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Part III: DYNAMICS AND NUMERICAL PROCEDURES

CHAPTER 1   Introduction

Table of contents

1.1 Overview

1.1  OVERVIEW

Since the original demonstration of the efficiency advantage of the semi-Lagrangian semi-implicit method over a

decade ago by André Robert, this numerical integration scheme is being used in an increasing range of atmospheric

models.  Most of the applications have been in grid-point models.  Shallow-water-equations studies have included

three-time-level versions by Robert (1981, 1982) and Staniforth and Temperton (1986), and two-time-level

schemes by Temperton and Staniforth (1987), Purser and Leslie (1988), McDonald and Bates (1989), and Côté

and Staniforth (1990).  There also have been various applications in baroclinic grid-point models.  Three-time-level

sigma-coordinate versions have been presented by Robert et al. (1985) and Tanguay et al. (1989), and the extension

of the three-time-level approach to a non-hydrostatic coordinate has been demonstrated by Tanguay et al. (1990) .

Bates and McDonald (1982), McDonald (1986), Leslie and Purser (1991), McDonald and Haugen (1992), and

Bates et al. (1993) have developed two-time-level sigma-coordinate schemes, McDonald and Haugen (1993) have

presented the two-time-level extension to a hybrid vertical coordinate, and Golding (1992) has applied a split two-

time-level semi-Lagrangian scheme in a non-hydrostatic model.

For spectral models, a semi-Lagrangian semi-implicit shallow-water equation model was presented by Ritchie

(1988) for a three-time-level version, and adapted by Côté and Staniforth (1988) for a two-time-level scheme.  Ba-

roclinic three-time-level spectral model formulations have been demonstrated by Ritchie (1991) for operational nu-

merical weather prediction in a sigma-coordinate model, and recently by Williamson and Olson (1994) for climate

simulations with a hybrid coordinate model.

In a broader context, the semi-Lagrangian scheme, as incorporated in spectral numerical weather prediction mod-

els, may be considered as an economical variant of the spectral Lagrange-Galerkin method (Süli and Ware, 1991).

Experience at ECMWF (Simmons et al., 1989) suggests that the accuracy of medium-range forecasts has steadily

improved with increasing resolution.  Consequently, in its four-year plan for the period 1989-1992, ECMWF pro-

posed development of a high-resolution version of its forecast model.  A target resolution of a spectral representa-

tion with a triangular truncation of 213 waves in the horizontal and 31 levels in the vertical (T213/L31) was set,

entailing a doubling of the horizontal resolution and an approximate doubling of the vertical resolution in the trop-

osphere compared to the T106/L19 configuration that was operational at the time (Simmons et al., 1989).  In view

of the anticipated computer resources, it was clear that major efficiency gains would be necessary in order to attain

this objective.  These gains have been provided by the introduction of the semi-Lagrangian treatment of advection

permitting a substantial increase in the size of the time-step, the use of a reduced Gaussian grid giving a further

advantage of about 25%, the introduction of economies in the Legendre transforms, and improvements to the mod-

el's basic architecture.

The layout for the remainder of the document is as follows.  In Chapter 2 ‘Basic equations and discretization’  we

present the reformulation of the Eulerian model in order to transform the vorticity–divergence formulation into a
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momentum-equation version in preparation for a subsequent semi-Lagrangian vector treatment of the equations of

motion.  The vertical discretization of the ECMWF hybrid coordinate on a staggered grid is also considered.  The

semi-Lagrangian treatment is discussed in some detail in Chapter 3 ‘Semi-Lagrangian formulation’ , including the

adaptation to accommodate the reduced Gaussian grid. 
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Part III: DYNAMICS AND NUMERICAL PROCEDURES

CHAPTER 2   Basic equations and discretization

Table of contents

2.1 Eulerian reformulation of the continuous equations

2.2 Discretization

2.2.1 Vertical discretization

2.2.2 Finite-element vertical discretization

2.2.3 Time discretization

2.2.4 Horizontal grid

2.2.5 Time-stepping procedure

2.2.6 Time filtering

2.2.7 Remarks

2.2.8  as spectral variable

2.1  EULERIAN REFORMULATION OF THE CONTINUOUS EQUATIONS

Following Ritchie (1988,1991), the first step in developing a semi-Lagrangian version of the ECMWF spectral

model was to convert the existing Eulerian  –D (vorticity–divergence) model to a  –  formulation, where

and  are the wind images defined by ,  (  and   are the components of the hori-

zontal wind in spherical coordinates, and   is latitude). In this section we describe the Eulerian –  model.

First we set out the continuous equations in  coordinates, where   is longitude and   is the hybrid ver-

tical coordinate introduced by Simmons and Burridge (1981); thus   is a monotonic function of the pres-

sure , and also depends on the surface pressure   in such a way that

 and .

The momentum equations are

(2.1)

Tv

ζ U V
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,  (2.2)

where  is the radius of the earth,   is the -coordinate vertical velocity ( ),   is geopotential,

 is the gas constant for dry air, and   is the virtual temperature defined by

where   is temperature,   is specific humidity and   is the gas constant for water vapour.   and  

represent the contributions of the parametrized physical processes, while   and   are the horizontal

diffusion terms.

The thermodynamic equation is

(2.3)

where  (  is the specific heat of dry air at constant pressure),   is the -coordinate vertical

velocity ( ), and  (  is the specific heat of water vapour at constant pressure).

The moisture equation is

(2.4)

In (2.2) and (2.3),   and   represent the contributions of the parametrized physical processes, while  

and   are the horizontal diffusion terms. 

The continuity equation is

(2.5)

where   is the horizontal gradient operator in spherical coordinates and  is the horizontal wind.

The geopotential   which appears in (2.1) and (2.2) is defined by the hydrostatic equation

(2.6)

while the vertical velocity   in (2.3) is given by

(2.7)
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Expressions for the rate of change of surface pressure, and for the vertical velocity , are obtained by integrating

(2.5), using the boundary conditions  at  and at 

(2.8)

(2.9)

Since we use   rather than   as the surface pressure variable, it is convenient to rewrite (2.8) as

(2.10)

2.2  DISCRETIZATION

2.2.1  Vertical discretization

To represent the vertical variation of the dependent variables , ,  and , the atmosphere is divided into

 layers. These layers are defined by the pressures at the interfaces between them (the ‘half-levels’), and

these pressures are given by

(2.11)

for . The  and  are constants whose values effectively define the vertical coordi-

nate and  is the surface pressure field.

