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Part II: DATA ASSIMILATION

CHAPTER 1   Overview
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1.1  INTRODUCTION

This documentation of 4D–Var and 3D-FGAT serves as a scientific guide to the data assimilation codes within EC-

MWF’s Integrated Forecasting System (IFS). The documentation is divided into a number of chapters. This, the

first chapter provides an overview of ECMWF’s data assimilation system, a brief history of its evolution and a de-

scription of the basic scientific formulation.

The second chapter describes the practical implementation of the multi-resolution incremental method for 4D-Var

data assimilation (used operationally since January 2003, CY25r3), and the solution algorithm including minimi-

zation and preconditioning. The 3D-FGAT configuration as used in the production of ERA-40 (Uppala et al. 2005)

and operationally in the so-called Boundary-Condition suite is described in Chapter 3. Thereafter follows a descrip-

tion of the background term (Chapter 4) and a chapter on observation operators and the organisation of observation

cost-function calculations for conventional and satellite data (Chapter 5). Chapter 6 deals with the computation and

cycling of background and analysis errors and Chapter 7 is on initialization and control of gravity waves. Diagnos-

tic tools for investigation of the performance of the assimilation system are described in Chapter 8. The modules

for observation selection, quality control and screening are described in Chapter 9 and Chapter 10. Chapter 11 out-

lines the snow analysis, Chapter 12 describes the Soil analysis, Chapter 13 describes the sea surface temperature

and sea-ice analysis. The final chapter Chapter 14 provides summary information about the main unix-scripts and

important files, and a schematic of the data flow between the various jobs steps that constitute a data assimilation

cycle.

1.2  SCIENTIFIC PUBLICATIONS

The scientific description of 3D/4D-Var has been published in a series of papers in QJRMS, in ECMWF workshop

proceedings and Technical Memoranda over the years. The incremental formulation was introduced by Courtier

et al. (1994). The ECMWF implementation of 3D-Var was published in a three-part paper by Courtier et al. (1998),

Rabier et al. (1998) and Andersson et al. (1998). The original observation operators for conventional data can be

found in Vasiljevic et al. (1992). The methods for assimilation of TOVS radiance data and ERS scatterometer data

were developed by Andersson et al. (1994) and Stoffelen and Anderson (1997), respectively. The pre-operational

experimentation with 4D-Var has been documented in three papers by Rabier et al. (2000), Mahfouf and Rabier

(2000) and Klinker et al. (2000). The background term has been published by Derber and Bouttier (1999), with

more recent developments described by Fisher (2003).
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Papers of data usage and impact include a study of commercial aircraft data (Cardinali et al. 2003), scatterometer

impact (Isaksen 1997; Isaksen and Stoffelen, 2000; Isaksen and Janssen, 2004), conventional and satellite humid-

ity data (Andersson et al. 2004), ozone analysis (Dethof and Holm 2004), time series of frequent data (Andersson

et al. 2001), wind profiler data (Bouttier 2001b; Andersson and Garcia-Mendez 2002), TOVS radiance data (Mc-

Nally et al. 1999), water-vapour radiances from geostationary satellites (Munro et al. 2004; Kopken et al. 2004),

and the use of high-volume satellite data in general (Thepaut and Andersson, 2003).

1.3  BRIEF HISTORY OF 3D AND 4D-VAR IN ECMWF OPERATIONS

3D-Var was implemented in ECMWF operations on 30 January 1996, and was replaced on 25 November 1997 by

4D-Var. The two three-part series of QJRMS papers mentioned above basically describe the two schemes as they

were at the time of their implementation. However, there have been very significant developments of the variation-

al data assimilation system during its time in operations. Major code-upgrades have taken place in connection with

migrations to new computers. 3D-Var was first implemented on a CRAY C90 shared-memory parallel computer

system and was migrated to a distributed-memory Fujitsu VPP700 machine in September 1996. Further migrations

of the codes took place in May 2000 to a Fujitsu VPP5000, and in March 2003 to an IBM P690, and later in 2004

to an IBM P690+. A history of the evolution of ECMWF super-computing is available at www.ecmwf.int. The cur-

rent IBM implementation of the assimilation system utilizes both shared-memory (OpenMP) and distributed-mem-

ory (MPI) parallelism. A general list of changes to the operational forecasting system is available at http://

www.ecmwf.int/products/data/technical/model_id/index.html.

The observation handling and data screening modules have also developed rapidly to keep pace with the changing

computer environment, and the arrival of new observational data sets. The codes inherited from OI were replaced

with new codes at the time of the migration to Fujitsu in 1996. The need for improved parallelism and rapidly in-

creasing data volumes lead to the development of the Observation DataBase (ODB) software (see ODB documen-

tation), facilitating in March 2003 the move to the IBM computers and the introduction of high-spectral resolution

satellite data (e.g. AIRS). The quality control, data selection and screening algorithms are described in the paper

by Järvinen and Undén (1997), and variational quality control of observations in Andersson and Järvinen (1999).

