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1. Introduction  

The Atmospheric InfraRed Sounder (AIRS) (Aumann et al. 2003) is the first of a new generation of high 
spectral resolution infrared sounder with 2378 channels measuring outgoing radiance between 650 cm-1 and 
2675 cm-1. High spectral resolution in the infrared region allows for the derivation of atmospheric soundings 
of temperature, moisture, ozone and trace gases with higher accuracy and higher vertical resolution. Many of 
the AIRS channels are highly correlated, which is easily observable by inspecting an AIRS correlation 
matrix for a given global ensemble. Hence there are not 2378 independent pieces of information, instead we 
will show that there are far fewer (less than 100). We use principal component analysis (PCA), also call 
eigenvector decomposition, to extract independent orthogonal structure functions (eigenvectors). PCA is 
often used to approximate data vectors having many elements with a new set of data vectors having fewer 
elements, while retaining most of the variability and information of the original data. The new data vectors 
are called principal component score vectors (or coefficients of eigenvectors), and because they consist of 
the components of the original data vector in an orthogonal coordinate system, the elements of a given 
principal component score vector are independent of each other (unlike the original spectrum).  

For AIRS, PCA is used for a) data compression, b) reconstructing radiances with the properties of reduced 
noise, c) independent instrument noise estimation, d) quality control, and e) deriving geophysical parameters. 

2. Principal Component Analysis 

Principal component analysis for high spectral resolution sounders is described by Huang and Antonelli 
(2001) and Goldberg et al. (2003). Elements of a principal component score vector are projections of the 
spectrum onto each of the orthogonal basis vectors, which are the eigenvectors (principal components) of the 
radiance covariance matrix. The total number, n, of eigenvectors is equal to the total number of channels. 
However, it can be shown that a much smaller set of k eigenvectors (< 100), ordered from largest to smallest 
eigenvalues, is sufficient to explain most of the variance in the original spectra. The covariance matrix is 
derived from an ensemble of AIRS normalized spectra, i.e. radiance divided by the instrument noise. The 
matrix of eigenvectors, E, is related to the covariance matrix, S, by: 

 S = E λET (1) 

where S , E and λ are all dimensioned n x n, and λ is a diagonal matrix of eigenvalues. The principal 
component scores vector p is computed from: 

 p = ET r (2)  

where r is the vector of centered (departure from the mean) normalized radiances. The next equation is used 
to reconstruct the radiances from a truncated set of k eigenvectors E* and a vector of principal component 
scores p*. (The symbol * indicated that the matrix or the result of a matrix operation is due to truncated set 
of vectors). 

 r* = E*p* (3) 
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The normalized reconstructed radiance vector is r*, E* has dimension n x k, and the vector p* has length k. 
To obtain the un-scaled radiance, one must add the ensemble mean normalized radiance used in generating 
the covariance matrix and multiply the sum by the noise used in constructing the normalized radiances  

The number of principal components needed to reproduce the signal in the original radiances is determined 
by examining the magnitude of the eigenvalues and examining the spatial correlation of the principal 
component scores. Since we are using normalized radiances, the square root of the eigenvalues can be 
interpreted as signal to noise. Principal component scores (PCS) can be thought of as superchannels since 
each one is a linear combination of all channel, as defined the associated eigenvector. The first score contains 
the largest signal to noise ratio, which as shown in Table 1 is very large. When the eigenvalues fall below 
unity, the noise contribution is larger than the signal. Based on Table 1, this transition occurs near the 60th 
eigenvalue. However when we examined the PCS spatial correlations, additional principal components are 
needed. Ideally the spatial correlation should be near zero for the last eigenvector of the truncated set, 
otherwise the PCs are not capturing all of the signal. Fig. 1a-b compares global fields of the 60th and 100th 
PCS. Note the spatial coherent signal remaining in fig. 1a, where as little if any spatial coherence can be seen 
at the 100th PCS in fig 1b. 

 

 
Table 1 Square root of the first 72 eigenvalues 

 

  
Figure 1a-b Global filed of the 60th and 100th Principal Component Scores (Note date of Dec 21, 2000, 
these plots are based on simulated AIRS data). 
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3. Applications 

3.1. Noise Filtering 
Because reconstructed radiances are derived from the principal components containing most of the signal as 
opposed to noise, the reconstructed radiances are nearly noise-free. The reconstructed radiances can be used 
in the retrieval process or directly assimilated. Fig. 2 shows the AIRS instrument noise at scene brightness 
temperature, and the root mean square (rms) difference between reconstructed brightness temperatures, from 
60 principal component scores, and noise-free simulated brightness temperatures. To compute these results, 
we simulated brightness temperatures from a global ensemble with and without expected instrument noise. 
The reconstructed brightness temperatures are computed from the instrument noise-contaminated data. The 
original noise curve in Fig. 2 is simply the rms error of the two datasets (noise and noise-free). The rms 
difference between the reconstructed brightness temperatures and the noise-free simulated brightness 
temperatures is extremely small in comparison to the instrument noise. The reconstructed data are more 
similar to noise-free observations. Since the reconstructed rms error is very small, we can use the 
reconstructed data to estimate the noise. This is done by simply computing the rms difference between the 
reconstructed brightness temperatures and the original noisy data. The difference between the original noise 
curve in Fig. 2 and the noise estimate using PCA is shown in Fig. 3. The difference is extremely small and 
we use this technique as an independent approach for estimating instrumental noise. Furthermore, when we 
find an occasional large difference between reconstructed and the original radiances it is often due to a 
problem in the original radiances. So PCA is also used for quality control. Another advantage of using 
reconstructed radiances is that a reduced channel set can be used in a retrieval algorithm or in radiance 
assimilation with the benefits of using information from the entire spectrum, since each reconstructed 
radiance is a linear combination of all channels. 