The values of the  and  for all  are stored in the GRIB header of all fields archived

on model levels to allow the reconstruction of the ‘full-level’ pressure  associated with each model level (middle

of layer) from  ( )by using (2.11) and the surface pressure field.

The prognostic variables are represented by their values at ‘full-level’ pressures . Values for  are not explic-

itly required by the model’s vertical finite-difference scheme, which is described below.

The discrete analogue of the surface pressure tendency equation (2.10) is

(2.12)

where

 . (2.13)
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From (2.11) we obtain

(2.14)

where  is the divergence at level ,

(2.15)

and

 . (2.16)

The discrete analogue of (2.9) is

(2.17)

and from (2.11) we obtain

(2.18)

where   is given by (2.14).

Vertical advection of a variable X is now given by

(2.19)

The discrete analogue of the hydrostatic equation (2.6) is

(2.20)

which gives

(2.21)
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(2.22)

where  and, for ,

, (2.23)

The remaining part of the pressure gradient terms in (2.1) and (2.2) is given by

(2.24)

with   given by (2.23) for all .

Finally, the energy conversion term in the thermodynamic equation (2.3) is discretized as

(2.25)

where , , is defined by (2.23) for , and

(2.26)

The reasons behind the various choices made in this vertical discretization scheme are discussed by Simmons and

Burridge (1981); basically the scheme is designed to conserve angular momentum and energy, for frictionless ad-

iabatic flow.

2.2.2  Finite-element vertical discretization

In CY24R3 the vertical discretization has been changed in the operational model from the finite-difference discre-

tization in Lorenz staggering described in the previous subsection to a finite-element discretization using cubic B-

splines as basis functions.

For the finite-element (FE) discretization, all variables (even pressure) are kept at the same levels (full levels), i.e.

the values of pressure at full levels and not at half levels are required. Also, the values of the derivatives 

and  at full levels are now needed, from which the vertical derivative of pressure can be computed accord-

ing to . In the semi-Lagrangian version of the evolution equations these are

the only vertical derivatives required. They are constant in time and linked to the definition of the vertical coordi-

nate. It is therefore convenient to change the definition of the vertical coordinate and supply  and
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∆pk
----------------- 

pk 1 2⁄+

pk 1 2⁄–
----------------- 

 ln–=
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 
 
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 
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 
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 
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(2.27)

and 

(2.28)

The two conditions of Eq.(2.28) above ensure that the integral of pressure from the top of the atmosphere to the

surface yields exactly the surface pressure . These conditions have to be fulfilled to a good approximation with the

numerical integration scheme used. Pressure at any full level can then be obtained by integrating Eq. (2.27) from

the top of the atmosphere to the level in question.

The only operation in the vertical which has to be evaluated is the vertical integration. An integral operator based

on a finite-element representation will be derived next.

Most of the integrals we have to evaluate are integrals from the top of the atmosphere to the individual model levels

and to the surface. We therefore derive an operator in finite-element representation for this type of integral, i.e. an

operator which returns the integral from the top of the atmosphere to each of the model levels  and to the surface

. The vertical integral in the hydrostatic equation (i.e. from the surface upwards) can be constructed by

taking the difference of the integral from the top of the atmosphere to the model level in question minus the integral

from the top to the surface.

Let  and  be two sets of linearly independent functions of compact support which can

be used as basis functions to expand any function of the vertical coordinate  given in the domain [0,1]. 

The vertical integral 

can then be approximated as

(2.29)

where  are the coefficients of the expansion of  as a linear combination of the basis functions 

and  are the coefficients of the expansion of  as a linear combination of the basis functions .

We can then apply the Galerkin procedure to Eq. (2.29) by multiplying both sides of this equation by each function

from a complete set of “test functions”  and integrating over the vertical domain: 
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 
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i K1=
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∫
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In matrix form this can be expressed as .

Incorporating into the above expression also the transformations from physical space to finite-element space and

back, i.e.  and , we obtain . Here  and  denote vectors in phys-

ical space composed mainly of the values of  and , respectively, at the model levels: , ,

. The set of values F also includes the value at the surface of the model. Details of the basis functions

chosen to implement the scheme as well as how to compute the projection matrices  and  are given in Untch

and Hortal (2002) .

Matrix  is the integration operator in finite-element formulation which, applied to a function given

at full model levels, yields the integrals of this function from the top of the atmosphere to each individual full model

level and to the surface. All the finite sums on the vertical levels in subsection 2.2.1 are replaced by vertical inte-

grals computed by applying the matrix integration operator I. Moreover the quantities  are no longer needed as

the integration operator gives directly the value of the integral at the model levels (the half levels do not have any

meaning in the FE discretization).

2.2.3  Time discretization

To introduce a discretization in time, together with a semi-implicit correction, we define the operators

,

where   represents the value of a variable at time ,  the value at time , and  the value at

. In preparation for the semi-Lagrangian treatment to be developed in section 3, we also introduce the

three-dimensional advection operator

(2.30)

Introducing the semi-implicit correction terms, Eqs. (2.1)–(2.4) become:

(2.31)
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∫
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˜
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(2.32)

(2.33)

(2.34)

where  is a parameter of the semi-implicit scheme; the classical scheme (Robert 1969) is recovered with .

The semi-implicit correction terms are linearized versions of the pressure gradient terms in (2.1)–(2.2) and the en-

ergy conversion term in (2.3). Thus  is a reference temperature (here chosen to be independent of vertical lev-

el), while   and   are matrices such that

, (2.35)

. (2.36)

where the half-level pressures appearing in (2.35) and (2.35) are reference values obtained from (2.11) by choosing

a reference value  of , and the coefficients  are based on these reference values. The reference values

adopted for the semi-implicit scheme are  and .

The integrated surface pressure tendency equation (2.14) becomes

(2.37)

where

(2.38)

2.2.4  Horizontal grid

A novel feature of the model is the optional use of a reduced Gaussian grid, as described by Hortal and Simmons

(1991). Thus, the number of points on each latitude row is chosen so that the local east–west grid length remains

approximately constant, with the restriction that the number should be suitable for the FFT ( ). After

some experimentation, the ‘fully reduced grid’ option of Hortal and Simmons was implemented; all possible wav-

enumbers (up to the model’s truncation limit) are used in the Legendre transforms. A small amount of noise in the
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immediate vicinity of the poles was removed by increasing the number of grid points in the three most northerly

and southerly rows of the grid (from 6, 12 and 18 points in the original design of the T213 grid to 12, 16 and 20

points respectively). Courtier and Naughton (1994) have very recently reconsidered the design of reduced Gaus-

sian grids.