One of the most important aspects of a variational assimilation is the specification of background errors. The orig-

inal formulation of Courtier et al. (1998) was replaced in May 1997 by that of Derber and Bouttier (1999). The

latter formulation is still used as described here in Chapter 4, including more recent improvements (e.g. non-linear

balance January 2003, CY25r3) introduced by Fisher (2003), introduction of ozone as an analysis variable (Dethof

and Holm, 2004) in October 1999 (CY21r4), and the new humidity analysis (Holm et al. 2002) in October 2003

(CY26r3). The cycling algorithms for analysis and background errors (Fisher and Courtier 1995, and Chapter 6)

were introduced in 1996. The calibration of background error statistics is since October 1999 based on an ensemble

of 3D-Var data assimilations, updated in January 2003 to statistics based on a 4D-Var ensemble (Fisher 2003). 

On the 25th November 1997 6-hourly 4D-Var was introduced operationally, at resolution T213L31, with two iter-

ations of the outer loop: the first at T63L31 with 50 iterations (simplified physics) and the second with 20 iterations

(with tangent-linear physics, at same resolution). In April 1998 the resolution was changed to TL319 and in June

1998 we revised the radiosonde/pilot usage (significant levels, temperature instead of geopotential) and we started

using time-sequences of data (Järvinen et al. 1999), so-called 4D-screening. The data assimilation scheme was ex-

tended higher into the atmosphere on 10 March 1999, when the TL319L50 model was introduced, which in turn

enabled the introduction in May 1999 of ATOVS radiance data (McNally et al. 1999). In October 1999 the vertical

resolution of the boundary layer was enhanced taking the number of model levels to a total of L60. In summer 2000

the 4D-Var period was extended from 6 to 12 hours (Bouttier 2001a), whereas the ERA-40 configuration (Uppala

et al. 2005) was built as an FGAT (first guess at the appropriate time) of 3D-Var with a period of 6 hours (Chapter
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3). In November 2000 the horizontal resolution of 4D-Var was increased to TL511L60, with inner loop resolution

enhanced from T63L60 to TL159L60 using the linearized semi-Lagrangian scheme.

In January 2003 the 4D-Var solution algorithm was comprehensively revised (in cy25r4, Andersson et al. 2003) to

take advantage of the efficiency of conjugate gradient minimisation (with pre-conditioning, as introduced one year

earlier) and a multi-resolution incremental technique. This is the 4D-Var solution algorithm that is presented here

in Chapter 2.

1.4  INCREMENTAL FORMULATION OF VARIATIONAL DATA ASSIMILATION

In 3D/4D–Var an objective function  is minimized. The cost function consists of three terms:

(1.1)

measuring, respectively, the discrepancy with the background (a short-range forecast started from the previous

analysis), , with the observations,  and with the slow character of the atmosphere, . The -term controls

the amplitude of fast waves in the analysis and is described in Chapter 7. It is omitted from the subsequent deriva-

tions in this section.

In its incremental formulation (Courtier et al. 1994), we write

(1.2)

 is the increment and at the minimum the resulting analysis increment  is added to the background  in

order to provide the analysis :

(1.3)

 is the covariance matrix of background error while  is the innovation vector,

(1.4)

where  is the observation vector.  is a suitable low-resolution linear approximation of the observation operator

 in the vicinity of , and  is the covariance matrix of observation errors. The incremental formulation of 3D/

4D-Var consists therefore of solving for  the inverse problem defined by the (direct) observation operator ,

given the innovation vector  and the background constraint. The gradient of  is obtained by differentiating Eq.

(1.2) with respect to ,

(1.5)

At the minimum, the gradient of the objective function vanishes, thus from Eq. (1.5) we obtain the classical result

that minimizing the objective function defined by Eq. (1.2) is a way of computing the following equivalent matrix-

vector products:

(1.6)

where  and  are positive definite, see e.g. Lorenc (1986) for this standard result.  may be interpreted

as the square matrix of the covariances of background errors in observation space while  is the rectangular
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matrix of the covariances between the background errors in model space and the background errors in observation

space. 3D-Var uses the observation operator  explicitly and statistical models (  and ) are required only for

describing the statistics of the background errors in model space and the observation error in observation space.

Consequently, in 3D/4D-Var it is easy, from an algorithmic point of view, to make use of observations such as

TOVS radiances (Andersson et al. 1994), which have a quite complex dependence on the basic analysis variables.

The background term and background error covariance modelling (i.e. ) are described in Chapter 4 and observa-

tion operators  are described in Chapter 5.

H B R

B
H
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CHAPTER 2   4D Variational Assimilation
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2.1  INTRODUCTION

This part of the documentation covers the top level controls of 4D-Var. It gives a detailed description of the solution

algorithm, and the various steps that are performed during a 4D-Var simulation (SIM4D). The procedure consists

of nested iterations, called inner and outer loops, which communicate through files that either contain meteorolog-

ical fields, observations, or parameters. The data flow and is documented in Chapter 14. All of this chapter also
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applies to 3D-Var with some exceptions which will be detailed in Chapter 3. The interpolation of model fields to

observation points (OBSHOR) and the organization of the data in memory (yomsp, yommvo) is described in Chap-

ter 5. The structure of the computation of the observation cost function and its gradient, managed by the routines

OBSV and TASKOB can also be found in Chapter 5. The background term and the ’change-of-variable’ operators

are explained in Chapter 4.