  
Fig. 2 Root mean square (rms) error of noise minus 
noise-free brightness temperatures (scene noise) and rms 
of reconstructed brightness temperatures from 60 
principal component scores minus noise free brightness 
temperatures 

Fig. 3 Difference between the rms of reconstructed 
brightness temperatures from 60 principal component 
scores minus noise contaminated brightness temperature 
and the scene noise (Fig. 2). 

3.2. Data compression 
Instead of distributing 2378 AIRS channels, a data producer can distribute 100 or so PCS. Thereby, reducing 
the amount of data to be distributed or archived by a factor of 20 or more. The user can reconstruct all or a 
subset of the channels. We have demonstrated that the eigenvectors can be based on a historical 
(independent) set or based on a dependent ensemble. Our historical eigenvectors are based on a single day of 
observations. The dependent eigenvectors are generated from the granule itself. Fig. 4 shows the original 
brightness temperature field for a single channel (1001.81 cm-1), along with reconstructed brightness 
temperature fields derived from three sets of eigenvectors: a) historical set from January 2003, b) a historical 
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set from May 2004 (two days prior to the data shown in Fig. 4), and c) from the granule. Visually, the four 
images are indistinguishable. Fig. 5 shows the histograms of the difference between the original and 
reconstructed radiances based on three sets of eigenvectors. Shown in Fig. 5 are the minimum, maximum, 
mean, variance and standard derivation of the differences between reconstructed and observed brightness 
temperatures. Note that the corresponding values from the three plots are very similar. The reconstructed 
brightness temperatures for all three sets used 85 eigenvectors, even though far fewer are actually needed for 
granule eigenvectors because the total variability within a granule is much lower than a global ensemble.  

 
Fig. 4 Observed brightness temperatures (upper left), reconstructed from granule eigenvectors (upper 
right) , reconstructed from May 2004 eigenvectors (lower left) and reconstructed from Jan 2003 
eigenvectors (lower right). 

 
Fig. 5 Observed brightness temperatures minus reconstructed from granule eigenvectors (left) , minus 
reconstructed from May 2004 eigenvectors (center) and minus reconstructed from Jan 2003 eigenvectors 
(right). 

218 



GOLDBERG, M.D. ET AL.: PRINCIPAL COMPONENT ANALYSIS (PCA) OF AIRS DATA 

Generally, only 20-40 eigenvectors are needed to reconstruct radiances at the noise level for eigenvectors 
generated from the granule itself. There are advantages and disadvantages of using historical or dependent 
eigenvectors. For global NWP applications, the advantages of historical eigenvectors are that only one set is 
needed for all cases, the eigenvectors are pre-computed, and the physical meaning of the eigenvector remain 
the same for all cases. For granule dependent eigenvectors, each granule would have a different set of 
eigenvectors, there is a much higher computational cost, and each eigenvector would have a different 
physical meaning. Granule dependent eigenvectors, however, will produce the best reconstructed radiances 
even in extreme cases, for example, volcanic eruptions. However, extreme cases are generally not 
assimilated in a model. Our recommendation is to use historical eigenvectors for global applications, and to 
use granule eigenvectors for archiving. We also recommend to archive images such as those shown in Fig. 4 
and Fig. 5 as ancillary information so that users can see for themselves how well the reconstruction is 
performing. Our AIRS processing system at NESDIS produces datasets of PCS and a subset of 324 channels. 
Both are important and should be used, because statistics between reconstructed radiances and the 324 
channels can be computed and monitored continuously in the same manner as currently employed by NWP 
centers to monitor the differences between measured versus computed radiances. It should also be noted that 
NESDIS produces a total reconstruction score contained in the PCS file, which is simply the square root of 
the sum of the differences between the observed noise-scaled radiances and the reconstructed. A 
reconstruction score of unity means that the overall difference between reconstructed radiances and the 
observed is at the instrument noise level. The reconstruction score is a very good quality assurance indicator, 
and we recommend only using reconstructed radiances with a score of less than 1.2. 