2.2.5  Time-stepping procedure

The time-stepping procedure for the Eulerian  –  version of the model follows closely that outlined by Tem-

perton (1991) for the shallow-water equations. At the start of a time-step, the model state at time  is defined

by the values of  , , ,  and  on the Gaussian grid. To compute the semi-implicit corrections, the

 values of divergence ,   and   are also held on the grid, where  and 

 . (2.39)

The model state at time   is defined by the spectral coefficients of  , , ,  and . Legendre transforms

followed by Fourier transforms are then used to compute   , , , , , ,  and  

at time  on the model grid. Additional Fourier transforms are used to compute the corresponding values of

, . ,  and . The meridional gradients of  and  are obtained using

the relationships

 .

All the information is then available to evaluate the terms at time   on the left-hand sides of (2.31)–(2.34) and

(2.37), and thus to compute ‘provisional’ tendencies of the model variables. These tendencies (together with values

of the variables at  are supplied to the physical parametrization routines, which increment the tendencies

with their respective contributions. The semi-implicit correction terms evaluated at time-levels ( ) and  are

then added to the tendencies. Ignoring the horizontal diffusion terms (which are handled later in spectral space),

and grouping together the terms which have been computed on the grid, (2.31)–(2.34) and (2.37) can be written in

the form

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

The right-hand sides  –  are transformed to spectral space via Fourier transforms followed by Gaussian in-

tegration. The curl and divergence of (2.40) and (2.41) are then computed in spectral space, leading to 

U V
t ∆ t–( )

U V T q ln psurf
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(2.45)

. (2.46)

Eqs. (2.42), (2.44) and (2.46) can then be combined with the aid of (2.39) to obtain an equation of the form

(2.47)

for each zonal wavenumber   and total wavenumber  , where the matrix

(2.48)

couples all the   values of  in a vertical column. Once   has been found, the calculation of

 and   can be completed, while   and   have already been obtained from (2.43) and (2.45).

Finally, a ‘fractional step’ approach is used to implement the horizontal diffusion of vorticity, divergence, temper-

ature and specific humidity. A simple linear diffusion of order   is applied along the hybrid coordinate surfaces:

(2.49)

where ,  or . It is applied in spectral space to the  values such that if  is the spectral

coefficient of   prior to diffusion, then the diffused value  is given by

(2.50)

A modified form of (2.50) is also used for the temperature , to approximate diffusion on surfaces of constant

pressure rather than on the sloping hybrid coordinate surfaces (Simmons, 1987). The operational version of the

model uses fourth-order horizontal diffusion 

2.2.6  Time filtering

To avoid decoupling of the solutions at odd and even time steps, a Robert filter (Asselin 1972) is applied at each

timestep. The time-filtering is defined by

(2.51)

where the subscript   denotes a filtered value, and  ,  and   represent values at  ,  and  ,

respectively.

Because of the scanning structure of the model, it is convenient to apply the time-filtering in grid-point space, and

to split (2.51) into two parts:

(2.52)
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(2.53)

The ‘partially filtered’ values computed by (2.52) are stored on a grid-point work file and passed from one time-

step to the next. Thus, the information available after the transforms to grid-point space consists of partially filtered

values at time  together with unfiltered values at time . The filtering of the  fields can then be

completed via (2.53), which after shifting by one timestep becomes:

. (2.54)

The computations described in Section 2.2.5 are performed using these fully filtered values at time   and

the unfiltered values at time  . Once (2.54) has been implemented, values of   are also available to implement

(2.52) for the partially filtered values to be passed on to the next timestep.

2.2.7  Remarks

Ritchie (1988) noted that for a spectral model of the shallow-water equations, the  –  form and the –  form

gave identical results (apart from round-off error). In extending this work to a multi-level model, Ritchie (1991)

found that this equivalence was not maintained. This was in fact a result of some analytic manipulations in the ver-

tical, used to eliminate between the variables in solving the equations of the semi-implicit scheme, which were not

exactly matched by the finite-element vertical discretization of Ritchie’s model.

In the case of the model described here, the corresponding elimination between the variables is purely algebraic,

and the equivalence between the  –  form and the –  form is maintained apart from one small exception

due to the use of the hybrid vertical coordinate. In the –  model, the gradients of the geopotential  are com-

puted in grid-point space (from the spectrally computed gradients of ,  and ), while in the  –  model

 itself is computed and transformed separately into spectral space, where its Laplacian is added into the diver-

gence equation. Since  is not a quadratic function of the model variables there is some aliasing, which is different

for the two versions of the model. In practice the differences between the  –  model and the –  model were

found to be very small, and in the case of a pure sigma-coordinate the two models would be algebraically equiva-

lent.

The  –  model is nevertheless considerably more economical than its –  counterpart in terms of the number

of Legendre transforms required. In addition to the transform of  referred to above, four Legendre transforms are

saved in the treatment of the wind fields using the procedures described by Temperton (1991) for the shallow-water

equations. The number of multi-level Legendre transforms is thereby reduced from 17 to 12 per time-step.

2.2.8   as spectral variable

In preparation for a further reduction in the number of Legendre transforms required by the semi-Lagrangian ver-

sion of the model, the modified Eulerian version includes an option to keep the virtual temperature , rather than

the temperature  , as the spectral variable. In the time-stepping procedure, Legendre transforms followed by Fou-

rier transforms are used to compute ,  and  at time  on the model grid; the corresponding val-

ues of ,  and  are then computed using the corresponding values of  ,  and . The

thermodynamic equation (2.3) is then stepped forward in time exactly as before. After the physical parametrization

routines, the ‘provisional’ value of  is combined with  to compute a provisional value of

. The semi-implicit correction terms evaluated at time-levels  and  are then added

to the provisional value of , just before the transform back to spectral space.