2.2  SOLUTION ALGORITHM

2.2.1  The incremental method

The adopted solution algorithm is incremental (Courtier et al. 1994), which allows for considerable flexibility with

respect to the computer expense of the various job-steps of the 4D-Var minimisation. In the incremental approach

the highest possible resolution is used for the computation of the model trajectory, and for calculating the depar-

tures between observations and model, whereas a lower-resolution model (its adjoint and tangent linear) are used

for the iterative and relatively costly computation of analysis increments (Tremolet 2004). The lower-resolution

iterations (the inner-loops) can optionally be nested within a set of outer-loop iterations at full resolution. Apart

from the resolution, the cost of the inner-loops will depend also upon the complexity of the inner-loop model, e.g.

the use of simpler or more complete representations of the physical processes (Janiskova et al. 2002).

Figure  2.1   Schematic of the revised 4D-Var solution algorithm implemented in January 2003 (cy25r4). Outer 

loops are performed at high resolution (T511) using the full non-linear model. Inner iterations are performed at 

lower resolution (first T95, then T159) using the tangent-linear forecast model, linearised around a 12-hour 

succession of model states (‘the trajectory’) obtained through interpolation from high resolution (S denotes the 

truncation operator, J the cost function and x the atmospheric state vector).

In a further ’multi-resolution’ extension to the incremental method (Veerse and Thepaut 1998) the inner-loop res-

olution is increased with each iteration of the outer-loop. A schematic is shown in Fig. 2.1 . In particular, the in-

xi 1+ xi S 1– δxi( )+=
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formation about the shape of the cost-function obtained during the early low-resolution iterations provides a very

effective pre-conditioner (Chapter 6) for subsequent iterations at higher-resolution, thus reducing the number of

costly iterations. The inner-loops can be particularly efficiently minimised using the conjugate gradient method,

provided the cost-function is purely quadratic (Fisher 1998, ECMWF Seminar), i.e. the operators involved in the

definition of the cost function (the model and the observation operators) are purely linear. For this reason, the inner-

loops have been made entirely linear, with the non-linear effects gathered at the outer-loop level.

2.2.2  The job-steps

In the 28r1 operational configurations the assimilation window is 12-hours long, running from 03-15 UTC to pro-

duce the 12 UTC analysis and forecast products, and from 15-03 UTC for the 00 UTC production. Several different

job steps are performed.

1) Comparison of the observations with the background at high resolution to compute the innovation

vectors. These are stored in the NCMIFC1-word of the ODB (the observation database) for later

use in the minimization. This job step also performs screening (i.e. blacklisting, thinning and

quality control against the background) of observations (see Chapter 10). The screening determines

which observations will be passed for use in the main minimisation. Very large volumes of data are

present during the screening run only, for the purpose of data monitoring. The model trajectory is

interpolated to the resolution of the next job step and written out,

2) First minimization at low resolution to produce preliminary low-resolution analysis increments,

using simplified tangent-linear physics, and tangent-linear observation operators. The eigenvectors

of the analysis Hessian are computed and these will be used to precondition subsequent inner-loop

iterations. The analysis and background errors required for the cycling of error variances are

calculated, as described in Chapter 6.

3) Update of the high-resolution trajectory to take non-linear effects partly into account. Observed

departures from this new atmospheric state are stored in the ODB and the analysis problem is re-

linearized around the updated model state. Variational quality control is computed, and the

resulting QC weights will be used in the subsequent minimisation. The updated model trajectory is

interpolated to the resolution of the next job step and written out,

4) Second main minimization at increased resolution with more complete representation of tangent-

linear physics,

5) Formation of the high-resolution analysis (described below) and a comparison of the analysis with

all observations (including those not used by the analysis, for diagnostic purposes).

Each of the job steps is carried out by a different configuration of IFS. They are commonly called:

(i) The first trajectory run, which includes a model integration, comparison to observations, and

observation screening (quality control and data selection) and is sometimes called the screening
run. – NCONF=2, LSCREEN=.T.

(ii) The first minimization, simplified physics, typically run at low resolution. This job step includes

estimation of analysis and forecast error variances (required for cycling), and calculation of Hessian

eigenvectors for pre-conditioning of subsequent minimisation(s). NCONF=131, LSPHLC=.T.,

LAVCGL=.T.

(iii) The first trajectory update, applies the analysis increments obtained in the first minimisations and

performs another forecast integration with comparison to observations. This provides a new

linearisation state for the next minimisation. NCONF=1, LOBS=.T.,

(iv) The second minimization, with more complete tangent-linear physics, typically higher resolution

increments, NCONF=131, LSPHLC=.F.,
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(v) Late 4D-start runs, If LATE4DSTART (default), the analyses (type=an) at the main synoptic

hours (00, 06, 12, 18), that fall within the assimilation window, are formed in separate quick job-

steps by adding the low-resolution increment to the penultimate high-resolution trajectory of the

corresponding time (no forecast integration). See also schematic in Chapter 14.

