proportional to N2. When the resolution is 
increased, eventually the Legendre transforms will become the main cost of the integration of the equations. 
For more details on this subject see the contribution of Clive Temperton in this seminar proceedings. 

The distribution of points in physical space described above, which allows exact Fourier and Legendre 
transforms, is called the full Gaussian grid. In this grid, the geographical longitudinal distance between grid 
points is very small near the pole, compared with the corresponding distance near the equator, due to the 
smaller length of a latitude circle. The latitudinal distance is about the same near the poles and near the 
equator. The resolution is therefore very anisotropic, which is not consistent with the isotropy of the 
triangular spectral representation. In order to make the two representations more consistent, the number of 
points per row of latitude can be made smaller as we approach the poles. The resulting distribution of points 
is called the reduced Gaussian grid and the total number of points is of the order of 33% smaller that in the 
full Gaussian grid, making the computations in grid-point space ~33% cheaper. More details can be found in 
Hortal and Simmons (1991) and in Courtier and Naughton (1994). 
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6. Semi-implicit time integration scheme 

A time discretization in which the right-hand-side (r.h.s.) of the equation is taken at the centre of the time 
interval is an explicit second-order discretization. It is normally subject to a CFL-like stability limit. If the 
r.h.s. of the equation is taken as the average between its value at the initial time and its value at the final 
time, the discretization is called implicit and gives generally a stable scheme. An alternative is to treat 
implicitly only a linearized form of the r.h.s.. This is called semi-implicit scheme and can lead to a simpler 
equation to solve. The conversion of an explicit scheme into an implicit or semi-implicit one can be achieved 
by adding an “implicit correction term” 

  (21) ( ) 00.5tt X X X X+ −∆ ≡ + −
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where X is the part of the r.h.s. we want to treat implicitly, superscript 0 indicates the value used in the 
explicit discretization, superscript - and + indicate the values at the initial and final moments of the time step. 

With this notation, the semi-implicit method used at ECMWF can be written as: 

  (22) 

  (23) 

  (24) 

where the operator  is applied in (22) to the pressure-gradient term linearized around a reference 

temperature Tr and a reference surface pressure (ps)r, in (23) to the linearized energy conversion term and 

(24) to the linearized r.h.s. of (9). The operators ,  and  are defined by: 

  (25) 

  (26) 

and 

 . (27) 

Here pr is the pressure computed with (1) using as surface pressure the reference surface pressure (ps)r. The 

vertical integrals are performed with the operator defined in Section 4. 

Discretizing in time equations (22), (23) and (24) and eliminating the temperature and the surface pressure at 
the future time step, we arrive at a set of coupled Helmholtz equations for the value of the divergence at the 
future time step: 

  (28) 

where  couples the equations in the vertical. The set (28) is decoupled by projecting onto the 

space of eigenvectors of matrix . This leads to a Helmholtz equation for every eigenvalue of . These 

Helmholtz equations are trivial to solve in spectral space. 
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7. Semi-Lagrangian advection 

For the benefit of the readers who are not familiar with the semi-Lagrangian procedure, we outline here 
briefly the basic ideas. 

In the Lagrangian point of view, time is the only independent variable. The entities considered are individual 
air parcels and the space coordinate should be consistent with time, according to the movement of the 
corresponding air parcel. According to this point of view, the advection equation without r.h.s. 

  (29) 0
d

dt

ϕ =

ϕ

*( , ) ( , )
0jx t t x t

t

ϕ ϕ+ ∆ −
=

∆

jx t t+ ∆ *x
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dt t

−
= ⇒ = ⇒ = − ∆

∆

d
R

dt

ϕ =

( ) ( )
( )

2

A D
Mt t t t

R t
t

ϕ ϕ+ ∆ − −∆ =
∆

can be interpreted as follows: “the property  of an air parcel does not change with time”, i.e. it is 

conserved. A two-time-level discretization of this equation is: 

  (30) 

where  is the position at time  of the parcel of air considered and  its position at time t. The 

problem with the Lagrangian point of view is that a set of parcels evenly distributed in space (for example at 
the points of a Gaussian grid) end up unevenly distributed at the end of the time step and therefore operations 
such as the spectral transforms can no longer be performed on them. 

The semi-Lagrangian procedure solves this difficulty by considering the set of air parcels which will arrive at 
the set of evenly distributed grid points at the future time and traces back their positions at the present time 
(or the previous time in a three-time-level scheme). As these positions will in general not be grid points, the 
value of the property  has to be found by interpolation from its value at the surrounding grid points, where 

the values are known. 