There are corresponding slight changes in the semi-implicit correction terms. The linearized hydrostatic matrix 
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in (2.31)–(2.32) and (2.39) now operates on   rather than on . From the point of view of the semi-implicit

scheme, (2.33) has implicitly been replaced by an equation of the form

(2.55)

although as explained above it is not necessary to formulate or compute the missing terms  explicitly. Hence, (2.42)

is replaced by

(2.56)

and the solution of the semi-implicit equations in spectral space proceeds just as before.

This change of spectral variable results in only insignificant changes to a 10-day model forecast, but permits useful

economies in the semi-Lagrangian version to be described in the next chapter.

Tv T

δtTv … β
2
---∆tt τ[ ]D( )–=

Tv
+ β∆t τ[ ]D++ R′3=
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Part III: DYNAMICS AND NUMERICAL PROCEDURES

CHAPTER 3   Semi-Lagrangian formulation
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3.9.1 Stable Extrapolation Two-Time-Level Scheme (SETTLS)

3.10 Numerical coupling of the physical parameterizations to the “dynamical” equations (SLAVEPP)

3.10.1 Moisture adjustment and first time-step treatment

3.1  GENERAL DESCRIPTION

The general form of the model equations is

(3.1)

where the three-dimensional advection operator  was defined in (2.30), L is the linearized part of R and N is the

remainder or “non-linear terms”. An explicit three-time-level semi-Lagrangian treatment of (3.1) is obtained by

finding the approximate trajectory, over the time interval , of a particle which arrives at each grid

point  at time . Equation (3.1) is then approximated by

(3.2)

where the superscripts ,  and , respectively denote evaluation at the arrival point , the mid-point

dX
dt
-------

∂X
∂t
------- A X( )+ R L N+= = =

A

t ∆t,t– ∆t+[ ]
x
˜
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X+ X––
2∆t

------------------- R0=
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˜
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of the trajectory , and the departure point . Since the mid-point and the departure point

will not in general coincide with model grid points,  and  must be determined by interpolation. 

It is more economical (and, as discussed later, gives better results in some circumstances; see also Tanguay et al.,

1992) to evaluate the right-hand side of (3.2) as

(3.3)

since only a single interpolation (of the combined field  at the point ) is then required

in order to determine . 

The right-hand sides of the time-discretized model equations also contain semi-implicit correction terms, which in

the Eulerian model took the form

where the superscripts refer to time-levels, and to a single common grid point. In the semi-Lagrangian version of

the model, the semi-implicit correction terms take the form

(3.4)

and again the terms to be evaluated at the departure point  can be added to other right-hand side terms

before interpolation. Notice that the evaluation of , and both ways of evaluating , are all centred in space

and time.

     To obtain accurate results from a semi-Lagrangian integration scheme, it is necessary to choose the order of

interpolation carefully (see for example Staniforth and Côté‚ 1991). In practice it has been found (for the model

described here) that linear interpolation is adequate for the terms evaluated at the midpoint of the trajectory, but

that cubic interpolation is essential for the terms evaluated at the departure point. Cubic interpolation in three di-

mensions is expensive, and fortunately a ‘quasi-cubic’ interpolation (suggested by Courtier) was found to give es-

sentially equivalent results. The technique can be illustrated by two-dimensional  interpolation on a regular grid.

The target point is at . In the first step, four interpolations are performed in the -direction: linear

(rather than the usual cubic) interpolations to the points   and , and cubic interpo-

lations to the points   and . In the second step, one cubic interpolation is performed in

the  -direction, to evaluate the field at the target point. The number of ‘neighbours’ contributing to the result is

reduced from 16 to 12. The generalization to three dimensions is straightforward and results in a significant saving,

the number of neighbours being reduced from 64 to 32, and the computation being reduced from 21 one-dimen-

sional cubic interpolations to 7 cubic plus 10 linear one-dimensional interpolations.

For the reduced Gaussian grid described in Subsection 2.2.4, the mesh is no longer regular.  However, it is easily

seen that the extra complication is relatively minor provided that the first step in the interpolation is performed in

the -direction.

The order of the interpolation in the vertical is reduced to linear when the evaluation point lies between the two

highest model  levels, or between the lowest two model levels. Extrapolation beyond the top or bottom levels is not

allowed.

All the cubic interpolations, except for the vertical interpolations in the thermodynamic and the momentum equa-

tions are quasi-monotone interpolations. That means that, after the interpolation itself, the interpolated value is
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compared with the values of the interpolated function at the two closest points used in the interpolation. The inter-

polated value is then restricted to stay within the interval defined by the values at these two points. If it is larger

that both of them it is reset to the larger value and if it is smaller than both it is reset to the lower value.

3.2  FINDING THE DEPARTURE POINT

Extending the procedure of Robert (1981) to three dimensions, the midpoint   and the departure point

 of the trajectory for each arrival point  are found by iteratively solving the equation

(3.5)

where   in (3.5) is the three-dimensional wind field .  Since   was never explicitly required in the

Eulerian version of the model (see Eqs. (2.18)–(2.19) for the Eulerian discretization of vertical advection), it is nec-

essary to construct this field for the trajectory calculations.  As   is already specified at the upper and lower

boundaries ( , at  and at ) it would be natural to construct   at the half-levels (i.e. vertically

staggered with respect to   and ), and indeed a preliminary version of the model was coded that way. However,

it is more convenient to hold the three velocity components at the same set of points (which also coincide with the

arrival points), so the formulation was changed to use   at the ‘full’ levels. Thus, the vertical velocity used in (3.5)

is defined by

(3.6)

where   is already defined by (2.18) and

(3.7)

In deriving (3.7) we have used (2.11) together with a formal definition of   itself (which again was not required

by the discretized Eulerian dynamics):

(3.8)

where   is a constant pressure (chosen to be 1013.25 ).

The iterative procedure for solving (3.5) is analogous to that used by Ritchie (1991) in a  -coordinate model. Giv-

en an estimate   after   iterations, the next iteration is given by

(3.9)

where the vertical   component of the displacement is found first. The vertical component of   on the right-

hand side of (3.9) is then updated before the horizontal components are found taking into account the spherical ge-

ometry following Ritchie (1987, 1988). The first guess is given by

(3.10)
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The calculations include approximations to the spherical geometry away from the poles, following Ritchie and

Beaudoin (1994). In agreement with previous work (reviewed by Staniforth and Côté‚ 1991), little sensitivity was

found to the order of interpolation used in the trajectory calculations, and linear interpolation appears to be suffi-

ciently accurate. After providing a first guess via (3.10), a single further iteration was found to be adequate.