(vi) The final trajectory runs, NCONF=1, LOBS=.T., NUPTRA=NRESUPD, with verification

screening - that is comparison between observations and final analysis. In the final trajectory job-

steps with NUPTRA=999 the final analysis (type=4v) is formed (Bouttier, 2001a), by adding the

low-resolution increment to the background (at initial time), and integrating to the analysis times.

The steps (iii) and (iv) are referred to as the second iteration of the outer loop, and these can optionally be iterated

further to incorporate additional non-linear effects. The trajectory update is not normally done in 3D-Var. The inner

loop takes place within the main minimization, job steps (ii) and (iv).

2.2.3  Interpolation of trajectory and increments

A truncation operator (shown as S in the schematic, Fig. 2.1 above) is required to take the trajectory fields from

high to low resolution. This is done using appropriate grid-point interpolations for the surface grid-point fields,

whereas upper-air fields are truncated spectrally. Humidity and ozone, which are grid-point fields in the model, are

first transformed to spectral representation, then truncated to the lower resolution of the inner loop. In the minimi-

sation job-step humidity and ozone of the trajectory are read in as spectral fields and finally transformed back to

grid-point fields when they are required by the model. Initial time model cloud fields are interpolated to lower res-

olution using the so-called ’full-pos’ configuration of IFS. Trajectory cloud fields and trajectory of physical ten-

dencies are generated in a (low resolution) model integration in which the model state is replaced by the

interpolated trajectory at each time instance for which it is available. The trajectory handling is managed by the

module TRAJECTORY.

The spectral analysis increments produced by the minimisation are read in by the routine RDFPINC. The spectral

fields are padded with zeroes for the wave numbers not represented in the inner-loops. The increments for the spec-

tral model variables (vorticity, divergence and logarithm of surface pressure) are added to the background fields.

The temperature increments are added to the temperature of the background (after it has been converted from vir-

tual temperature) and the resulting temperature analysis is converted back to virtual temperature. The humidity and

ozone increments are inverse-transformed to grid-point fields and added to the background. Super-saturation

checks are applied to the humidity, and checks for negative values are applied to humidity and ozone.

2.2.4  Pre-conditioning and control variable

In practice, it is necessary to pre-condition the minimization problem in order to obtain a quick convergence. As

the Hessian (the second derivative) of the objective function is not accessible, Lorenc (1988) suggested the use of

the Hessian of the background term . The Hessian of  is the matrix . Such a preconditioning may be im-

plemented either by a change of metric (i.e. a modified inner product) in the space of the control variable, or by a

change of control variable. As the minimization algorithms have generally to evaluate several inner products, it

was found more efficient to implement a change of variable (under CHAVAR  CHAVARIN etc.). Algebraically,

this requires the introduction of a variable  such that

(2.1)

Comparing Eq. (1.2) and Eq. (2.1) shows that  satisfies the requirement.  thus becomes the control

variable of the preconditioned problem. This is indeed what has been implemented, as will be explained in Section

Jb Jb B

χχχχ

Jb χTχ=

χ B 1 2/– δx= χ
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4.2. A single-observation analysis with such preconditioning converges in one iteration.

The Jb-based pre-conditioning is sufficient when the B-term dominates over the observation term of the Hessian.

With increasing amounts of observational information, and in cases with locally dense observation coverage, the

observation term can be dominant over the background term in defining the shape of the cost-function (its second

derivative). The combined Lanczos/conjugate gradient method allows computation of the leading eigenvectors and

eigenvalues of the Hessian while solving for the analysis, essentially at no extra cost. This method is fully described

in Chapter 6, and it is used for all inner-loop iterations. The Hessian eigenvector information obtained at low res-

olution is used as pre-conditioner at subsequent inner-loop iterations at higher resolution. This has been shown to

be a very effective way of reducing the number of iterations required at higher inner-loop resolutions.

2.2.5  Minimization

The minimization problem involved in 3D/4D-Var can be considered as large-scale, since the number of degrees

of freedom in the control variable is of the order of 107. In the case of purely quadratic cost-function (as in opera-

tional 4D-Var) the most efficient minimisation is provided by the conjugate gradient algorithm (CONGRAD called

from CVA2 and FORECAST_ERROR). Congrad is preconditioned with the leading Hessian eigenvectors, as de-

scribed in Chapter 6. The forecast error configuration (Chapter 6, switch LAVCGL=.T. in yomvar) always uses

CONGRAD, and otherwise it is activated by the switch LCONGRAD in yomvar.

For non-quadratic problems, an efficient descent algorithm was provided by the Institut de Recherche en Informa-

tique et Automatique (INRIA, France). It is a variable-storage quasi-Newton algorithm (.M1QN3) described in Gil-

bert and Lemaréchal (1989).M1QN3 uses the available in-core memory to update an approximation of the Hessian

of the cost function. In practice, ten updates (NMUPD, namiomi) of this Hessian matrix were used.  is currently

used in the 3D-FGAT configuration, described in Chapter 3.