According to the linear stability analysis, in the case of constant advection velocity U0, this semi-Lagrangian 

procedure is absolutely stable. In this case, finding the departure point of a parcel of air can be done by 
discretizing in the semi-Lagrangian way the definition of the velocity of that air parcel: 

 . (31) 

When the advection equation has a right hand side 

  (32) 

a centred (second-order accurate) three-time-level discretization can be given by: 

  (33) 

where we have introduced the following notation: superscript A means evaluated at the arrival point, 
superscript D means evaluated at the departure point and superscript M means evaluated at the centre of the 
trajectory. 

Three-time-level schemes have two main disadvantages: 

• they are less efficient than two-time-level schemes 

• they produce a computational mode. 

A two-time-level scheme similar to (33) is 
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  (34) 
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where the value of the r.h.s. has to be evaluated at an instant in time half way between the present and the 
future time steps. A possibility is to extrapolate the r.h.s. R in time: 

  (35) 

but the corresponding scheme happens to be unstable. A consequence of this instability can be seen in Figure 
1, where the forecast map of temperature at 200 hPa appears very noisy. 

 

Figure 1 Forecast of 200 hPa temperature from 4 Jan 1997 

An alternative second-order accurate scheme has been developed, starting from a Taylor series expansion of 
the function  around the present time step (and therefore the departure point of the semi-Lagrangian 

trajectory of the corresponding air parcel): 

  (36) 

and then substituting, according to the advection equation,  

  (37) 

and  

2

2

( ) ( )A D

AVAV

R t R t td dR

dt dt t

ϕ  − −∆ = ≈    ∆ 
 . (38) 

 
The approximation in (38) is the closure of the scheme and it implies a small inconsistency with the pure 
Lagrangian point of view, because the value of R at the present time step is taken at the arrival point of the 

trajectory and the value at the departure point is taken from the previous time step. It is therefore a kind of 
extrapolation in time, but a linear stability analysis shows that its stability is almost independent of the size 
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of the time-step (see Hortal 2002). For this reason it has been named Stable Extrapolation Two-Time-Level 
Semi-Lagrangian scheme (SETTLS). 

With this scheme, the forecast shown in Figure 1 was recomputed and the result is shown in Figure 2. 

 

Figure 2 As Figure 1 but using the SETTLS scheme 

There are some problems that require care when coding semi-Lagrangian advection in spherical geometry. 
As stated earlier, the momentum equation is discretized in vector form because a vector is continuous across 
the poles, while their components are not. When performing the interpolations to the departure points of the 
semi-Lagrangian trajectories we nevertheless interpolate u and v, which are the components of the vector 
wind relative to the system of reference local at the departure point. The interpolated value has to be used at 
the arrival point as the value of the wind at the future time. As the system of reference at that point is 
different to the one at the departure point, the corresponding change of reference system has to be performed.  

Another problem is the following: if we consider the vector wind constant during one time step in the 
computation of the semi-Lagrangian trajectories and this wind is horizontal at the departure point, it will no 
longer be horizontal at the arrival point, due to the curvature of the sphere. Therefore, the equivalent 
assumption of constant horizontal velocity in plane geometry should be constant angular velocity over the 
surface of the sphere, the trajectory being the arc of a great circle instead of a straight line.  

Interpolations used in the semi-Lagrangian scheme 

x x x x x 

x x x x 

x x x x 

x x x x 

x 

x 

x 

x 

x 

y 

 

Suppose we have a departure point at the green X positioning in 
the diagram to the left. In two dimensions, a bi-cubic 
interpolation will involve 4 cubic interpolations in the x-
direction direction followed by one cubic interpolation in the y 
direction. In three dimensions the number of cubic one-
dimensional interpolations will be 21. In order to save on the 
amount of computations, the only cubic interpolations 
performed in the ECMWF forecast model are the ones closest to  
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the departure point, the rest being substituted by linear interpolations, as in the first and fourth rows of the 
above diagram. At the second level above the departure point and the second level below the departure point 
the two-dimensional interpolation is therefore bilinear. In three dimensions the total number of interpolations 
is: 7 cubic and 10 linear. The computational cost is therefore a lot reduced. The forecast accuracy is however 
not reduced significantly by the substitution of these cubic interpolations by linear interpolations. This 
procedure is called quasi-cubic interpolation. 