 Once the midpoint   of the trajectory has been found, the departure point  is immediately obtained

(in the horizontal, the backward extension of the trajectory is along a great circle). In the vertical, if the departure

point is then above the first (or below the last) mode level, it is modified to lie on the first (last) level.

In solving (3.9), it is necessary to convert between a displacement in terms of the spatial coordinates and the cor-

responding displacement in terms of ‘grid lengths’, in order to select the correct three-dimensional block of points

for the interpolation routine. This is simple in the horizontal, since the mesh length is constant in the -direction

(at a given latitude), and almost constant in the -direction.  It is more difficult in the vertical, where the grid spac-

ing changes rapidly, and the conversion algorithm for the vertical displacement makes use of an auxiliary grid de-

fined with high uniform resolution.

At high horizontal resolutions a positive feedback mechanism, between the computation of the departure point of

the trajectories and the solution of the momentum equations, can lead to instability, which results in noisy forecast

fields in the winter stratosphere. In order to break the positive feedback loop, a smoothing interpolation is applied

to the vertical velocity in the computation of the trajectory. This smoothing interpolation uses the same set of points

around the departure point as the cubic interpolation, but the horizontal interpolations are substituted by least

squares linear fits to the corresponding four points. The procedure is applied to both the arrival and the departure

points of the trajectory. As the procedure is not an interpolatory procedure, the value at the arrival point is substi-

tuted by a smoothed value, as is also the case for the value at the departure point.

3.3  ‘NON-INTERPOLATING’ SCHEME IN THE VERTICAL

An alternative formulation of the semi-Lagrangian scheme in three dimensions was suggested by Ritchie (1991).

Equation (3.1) can be rewritten as

(3.11)

where

and   is the horizontal part of the advection operator defined in (2.30). In (3.11),   is defined to be a vertical

velocity which would lead to the departure point of the trajectory at time  lying exactly on a model level.

This model level is chosen to be the one closest to the true departure point. Equation (3.11) is then approximated by

(3.12)

where the superscripts  , ,  respectively denote evaluation at the arrival point , the midpoint

 and the departure point   of the modified trajectory.  Since the modified departure point

lies by definition on a model level, no vertical interpolation is required to evaluate . As discussed in Subsection
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3.1 above, it is also possible to evaluate the terms on the right-hand side of (3.12) by averaging the values at

and ; in this case no vertical interpolation at all is required.  Notice that a separate interpolation

is required to evaluate the second term on the right-hand side of (3.12) since the quantity , defined by

(3.13)

where   and   are respectively the arrival and departure levels of the modified trajectory, is meaningful only

at each grid point.

If the vertical velocity (or the time-step) is sufficiently small, then the modified departure point lies on the same

model level as the arrival point,  is zero and the treatment of vertical advection becomes purely Eulerian. In

general there is an Eulerian treatment of the advection by the ‘residual vertical velocity’  , which is small

enough to guarantee that the Eulerian CFL criterion for vertical advection is respected. Thus, the ‘non-interpolat-

ing’ scheme maintains the desirable stability properties of the ‘fully interpolating’ scheme.

There is a subtle, but important, difference in the way the iterative scheme (3.9) is implemented to determine the

modified trajectory in the non-interpolating scheme. As before, the first step at each iteration is to update the esti-

mate of the vertical component of  the displacement.The implied updated departure point is then moved to the clos-

est model level.  In the second step, the horizontal components are then updated using the winds evaluated at the

midpoint of the modified trajectory.  Notice that this gives a result different from that obtained by simply carrying

out the trajectory calculation of the fully interpolating scheme and then projecting the departure point to the nearest

model level. The modified procedure described above is easily seen to be more consistent by considering the case

in which the vertical velocity is not zero, but is small enough for the modified trajectory to be horizontal ).

The discretization is then equivalent to a purely two-dimensional semi-Lagrangian scheme, the trajectory being

computed using the horizontal wind field evaluated on a single model level.

An incidental advantage of the ‘non-interpolating’ scheme over the ‘fully interpolating’ scheme is that it resolves

any ambiguities about the treatment of departure points above the top model level or below the bottom model level;

the modified departure points automatically lie on the top or bottom level. The treatment of vertical advection be-

comes Eulerian, which is well-defined at the top and bottom levels. Thus, the non-interpolating scheme removes

the need for artificial ‘nudging’ of the departure points or the extrapolation of quantities to points above or below

the domain of the model levels. 

Smolarkiewicz and Rasch (1991) have extended the principle of the ‘non-interpolating’ semi-Lagrangian formula-

tion to generate a broader class of stable and accurate advection schemes.

3.4  SEMI-LAGRANGIAN DISCRETIZATION

Here we describe in detail only the fully interpolating version of the semi-Lagrangian discretization; the modifica-

tions necessary for the ‘non-interpolating in the vertical’ version become evident by comparing the right-hand side

of (3.12) with that of (3.2).

Following Ritchie (1988, 1991), the momentum equations are integrated in vector form to avoid an instability of

the metric term near the poles. Using the notation of (3.2) and defining the horizontal wind vector ,

the semi-Lagrangian equivalent of (2.31)–(2.32) is

     (3.14)
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where  is the vertically directed unit vector and   is the horizontal gradient operator in spherical coordinates.

On the right-hand side of (3.14),   and   respectively denote the contributions of the physical parametrization

schemes and horizontal diffusion, to be discussed in Subsection 3.6, while the semi-implicit correction terms are

evaluated as in (3.4). For the momentum equations, it was found advantageous to evaluate the time-level   terms

 as an average between the values at the departure and arrival points of the trajectory, as in (3.3). The pressure

gradient terms are discretized in exactly the same way as for the Eulerian model (see Subsection 2.2.1).

Since (3.14) is in vector form, it is important to account for the change in the orientation of the coordinate system

as the particle follows the trajectory; the manipulations required are as set out by Ritchie (1988) and simplified by

Ritchie and Beaudoin (1994).

The thermodynamic and moisture equations (2.33)–(2.34) become

(3.15)

(3.16)

In (3.15), the   term is discretized as in (2.25), and evaluated at the midpoint of the trajectory, while the semi-

implicit correction terms are evaluated as in (3.4).

The -coordinate continuity equation (2.5) can be rewritten as

(3.17)

Setting

and noting that

,

we also have

. (3.18)

Combining (3.17) and (3.18).