2.3  TOP-LEVEL CONTROLS

The routines CVA1, CVA2 and FORECAST_ERROR control the variational configurations of IFS. The flow dia-

gram of CVA1/CVA2 is shown in Fig. 2.2 . The first guess fields (FG) have been read in to the SP7-arrays (in

YOMSP) by SUECGES, called from SUJBSTD within the  setup, see Subsection 4.3.3. At the start of CVA1

additional setups for the variational configurations are done (SU1YOM). The SP3-arrays, i.e. the current model

state, (in YOMSP) are filled by copying from SP7, using SP7TO3. This is done under SUVAZX, and only at first

minimisation job-step. For subsequent minimisations SPA3 must come from the previous minimisation (GETMINI

and SUSPEC). This is controlled by switches LREADSP and LREADVAZX (.h).

2.3.1  Last simulation

After minimisation is complete one final simulation is performed in CVA2 or FORECAST_ERROR. This simu-

lation is diagnostic, and characterized by the simulation counter being set to 999, NSIM4D=NSIM4DL, yomvar.

The observation departure from the low-resolution analysis, , is computed and stored in the NCMIOMN-

word of the ODB. Finally at the end of CVA2 and  FORECAST_ERROR., respectively, the updated ODB is writ-

ten to disk, using the routine WRITEOBA.

Jb

yo H– xLR
a
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Figure  2.2   Flow diagram for subroutines CVA1 and CVA2.

2.4  A SIMULATION

2.4.1  The cost function and its gradient

A simulation consists of the computation of  and . This is the task of the routine SIM4D, see Fig. 2.3  for the

flow diagram. The input is the latest value of the control variable  in the array VAZX, computed by M1QN3, or

CONGRAD. First  and its gradient are computed (see Section 4.2):

cval sulyom setups

getmini warm restart of incremental minimizations

<lobs> suobs setup observation arrays (see obs doc)

<nuptra=0> sp7to3 load initial point of minimization

<else> getmin load initial increment in control space

suspec load increment in model space

lobsref=.true.

sucos preset cost-function

cnt2 compute & store linearization trajectory (see model doc)

switch physics off

sim4d compute initial cost-function and gradient

scaas print initial gradient norm

<ltest> grtest(sim4d) test of the gradient at initial point

<lavcgl> congrad(sim4d) conjugate-gradient minimization

for cycling (see cycling doc)

<else> suhess fetch Hessian estimate for warm restart

m1qn3(sim4d) quasi-Newton main minimization

sim4d compute final cost-function and gradient

scaas print final gradient norm and ratio

<ltest> grtest(sim4d) test of the gradient at final point

savmini save final Hessian estimate for next minim

writeoba write observation files with feedback info

<lwrsiga> estsiga,writesd estimate & write sigma-a

<lwrsigf> estsig,writesd estimate &write sigma-f

cva2

or

forecast_error

J J∇
χ

Jb
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(2.2)

The gradient of  with respect to the control variable is stored in the array VAZG (YOMCVA).

• Copy  from VAZX to SP3-arrays (YOMSP) using the routine CAIN

• Compute , the physical model variables, using CHAVARIN:

. (2.3)

• If L131TL then work in terms of increments. SUBFGS does: , where xg is the guess

(not necessarily equal to the background).

• Perform the direct integration of the model (if 4D-Var), using the routine CNT3 or CNT3TL, and

compare with observations. See Section 2.5.

Calculate  for which OBSV is the master routine.

• Perform the adjoint model integration (if 4D-Var) using CNT3AD, and observation operators’

adjoint.

Calculate , and store it in SP3.

•  and its gradient are calculated in COSJC called from CNT3AD, if LJC is switched on (default)

in namvar.

• Transform  to control variable space by applying CHAVARINAD.

• Copy  from SP3 and add to , already in the array VAZG, using CAIN

• Add the various contributions to the cost function together, in EVCOST, and print to log file using

prtjo.

• Increase the simulation counter NSIM4D by one.

The new  and  are passed to the minimization algorithm to calculate the  of the next iteration, and so on

until convergence (or the maximum number of iterations) has been reached.

2.4.2  Interface between control variable and model arrays

The purpose of the routine CAIN (the canonical injection) is to identify those parts of the model state that should

be included in the variational control variable. This is controlled by on/off switches such as NVA2D and NVA3D

(yomcva) initialized in SUALCTV. The scalar product used is the one defined by the array SCALP (in yomcva,

set up in the routine SCALJGS called from SUSCAL), which is 1 if , and 2 otherwise. This allows the com-

pression of arrays of the type VAZX while using the  norm on the sphere with real fields in spectral space.

The control vector currently consists of four parts, as defined in the module CONTROL_VECTORS residing in

the ifsaux library. Any of the four parts can be absent. They are:

1) the initial-condition control-variables that define the original 4D-Var problem.

2) a representation of model error (for weak-constraint 4D-Var), see Tremolet (2003),

3) the TOVS control vector (LTOVSCV), used to estimate surface skin temperature at the radiance

field-of-view locations,

4) components for the limited-area model ALADIN,

The organisation of elements of the control-vector is now quite flexible and allows for future planned extensions,

such as observation bias coefficients e.g. for radiance data, and wavelet-Jb components.
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Figure  2.3   Flow diagram for the subroutine sim4d.