Suppose we have a departure point at the green X positioning in the diagram to the left. In two dimensions, a 
bi-cubic interpolation will involve 4 cubic interpolations in the x-direction direction followed by one cubic 
interpolation in the y direction. In three dimensions the number of cubic one-dimensional interpolations will 
be 21. In order to save on the amount of computations, the only cubic interpolations performed in the 
ECMWF forecast model are the ones closest to the departure point, the rest being substituted by linear 
interpolations, as in the first and fourth rows of the above diagram. At the second level above the departure 
point and the second level below the departure point the two-dimensional interpolation is therefore bilinear. 
In three dimensions the total number of interpolations is: 7 cubic and 10 linear. The computational cost is 
therefore a lot reduced. The forecast accuracy is however not reduced significantly by the substitution of 
these cubic interpolations by linear interpolations. This procedure is called quasi-cubic interpolation. 

The cubic interpolations are done by means of cubic Lagrange polynomials. In one dimension a cubic 
polynomial is defined which fits the four neighbouring points to the departure point (the four points on a red 
line in the diagram). The interpolated value is then the value of the polynomial at the position of the 
departure point. 

When the function to be interpolated is rough, a cubic interpolation can produce an interpolated value larger 
or smaller than all the values used for the interpolation. In an advection process, however, no new maxima or 
minima of the advected function should be produced. The cubic interpolation can therefore produce artificial 
maxima or minima of the function being advected, which are not physical, and which can lead to a 
production of excessive eddy kinetic energy during a forecast. In order to avoid this problem, the following 
procedure is used: if the interpolated value in any of the one-dimensional cubic interpolations is 
larger/smaller than both of the surrounding values (the two inner points used in the interpolation), the 
interpolated value is set to the corresponding border value of the interval defined by these two values (i. e. if 
the interpolated value is larger than the values of the function at both nearest neighbouring points, the 
interpolated value is taken to be the larger of the two values, and if it is smaller than both values, then it is 
taken to be the smaller of the two). This procedure is called quasi-monotone interpolation (Bermejo and 
Staniforth 1992) and is applied in the horizontal to all variables and in the vertical to humidity and ozone 
only. 

Another problem of the cubic interpolation is that the accuracy of the interpolation, compared with a spectral 
representation of the function, is much reduced when the interpolated function is rough. In order to reduce 
this problem in the model, the surface pressure tendency equation and the thermodynamic equation are 
modified such that the quantities to be advected (i.e. interpolated) are smoother than the original quantities ln 
ps and T respectively (see Ritchie and Tanguay 1996 for the surface pressure equation and Temperton et al. 

2001 for the thermodynamic equation). In an isothermal atmosphere with temperature , the logarithm of 
the surface pressure changes with the height of the orography �s according to: 

T

* s

d

l
R T

Φ=  (39) 

The variable ln ps in eq. (9) is written as the sum of l* and a remainder l’. The part involving l* is moved to 

the r.h.s. of the equation and treated together with the rest of the terms there. The total time derivative is split 
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into partial time derivative and horizontal and vertical advection, of which only the horizontal advection part 
is different from zero as l* is independent of time and of the vertical coordinate. Only the remainder l’, 
which is much smoother than ln ps, is treated in the semi-Lagrangian way and needs to be cubically 

interpolated to the departure points of the trajectories.  

  (40) 
1

[ ] h s
d

dl
RHS V

dt R T
φ

′
= + ⋅∇

�

s
b s

s dref

p T
T p

p p R T

φ ∂ ∂= − ⋅ ∂ ∂ 

( )
[ ] ( )b b

T h b

d T T T
RHS V T

dt
η

η
− ∂= − ⋅∇ −

∂
�

�

VdtRd
��

=/ R
�

V
�

The result is a much improved mass conservation in the model: a 10-day forecast run at T106 resolution 
using cycle 13R4 of the operational model lost 0.59 hPa in the global mean ps, compared with the analysis 

value, using the original formulation of the pressure tendency equation, and only 0.02 hPa if the modified 
formulation was used. 

In the thermodynamic equation a similar “trick” is applied. The advected variable is not T itself but (T-Tb) 

where  

  (41) 

is an approximation to the change of temperature with height in the standard atmosphere. The modified 
thermodynamic equation is then 

  (42) 

because Tb is independent of time but not of the vertical dimension. 

T-Tb is a much smoother function over orography than T and the result of using the new formulation is a 

reduced level of noise in all fields, mostly vertical velocity, over orography. 