. (3.19)

Now introducing the vertical discretization, (3.19) becomes
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. (3.20)

the vertical discretization of   having been defined in (2.18).

Changing the prognostic variable to ,

(3.21)

Combining (3.21) with the discrete definition of   given by (2.18),

(3.22)

where  is given by (2.14).

Noting that

 ,

and including the semi-implicit correction terms, the semi-Lagrangian discretization of the continuity equation fi-

nally becomes

(3.23)

(Since there is no vertical advection term in (3.23), no modification is required for the vertically non-interpolating

scheme). It is important to bear in mind that each contribution to the sum on the right-hand side of (3.23) involves

a different trajectory. The interpolations for    and the semi-implicit correction terms are however two-

dimensional, since these quantities are independent of vertical level. The   term is evaluated at the midpoint

of the trajectory, and requires a three-dimensional interpolation.

In summary, the semi-Lagrangian discretization is given by Equations (3.14)–(3.16)together with (3.23).

3.5  COMPARISON WITH OTHER SCHEMES   

The semi-Lagrangian formulation presented above differs in some respects from those proposed by other authors.

Perhaps the most notable difference lies in the treatment of the conversion  term in the thermodynamic equation

(3.15), and of the right-hand side of the continuity equation (3.23). Both involve terms of the form ,

which in our scheme are computed in a purely Eulerian fashion. This may appear somewhat inconsistent; indeed

McDonald and Haugen (1993) state as a specific design objective of their scheme that the operator   should

not appear explicitly. The alternative approach, also taken by Williamson and Olson (1994), is to use the continuity
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equation in its semi-implicit semi-Lagrangian form to derive a consistent equation for predicting , which

can then be used to eliminate the  terms. In the -coordinate system, Bates et al. (1993) and McDonald

and Haugen (1992) used a similar approach to derive a prognostic equation for . A possible disadvantage of such

an approach is that   (or ) then follows an independent evolution, no longer satisfying a diagnostic rela-

tionship of the form (2.18). Our ‘Eulerian’ treatment of the   terms avoids this disadvantage and seems

to work well, but further study is required to determine whether this difference in formulation is important or not.

Another aspect of our semi-Lagrangian discretization of the continuity equation, which differs from that in other

models, concerns the definition of the trajectory; in our scheme this is the same (three-dimensional) trajectory as

used for the other variables. In the continuous form of the equation, (3.19), the advective part of the total derivative

  may be regarded either as two-dimensional or as three-dimensional (since   is zero). However

the vertically discretized form, (3.20), is well-defined only at discrete model levels, implying that for consistency

the semi-Lagrangian discretization (3.23) should be based on horizontal trajectories. Correcting this inconsistency

in our scheme by computing horizontal trajectories for the continuity equation, based on the horizontal wind at each

model level, made very little difference to the results, and for the time being we have allowed the inconsistency to

remain. (As discussed later, in the case of the ‘vertically non-interpolating’ scheme the modified trajectories are

nearly always horizontal anyway.) In the case of the fully interpolating scheme, recomputing the trajectories rep-

resents a significant expense; Bates et al. (1993) and McDonald and Haugen (1992) used a simple projection of

the three-dimensional trajectory onto the model level of the arrival point. In our model this approach resulted in

poor mass conservation, though Bates et al. (1993) came to the opposite conclusion. Again, the importance or oth-

erwise of these differences in formulation is not yet firmly established.

3.6  TIME-STEPPING PROCEDURE

The general outline of the time-stepping procedure for the semi-Lagrangian version is similar to that described for

the Eulerian model in Subsection 2.2.5. Thus at the start of a timestep, the model state at time   is defined

by the values of  , , ,  and   on the Gaussian grid. To complete the semi-implicit corrections, the

 values of ,  and   are also held on the grid. The model state at time   is defined by the

spectral coefficients of , , ,  and  .  Legendre transforms followed by Fourier transforms are then

used to compute , , , , , , ,  ,  and   at time   on the model grid;

additional Fourier transforms are used to compute the corresponding values of , , and

.  Since   and the horizontal gradients of   and   are no longer required on the model grid, one

multi-level Legendre transform and three multi-level Fourier transforms are saved in comparison with the Eulerian

version.

Since the advection of moisture is handled by the semi-Lagrangian discretization (3.16), the horizontal gradients

of   are only needed in order to compute the horizontal gradients of the virtual temperature   (which in turn

are required to compute the   term in (3.14)). If   is chosen as the spectral variable as in Subsection 2.2.8,

these gradients are available directly, and there is then no need to transform   (or ) to the model grid.

The number of multi-level Legendre transforms per time-step is further reduced to 10. In passing, all the ingredi-

ents are then in place for a semi-Lagrangian treatment in which the moisture field is never transformed to spectral

space (Williamson and Rasch, 1994), and only 8 multi-level Legendre transforms are required per time-step (com-

pared with 17 in the original  –  Eulerian model). 

After the transforms to the model grid, all the information is then available to compute the trajectories for each grid

point, and to evaluate the ‘dynamical’ contributions to the semi-Lagrangian discretization. Ignoring for a moment

the contributions of the physical parametrization schemes and of the horizontal diffusion, each equation is either

of the form

η· ∂p/∂η
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. (3.24)

or

(3.25)

depending on whether the   terms are averaged between the end points of the trajectory or evaluated at the mid-

points. In (3.24) and (3.25), the   terms represent the semi-implicit corrections;   includes contributions from

time-levels   and , while   includes contributions from time-levels     and .

In the first part of the calculation for equations of the form (3.24), the combined field   is com-

puted, and the value of this combined field at each departure point   is then found by interpolation. Adding

the (uninterpolated) value of   results in a provisional value of   at each grid point, incorporating all the

terms in (3.24) except for . The calculation for equations of the form (3.25) proceeds similarly, except that two

interpolations are required, one for   at  , and one for   at  

A provisional value   is now available at each grid point for each variable, and is used together with   at the

same grid point to compute an ‘Eulerian’ tendency. These fields and their tendencies are then supplied to the phys-

ical parametrization routines, which increment the tendencies with their respective contributions, just as in the Eul-

erian version (except that, to avoid extra interpolations, the   terms have been included in the supplied dynamical

tendencies). If   is chosen as the spectral variable, a provisional value of   is computed at this point.