2.5  THE ASSIMILATION WINDOW

4D-Var is a temporal extension of 3D-Var. Observations are organized in time-slots (currently half-hourly) as de-

scribed in the ODB documentation. The cost-function measures the distance between a model trajectory and the

available information (background, observations) over an assimilation interval or window. For a 12-hour window

(in the configuration used before June 2004), it is either (03UTC–15UTC) or (15UTC–03UTC). Eq. (1.2) (see

Chapter 1) is replaced by

sim4d monvar setup an/gradients write-outs

su2yom

sucos suic,sucosjb,sujo preset cost-functions

pvazg=2*pvazx compute  gradient & cost-function

fjbcost= . . . (simple inner product in cont.var space)

suallt prepare model arrays

cain transfer cont.var pvazx into model arrays spa3/2

chavarin convert spa3/2 from cont.var space to model space

<l131tl> subfgs convert fields in to increments for TL model

cnt3tl run TL model with  computation

<else> cnt3 run model with  computation

cnt3ad run forced adjoint model

chavarinad convert gradient from model to cont.var space

cainad transfer gradient into pvazg array

evcost gathercost I/O gather cost-function from all PEs

calculate and print 

<nsim4d=0 or 999> prtjo print  breakdown

readoba , obatabs , prtdpst

scaas print cost-functions

<igrats> cain, stepo with ltwegra : write gradient on disk

<ianats> cain, stepo with ltwana : write analysis on disk

nsim4d++ increase simulator counter

Jb

Jo

Jo

Jc Jb Jo, ,

Jo
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(2.4)

with subscript i the time index. Each i corresponds to a half-hour time slot.  is as before the increment at low

resolution at initial time, and  the increment evolved according to the tangent linear model from the initial

time to time index i.  and  are the covariance matrices of observation errors at time index i and of background

errors respectively.  is a suitable linear approximation at time index i of the observation operator . The inno-

vation vector is given at each time step by , where  is the background propagated in

time using the full non-linear model and  is the observation vector at time index i. As SYNOP and DRIBU time

sequences of surface pressure and height data are now used with serial correlation of observation error, the obser-

vation cost-function computation for those data spans all time slots. Eq. (2.4) therefore needs generalising, as has

been done in the paper by Järvinen et al. (1999).

The minimization is performed in the same way as in 3D-Var. However, it works fully in terms of increments, a

configuration which is activated by the switches L131Tl and LOBSTL, and involves running the tangent-linear and

adjoint models iteratively as explained in Section 2.4 of Chapter 2, and using the tangent-linear observation oper-

ators. 

A way to account in the final 4D-Var analysis for some non-linearities is to define a series of minimization prob-

lems

(2.5)

with superscript n the minimization index. 

 is the current estimate of the atmospheric flow. It is equal to the background for the first minimization.

 is the innovation vector, computed by integrating the model at high resolution from the

current estimate.

2.6  TANGENT LINEAR PHYSICS

The linearized physics describes five processes: vertical diffusion, subgrid-scale orographic effects, radiation,

large-scale condensation and deep convection. In order to prevent spurious unstable perturbations from growing,

a number of simplifications have been defined for these schemes with respect to the nonlinear physical parametri-

zation schemes (described in section IV: Physical processes) used in the forecast model.

The first minimization uses just a simple physics, which is represented by very simple vertical diffusion scheme

acting mainly close to the surface and surface drag scheme. A scientific description of this simple physics is given

in Buizza (1994). Note that from cycle 28R3 onwards the more detailed simplified vertical diffusion scheme de-

scribed in subsection Section 2.6.3 will be used instead of Buizza’s in the first minimization.

The following minimizations use a more complete linearized physics, which is described in this section. The text

is focused on brief scientific description of these linearized physical parametrization schemes and some technical
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aspects. More detailed scientific issues can be found elsewhere (Mahfouf et al. 1997; Rabier et al. 1997; Mahfouf

1999; Janiskova et al. 2002).

2.6.1  Set-up

The simple physics used in the first minimization is activated by the switches LSPHLC, LVDFDS, LSDRDS,

LVDFLC, LSDRLC, LKEXP in namelist  NAPHLC.

In order to activate the improved linear physics, the switch LSPHLC of the simplified linear physics in  NAPHLC

should be set to FALSE. In  CVA1 when both logicals LSPHLC and LETRAJP are equal to TRUE, LSPHLC is

reset to FALSE and a warning is written in the standard output (logical unit NULOUT).

The improved linearized physics is activated by the switches LETRAJP, LEVDIF2, LEGWDG2, LECOND2,

LERADI2, LERADS2, LERADN2, LERADSW2, LEDCLD2, LECUMF2 in namelist  NAMTRAJP. The follow-

ing switches must be set to TRUE : LEPHYS, LAGPHY (also necessary to activate the ECMWF nonlinear physics)

in namelist  NAEPHY and LETRAJP (to activate storage of the trajectory at ). The linear physics contains

a set of five physical processes: vertical diffusion (LEVDIF2), subgrid-scale orographic effects (LEGWD2), large

scale condensation (LECOND2), radiation (LERADI2, LERADS2, LERADN2, LERADSW2) taking into account

clouds (LEDCLD2) and deep moist convection (LECUMF2).