 

649.61 cm-1  (peak ~ 70 mb)  recon- ecmwf   ^^^^^^  rms= .35K 

 original  - ecmwf   ^^^^^^    rms = 0.92K

 
Fig. 6 Upper panel is the difference between reconstructed and ECMWF calculated brightness 
temperature, lower panel is the difference between observed and ECMWF calculated brightness 
temperatures. 
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Fig. 6 shows a good example for considering the assimilation of reconstructed radiances (brightness 
temperatures). The upper panel is the difference field between reconstructed brightness temperatures and 
brightness temperatures computed from the ECMWF model analysis, whereas the lower panel shows the 
difference field between observed and computed brightness temperature. Both are for a channel at 649.61 
cm-1, which peaks around 70 mb. The lower panel difference field appears to be very noisy, while the upper 
panel difference field is more coherent. Also note that the rms difference is significantly lower. The lower 
panel is noisy because this channel has a instrumental noise of about 0.9 K. If we assume that the 
reconstructed radiances are nearly noise-free, then the true background error of the model representing this 
channel is about 0.35K. Even though the reconstructed radiance for a given channel is a linear combination 
of all channels, the largest weight is from the channel itself and from nearby similar channels. The weights 
from the other channels tend to be much smaller.  

3.3. Geophysical Retrievals using PC Regression 
Another application is the use of PC scores in least squares regression to derive geophysical retrievals. For 
AIRS, we use 85 principal component scores for predictors and solve for atmospheric temperature, moisture, 
ozone profiles and surface temperature and surface emissivity. With 2000+ channels, many of the channels 
are similar to each other, making the covariance matrix nearly collinear. A significant advantage for using 85 
principal component scores instead of all 2000+ channels is that the inverse of the predictor matrix is more 
stable and less collinear. Another advantage is that the regression solution is computationally fast. In matrix 
notation the form of the regression coefficients C, dimensioned m number of parameters by the k number of 
principal component scores, is 

 C = XP*T(P*P*T )-1  (5) 

where X is a training dependent predictand ensemble matrix, of dimension m by sample size s. P*, the 
training predictor ensemble matrix, is dimensioned k by S. On independent data the m-dimensioned solution 
vector is obtained from the matrix multiplication of C p* , where p* is the independent vector of principal 
component scores of length k.  

Retrieval rms errors (differences between the retrieval and collocated radiosondes) based on the AIRS PC 
regression are shown in Fig. 7. Also shown in this figure are retrieval errors from the NESDIS ATOVS 
system (Reale,. 2002). The AIRS retrieval errors (dashed curve), including the systematic bias are 
significantly lower than ATOVS. The larger errors in the lower tropospheric temperature are probably due to 
uncertainties arising from collocation temporal and spatial differences. However, the difference between the  
 

 
 

Fig. 7: Temperature (in K, top) and moisture (in %, bottom) RMS differences between the regression 
retrieval and the collocated radiosondes. The dashed curves are the AIRS errors, NOAA 16 errors are the 
solid curve. 
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ATOVS and AIRS retrieval remains large. Previous simulation studies have found that AIRS generally 
reduces the retrieval error by about 0.5K, and this appears to be holding for this radiosonde comparison. For 
moisture, the retrieval errors are significantly smaller than ATOVS. The large natural variability of water 
vapor combined with uncertainties in radiosonde-observed water vapor will prevent demonstrating the 10-
15% accuracies often reported in simulated studies. 

4. Recommendations for improved impact of AIRS data in NWP 

Because of the demonstrated noise-filtering feature of using a truncated set of eigenvectors to reconstruct 
radiances, our recommendation to NWP centers is to assimilate reconstructed radiances instead of the 
original 324 channel radiances distributed by NESDIS. The reconstructed radiances are also available from 
NESDIS. This should be the first step. Second we strongly recommend the use of cloud-cleared radiances. 
Currently NWP centers are assimilating channel radiances that are not contaminated by clouds. The 
percentage of assimilated AIRS channel radiances therefore can range from 100% of the spectrally and 
spatially thinned data for channels peaking in the upper stratosphere, above the clouds, to 5% of the thinned 
data for channels peaking in the lower atmosphere. However, because the vertical resolving power of AIRS 
is concentrated in the lower atmosphere, the lower peaking and likely cloud contaminated AIRS channel 
radiances are the most important. The use of cloud-cleared radiances (Susskind et al., 2003) is therefore very 
important. Fig. 8 shows the global difference fields between an observed AIRS window channel brightness 
temperature at 1000 cm-1 and the clear AIRS channel simulated from ECMWF. Whereas Fig. 9 is the same  
 

 
Fig 8. Observed minus clear ECMWF simulated brightness temperature for 965 cm-1 window channel. , 
all cases where the difference is +- 0.5 K. ; 

 
Fig 9. Cloud-Cleared minus clear ECMWF simulated brightness temperature for 965 cm-1 window 
channel. , all cases where the difference is +- 0.5 K. 
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as Fig. 8 with the exception that the observed AIRS is replaced with cloud-cleared radiances. Shown in both 
figures are difference values within +- 0.5 K. One can clearly notice the much larger coverage of data in Fig. 
9. 
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