The contributions from the   terms at time   are now added in, resulting in a set of equations of the form

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

where the right-hand sides  include all the terms which have been computed on the grid, and   replaces

 if  is the spectral variable. Equations (3.26)–(3.30) have exactly the same form as Eqs. (2.40)–(2.44) of the

Eulerian model and are solved in exactly the same way, by first transforming to spectral space.  After finding the

new spectral coefficients at time , horizontal diffusion is also applied in the same way as for the Eulerian

version.

The implementation of the time-filtering for the semi-Lagrangian model is identical to that for the Eulerian version,

as described in Subsection 2.2.6
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3.7  OPTIMIZATION OF VERTICALLY NON-INTERPOLATING SCHEME

     In the ‘vertically non-interpolating’ scheme, the departure point of each modified trajectory lies on a model

level. For the set of arrival points on each model level, it is of interest to determine the frequency distribution of

the corresponding departure points. The results of an experiment run to collect these statistics led to a significant

optimization of the code for the vertically non-interpolating scheme.

The statistics were obtained from a 10-day forecast using the model in its operational configuration: T213, 31 lev-

els, with a 15-minute timestep. The results are summarized in Table 3.1, which shows that the vast majority

(99.67% overall) of modified trajectories are horizontal; no departure point was ever more than three model levels

away from its corresponding arrival point.

The implication of these results is that a great deal of redundant calculation was being performed in the vertically

non-interpolating scheme. For each horizontal modified trajectory, the interpolation of the horizontal winds in the

trajectory calculation itself becomes two-dimensional rather than three-dimensional, as do the interpolations of

‘right-hand side’ terms at the mid point of the trajectory, while the additional interpolations to calculate terms of

the form   in (3.12) are not required at all. Consequently, special routines were written to perform

interpolations which are two-dimensional everywhere except at a set of ‘flagged’ points where they become three-

dimensional, and similarly to perform two- or three-dimensional interpolations at the flagged points while skipping

all other points. The use of these special routines reduced the ‘semi-Lagrangian overhead’ for the vertically non-

interpolating scheme by about 30%.

η· * ∂X/∂η( )0
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Asterisks indicate less than 0.005% frequency

3.8  MODIFIED SEMI-LAGRANGIAN EQUATIONS

3.8.1  Momentum equations

The momentum equations are treated in vector form (Eq. (3.14)). Following Rochas (1990) and Temperton (1997),

TABLE 3.1    FREQUENCY DISTRIBUTION (%) OF DEPARTURE POINTS IN THE ‘VERTICALLY NON-INTERPOLATING’ 
SCHEME

Arrival
level 

Departure levels

1–6 100.00

7–9 100.00 *

10 99.99 0.01 *

11 99.96 0.04 *

12 99.89 0.11 *

13 99.76 0.24 * *

14 99.60 0.40 * *

15 99.43 0.57 * *

16 99.28 0.72 *

17 99.16 0.83 0.01

18 99.08 0.92 *

19 99.05 0.94 0.01

20 99.05 0.94 0.01 *

21 99.09 0.91 * *

22 99.14 0.85 0.01 *

23 99.22 0.78 *

24 99.31 0.69 *

25 99.44 0.56 *

26 99.60 0.40 *

27 99.78 0.22 *

28 99.92 0.08 *

29 99.99 0.01

30 100.00 *

31 100.00

k k k 1± k 2± k 3±
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the Coriolis terms can be incorporated in the semi-Lagrangian advection. Thus, the advected variable becomes

 where  is the earth’s rotation and  is the radial position vector, while the Coriolis terms are

dropped from the right-hand side. As described by Temperton (1997), this reformulation is beneficial provided that

the spherical geometry is treated accurately in determining the departure point and in rotating the vectors to account

for the change in the orientation of the coordinate system as the particle follows the trajectory.

The discretization of the momentum equations in the notation of Eq. (3.1) is then:

(3.31)

(3.32)

(3.33)

where  is the gas constant for dry air,  is a reference temperature,  is geopotential and  is the linearized

hydrostatic integration matrix defined in Eq. (2.32) of Ritchie (1995).

In component form,  is just  where  is the earth’s radius and  is latitude. Since the latitude

of the departure point is known, the term  in the advected variable  is computed analytically rather than

interpolated. An alternative semi-implicit treatment of the Coriolis terms has also been developed (Temperton

1997).

3.8.2  Continuity equation

Modelling flow over mountains with a semi-Lagrangian integration scheme can lead to problems in the form of a

spurious resonant response to steady orographic forcing. The mechanism was clarified by Rivest et al. (1994).

Strictly speaking, the problem has little to do with the semi-Lagrangian scheme itself; rather, it is a result of the

long time steps permitted by the scheme, such that the Courant number becomes greater than 1. Recently, Ritchie

and Tanguay (1996) proposed a modification to the semi-Lagrangian scheme which alleviates the problem. It

turned out that their suggestion was easy to implement in the ECMWF model, and had additional benefits besides

improving the forecast of flow over orography.

Although Ritchie and Tanguay start by introducing a change of variables in the semi-implicit time discretization,

this is not necessary and a slightly different derivation is presented here. The continuity equation is written in the

form

(3.34)

where  represents right-hand-side terms. The total derivative on the left-hand side is discretized in a semi-

Lagrangian fashion, and the final form of the discretized equation involves a vertical summation.

Now split  into two parts:

(3.35)

where the time-independent part  depends on the underlying orography :
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(3.36)

and  is a reference temperature. This choice gives

(3.37)

so that  is (to within an additive constant) the value of  appropriate for an isothermal state at rest with

underlying orography.

Using (3.35) and (3.36),

(3.38)

The second term on the right-hand side is computed in an Eulerian manner and transferred to the right-hand side

of the continuity equation (3.34), which becomes

(3.39)

The new advected variable is much smoother than the original, since the influence of the underlying orography has

been subtracted out; hence, the semi-Lagrangian advection is presumably more accurate. 