Tunable parameters of the improved physics (which should not in principle be modified) are defined in SUPHLI.

The logical LPHYLIN is used to activate the simplifications and/or modifications associated with the linear pack-

age in the nonlinear physics. This variable is set to FALSE by default , but is forced to TRUE before starting the

tangent-linear and adjoint computations in  CNT3TL and CNT3AD. Thus this switch remains TRUE for the linear

physics called in EC_PHYS_TL and EC_PHYS_AD.

2.6.2  Mixed-phase thermodynamics

The thermodynamical properties of the water mixed phase are represented by a differentiable weighting function

between  and :

(2.6)

with  (RLPALP1) and  (RLPTRC). 

The tuning parameter  controls the intensity of the smoothing, and the temperature  has been chosen to give

 for the same temperature as in the operational quadratic formulation (see function FCTTRE).

This weighting function is used by the large-scale condensation and moist-convection routines.

2.6.3  Vertical diffusion

Vertical diffusion applies on wind components, dry static energy and specific humidity. The exchange coefficients

in the planetary boundary layer and the drag coefficients in the surface layer are expressed as functions of the local

Richardson number (Louis et al. 1982). They differ from the operational formulation which uses the Monin-

Obukhov length as a stability parameter in stable conditions and a K-profile approach for convective boundary lay-

ers (see the documentation of the ECMWF physics). Analytical expressions are generalized to the situation of dif-

ferent roughness lengths for heat and momentum transfer. The mixing length profile l(z) uses the formulation of

Blackadar (1962) with a reduction in the free atmosphere.

For any conservative variable ψ (wind components u, v; dry static energy s; specific humidity q), the tendency of
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its perturbation ψ’ produced by vertical diffusion is:

, (2.7)

where ρ is the air density.

In the planetary boundary layer, the exchange coefficient K is given by the following expression:

(2.8)

where f(Ri) represents the coefficient of the vertical turbulent diffusion which is a function of the Richardson

number. The mixing length vertical profile is defined as:

(2.9)

The asymptotic mixing length  for momentum is set to 150 m, whereas . The pseudo-depth of

the boundary layer is defined by L = 4 km (RLPMIXL), and the reduction factor applied to the mixing length in

the free atmosphere is  ( RLPBETA) [  when ].  is von Kármán’s constant and  is the

roughness length.

The coefficients of the vertical turbulent diffusion for momentum are given by

(2.10)

The vertical diffusion coefficients for dry static energy and specific humidity are defined as

(2.11)

where b,c,d are constants controlling the dependency of vertical exchange on the stability.

To parametrize the turbulent fluxes at the surface, the drag coefficients (i.e. the exchange coefficients between the

surface and the lowest model level) are computed. The neutral coefficients  and  are written as
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(2.12)

The drag coefficients for momentum are computed as

(2.13)

The surface exchange coefficients for dry static energy and specific humidity are

(2.14)

The empirical coefficients  (RLPBB),  (RLPCC) and  (RLPDD) are set to 5 in SUPHLI. 

In Eq. (2.7), perturbations of the exchange coefficients are neglected, , in order to prevent spurious unsta-

ble perturbations from growing in the linearized version of the scheme (Mahfouf 1999). This is also the case for

the exchange coefficients between the surface and the lowest model level.

This modified diffusion scheme is called directly from VDFMAIN and makes use of all the routines from the op-

erational vertical diffusion, except VDFSFLX (computation of the surface fluxes for tiles) and some diagnostic

routines. However, the exchange coefficients are computed in a different way in VDFEXCS and VDFEXCU.

The linear versions of the vertical diffusion scheme are called from the drivers VDFMAINTL and VDFMAINAD.

The linearization of the surface energy balance is also performed (VDFTSKTL, VDFTSKAD), but perturbations

of the skin temperature are not evolved in time (in EC_PHYS_TL and EC_PHYS_AD). This simplification should

be relaxed when the skin temperature becomes part of the control variable. There are tangent-linear and adjoint

versions of some routines, which were not updated when introducing the surface tile scheme and are not recently

used. This is secured by the logical switch LENOPERT set to TRUE in SUPHLI (i.e. no perturbation is required

for the surface arrays). This concerns the routines for computation of: the roughness length (VDFUPDZ0TL,

VDFUPDZ0AD), the surface boundary conditions for T and q (VDFSURFTL, VDFSURFAD), the surface ex-

change coefficients (VDFEXCSTL, VDFEXCSAD) and the equivalent evapotranspiration efficiency (VDFEVAP-

TL,  VDFEVAPAD).

The logical LEKPERT in  NAMTRAJP controls the perturbations of the exchange and drag coefficients. When set

to FALSE (default), the perturbations are set to 0. to prevent the growth of spurious instabilities in the tangent-
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linear model.