When searching for the departure points of the semi-Lagrangian trajectories, as the wind is not constant as in 

eq. (31), the velocity in the equation  (where  is the position vector of the air parcel) has to be 

treated according with the SETTLS scheme and therefore  at the present time needs to be interpolated to 

the departure point. However, the departure point is not known, it is what we are searching for, and therefore 
the procedure has to be iterative. For interpolating the r.h.s. of the equations at the departure point, both for 
the velocity equation and for the forecast equations, only linear interpolations in the three dimensions are 
used. Tests show no significant degradation in the forecast accuracy compared with using cubic 
interpolations, which are much more expensive. In some forecasts, in the stratospheric polar night jet, when 
it is displaced from the pole, a feedback process takes place between the computation of the vertical part of 
the semi-Lagrangian trajectories and the solution of the evolution equations. This feedback leads to a 
resonance of certain wavelengths that can produce a very noisy forecast of the divergence as the one shown 
in Figure 3a. 

In order to reduce this feedback, a smoothing interpolation is applied to the vertical velocity in the 
stratosphere in the computation of the vertical part of the semi-Lagrangian trajectories. This smoothing 
interpolation uses the same points as a cubic Lagrange interpolation, but instead of fitting a cubic 
polynomial, a linear function is fitted by means of least square distance to the points. The corresponding 
“interpolated” value is a filtered version of the vertical velocity, even when the interpolation point coincides 
with a grid point (the procedure is also applied at the arrival point of the trajectories, which are the grid 
points). The resulting forecast divergence using this smoothing interpolation for interpolating the vertical 
velocity is shown in Figure 3b. The resonance process that leads to the amplification of specific waves has 
been suppressed while the “real” waves are only marginally affected. 
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Figure 3a      Figure 3b 

8. Treatment of the Coriolis term 

The Coriolis term  in eq. (3) can be treated explicitly with the rest of the r.h.s. of the equation in a 

three-time-level scheme. In a two-time-level scheme, on the other hand, extrapolation in time of this term 
leads to instability (Temperton 1997). 

hVkf
��

×

2h

dR
fk V

dt
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�� � �

( 2h
h h

dV d
fk V V R)

dt dt
+ × → + Ω×
� � � � � �

RVh

���
×Ω+ 2

0
00.5( )h h

h h

V V
fk V V

t

+
+− = − × + +

∆

� � � � �
�

Two possibilities exist in the ECMWF forecast model for treating the Coriolis term in the two-time-level 
semi-Lagrangian scheme: the advective treatment and the implicit treatment. 

In the advective treatment, the Coriolis term is written as 

  

therefore the left hand side of the momentum equation is modified as follows: 

  (43) 

and the quantity advected with the semi-Lagrangian procedure is   instead of only the 

horizontal wind. 

In the implicit treatment the value of the Coriolis term is taken as the average between the value at the 
present time step and the value at the future time step.  

  (44) 

This causes the Helmholtz equations for the individual spectral components of divergence to become 
partially coupled and leads therefore to the need of solving a tri-diagonal problem instead of a diagonal 
problem in spectral space. 

9. Physical parameterizations 

The treatment of the terms Px in eq. (3), (4), (7) and (8) are coupled with the semi-Lagrangian scheme. 

Details are given in the presentation by Anton Beljaars in this proceedings. 
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10. Horizontal diffusion 

The terms Kx in the forecast equations are the contributions from horizontal diffusion. At ECMWF we use 

harmonic 4th order diffusion: 

  (45) 4X
K X
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∂ = − ∇
∂
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∂

The solution of this equation is very easy in spectral space and therefore the application of the horizontal 
diffusion is done in a time-split way from the rest of the terms in the equations and applied in spectral space 
after the solution of the Helmholtz equation produced by the semi-implicit time scheme. Two possibilities 
exist in the ECMWF forecast model for the horizontal diffusion: 

Implicit (backward) formulation 

  

  

Analytical solution 

  

11. Summary of the main numerical features in the ECMWF atmospheric 
forecast model 

• Two-time-level semi-Lagrangian advection 

o SETTLS scheme 

o Quasi-monotone quasi-cubic interpolation 

o Linear and smoothing interpolations for the r.h.s. of the equations 

o Modified continuity and thermodynamic equations 

• Semi-implicit treatment of linearized adjustment terms 

• Cubic finite-elements for the vertical integrals 

• Spectral horizontal Helmholtz solver (and computation of horizontal derivatives) 

• Linear reduced Gaussian grid 

• Semi-Lagrangian coupling of physics and dynamics 

12. Future developments 

• Test/develop a non-hydrostatic version of the forecast model. 

• Improve the semi-Lagrangian interpolations. 

• Try a horizontal representation by means of double Fourier series instead of spherical harmonics 
(this will avoid the Legendre transforms). 
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• Improve the conservation of advected quantities. 

• Study the influence of the upper and lower boundary conditions 

o for the semi-Lagrangian advection 

o for the vertical finite-element representation. 

• Investigate noise on vorticity over orography (aliasing?). 
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