3.8.3  Thermodynamic equation

As mentioned above, the semi-Lagrangian treatment of the continuity equation is improved by changing the ad-

vected variable to a smoother quantity which is essentially independent of the underlying orography. A similar

modification has been implemented in the thermodynamic equation, borrowing an idea from the treatment of hor-

izontal diffusion. To approximate horizontal diffusion on pressure surfaces, thereby avoiding spurious warming

over mountain tops in sigma or hybrid vertical coordinates, the diffused quantity is , with

(3.40)

where the subscript ‘ref’ denotes a reference value which is a function only of model level. For the purposes of the

semi-Lagrangian advection  is replaced by a time-independent value as in Eq. (3.36) above, to define a

“temperature”  which depends only on the model level and the underlying orography:

(3.41)

The semi-Lagrangian advection is now applied to the quantity , while a compensating expression

(3.42)

appears on the right-hand side of the equation and is computed in an Eulerian fashion (note that this time it includes
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a vertical advection term).

3.9  TWO-TIME-LEVEL SEMI-LAGRANGIAN SCHEME

Formally, a two-time-level scheme may be written in the notation of Eq.(3.2) as:

(3.43)

where

 is the value at the “arrival” gridpoint at 

 s the value interpolated at the “departure” point at time ;

 and  are the linear terms defined similarly;

 are the non linear terms, obtained by extrapolation in time to 

(3.44)

The displacement equation becomes

(3.45)

where the three-dimensional wind field  is also extrapolated in time:

(3.46)

The iterative scheme and first-guess for solving (3.45) are exactly analogous to those for solving (3.5).

The choices for the variables  and for the interpolation schemes remain exactly as for the three-time-level

scheme.

The semi-implicit equations to be solved in spectral space have the same form as for the three-time-level scheme,

except that  is replaced by .

In principle a two-time-level scheme should have no  computational mode, and a time-filtering procedure is

no longer needed.

3.9.1  Stable Extrapolation Two-Time-Level Scheme (SETTLS)

An alternative second-order accurate scheme to solving (3.45) can be derived by expanding the position vector 

of the parcel of air as a Taylor series around the departure point of the semi-Lagrangian trajectory:
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(3.47)

Here subscript AV indicates some average value along the semi-Lagrangian trajectory.

Substituting the time derivative of  by the velocity vector , we find

(3.48)

This equation describes an uniformly accelerated movement. The trajectories can no longer be considered as

straight lines on a plane or as arcs of a great circle in spherical geometry as is traditionally done in semi-Lagrangian

schemes and the position of the middle point of the trajectory is no longer an average between the departure and

the arrival points.

To proceed, one has to estimate the quantity

(3.49)

To estimate (3.49) the first possibility explored was to use an average along the trajectory of the explicit estimate

of the r.h.s. of the momentum equations as the horizontal part of expression (3.49) and the expression

(3.50)

for the vertical part.

After exploring many other possibilities, the following estimate was adopted:

(3.51)

using the departure point of the semi-Lagrangian trajectory corresponding to the present time step instead of the

departure point of the trajectory corresponding to the previous time step. Here D means the position at time t of the

parcel of air which will arrive to gridpoint A at time t+∆t.

This estimate assumes that the total time derivative of the velocity is constant with time, following Durran’s sug-

gestion of “extrapolating along the trajectory”, but the estimate uses only the arrival and departure points of the

present trajectory and is therefore compatible with the semi-implicit treatment of the evolution equations. This

scheme should therefore be also stable according to linear stability analysis and has accordingly been named “Sta-

ble Extrapolation Two-Time-Level Scheme” or SETTLS.

Substituting (3.51) into (3.48) we obtain:

(3.52)
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and a similar expression can be used in every evolution equation to treat the non-linear terms of the r.h.s.

3.10  NUMERICAL COUPLING OF THE PHYSICAL PARAMETERIZATIONS TO THE “DYNAMI-
CAL” EQUATIONS (SLAVEPP)

Due to the diffusive nature of the mostly parabolic equations in the physics the contributions of the physical pa-

rameterizations are computed separately from the “dynamical” equations. The coupling of these two parts can use

the SLAVEPP (Semi-Lagrangian Averaging of Physical Parameterizations) method which is described and dis-

cussed in detail by Wedi (1999).

In equation (3.14)-(3.16) the contribution of the physical parameterizations are denoted as  indicating an eval-

uation of the parameterizations at the arrival point only. In the two time level scheme as described in section 3.9

this is replaced by a partly second order accurate coupling of the parameterizations in time and space, which is

achieved by evaluating part of the “physics” at the arrival point and the remainder at the departure point of the semi-

Lagrangian trajectory. Due to the different nature of the parameterized processes the contributions of radiation,

convection and cloud parameterization are averaged “along” the semi-Lagrangian trajectory while the contribu-

tions of vertical diffusion and parameterized gravity waves are taken at the arrival point only. Equation (3.43) be-

comes then

(3.53)

Part of the implicit calculations of the physical parameterizations use the following tendency:

, (3.54)

with equation (3.43) modified to yield

(3.55)

The “~” denotes that only provisional values of the dynamic fields are available because semi-implicit correction

terms are still to be computed (see section 3.6). Therefore  is used for the linear terms. Equation

(3.54) describes local tendencies, which are computed subtracting the new provisional explicit values  of

the dynamic fields (at the arrival point) from their values  at the previous time step. The parameterizations at

the time step  are computed at the arrival point as shown in the following equation:

(3.56)
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where the “first guess” predictor of the model variables at the arrival point at time step  is com-

puted from the tendency of the “dynamics”, the tendency of the parameterizations of radiation, convection and

clouds at the previous time-step t and the tendency of vertical diffusion and gravity waves at :

. (3.57)

 denotes an explicit interaction of the parameterizations of cloud and convection.The parameter 

has been introduced in order to achieve a better balance between the physical parameterizations when the “first

guess” predictor is computed.

3.10.1  Moisture adjustment and first time-step treatment

The parametrizations of cloud and convection show a sensitivity to the initial profiles. Therefore, at the initial time-

step of the model “first guess” predictors are generated by a two step iteration of the parametrizations of cloud and

convection consistent with the provisional dynamic fields as described above.

The effective profiles of temperature and humidity (including all contributions from the departure as well as the

arrival point) are computed after all physical processes have been accounted for. A final moist adjustment is per-

formed on these effective profiles and any amount of surplus humidity is added to the rainfall or snow fluxes in the

next time-step. Note, that after this adjustment the temperature profile may still be altered as a result of the semi-

implicit solution procedure.

X+
A predict, t ∆t+

t ∆t+

X+
A predict, X̃A Dyn,

+
αP+ D rad, conv cloud+ +

–
∆t PA vdif, gwdrag+

+ ∆t+=

Fconv α 0.5=
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