2.6.4  Subgrid scale orographic effects

Only the low-level blocking part of the operational nonlinear scheme developed by Lott and Miller (1997) (see

documentation on ECMWF nonlinear physics) is taken into account in the tangent-linear and adjoint calculations.

The deflection of the low-level flow around orographic obstacles is supposed to occur below an altitude  such

that

(2.15)

where  is a critical non-dimensional mountain height (GFRCRIT = 0.5),  is the standard deviation of sub-

grid-scale orography, N is the vertical stability and  U is the wind vector.

The deceleration of the wind due to the low-level blocking is given by

(2.16)

where

 is the low-level drag coefficient (GWAKE = 1),

 is the mean slope of the subgrid-scale orography,

 is the anisotropy of the subgrid-scale orography,

 is the angle between the low-level wind and the pricipal axis of topography,

,

,

and .

Since the final wind tendency produced by the low-level drag parametrization is obtained from the following par-

tially implicit discretization of Eq. (2.17)

(2.17)

where , the corresponding perturbation write

(2.18)

Finally, the local dissipation heating is computed in the same way as in the nonlinear scheme, together with the

associated perturbation.

The main tangent-linear and adjoint routines, GWDRAGTL and GWDRAGAD, are called from CALLPARTL and
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CALLPARAD respectively. The depth of the low-level blocking layer is determined in GWSETUPTL and

GWSETUPAD, while the low-level blocking effect described by Eq. (2.17) is computed at the end of GW-

DRAGTL and GWDRAGAD. As mentioned above, the representation of wave breaking is currently not activated

in the linearized code by setting the constant RLPDRAG to zero in SUPHLI. Note that RLPDRAG is only used

when logical LPHYLIN is TRUE, otherwise GKDRAG is used (set to 0.3 in SUGWD).

2.6.5  Radiation

The radiation scheme solves the radiative transfer equation in two distinct spectral regions. The computations for

the longwave (LW) radiation are performed over the spectrum from 0 to 2820 cm-1. The shortwave (SW) part of

the scheme integrates the fluxes over the whole shortwave spectrum between 0.2 and 4.0 µ m. The scheme used

for data assimilation purposes must be computationally efficient to be called at each time step and at the full spatial

resolution for an improved description of the cloud-radiation interactions during the assimilation period (Janiskova

et al. 2002).

2.6.5 (a)  The short-wave radiation scheme.   TThe linearized code for the shortwave radiation scheme has

been derived from the ECMWF original nonlinear scheme developed by Fouquart and Bonnel (1980) and revised

by Morcrette (1991). In this scheme, the photon-path-distribution method is used to separate the parametrization

of the scattering processes from that of molecular absorption. Upward Fsw↑ and downward Fsw↓ fluxes at a given

level j are obtained from the reflectance and transmittance of the atmospheric layers as:

(2.19)

(2.20)

Computations of the transmittance at the bottom of a layer \mathcal Tbot start at the top of atmosphere and work

downward. Those of the reflectance at the top of the same layer \mathcal Rtop start at the surface and work upward.

In the presence of cloud in the layer, the final fluxes are computed as a weighted average of the fluxes in the clear

sky and in the cloudy fractions of the column as:

(2.21)

(2.22)

In the previous equations,  is the cloud fractional coverage of the layer within the cloudy fraction of the col-

umn (depending on cloud-overlap assumption).

The cloud optical properties depend on three different parameters: the optical thickness δc, the asymmetry factor

gc and the single scattering albedo \overline ωc. These parameters are derived from Fouquart (1987) for water

clouds, and  Ebert and Curry (1992) for ice clouds. They are functions of cloud condensate and a specified effective

radius. All cloudy fluxes are computed from cloud optical thicknesses derived from the liquid and ice cloud water

contents weighted by a 0.7 inhomogeneity factor following Tiedtke (1996).

The nonlinear version of the shortwave radiation scheme (described in details in section IV: Physical processes)

uses six spectral intervals with transmission functions derived from a line-by-line code (Dubuisson et al. 1996).

The nonlinear scheme is reasonably fast for application in 4D-Var and has, therefore, been linearized without a pri-

Fsw
↓ j( ) F0 �bot k( )

k j=

N

∏=

Fsw
↑ j( ) Fsw

↓ j( )�top j 1–( )=

�top Ccloud�cloud 1 Ccloud–( )�clear+=

�top Ccloud�cloud 1 Ccloud–( )�clear+=

Ccloud



 Chapter 2 ‘4D Variational Assimilation’

 21

IFS Documentation Cycle CY25r1 (Edited 2003)

ori modifications. The only modification with respect to the nonlinear model is using two spectral intervals with

transmission functions (instead of six intervals used in the nonlinear model) in order to reduce the computational

cost.

2.6.5 (b)  The longwave radiation scheme.   The longwave radiation scheme, operational in the ECMWF fore-

cast model until June 2000, was a band emissivity type scheme (Morcrette 1989). This scheme has been replaced

by the Rapid Radiation Transfer Model (RRTM: Mlawer et al. 1997) in June 2000. The scheme is based on a two-

stream solution of the longwave transfer. The ECMWF version of the RRTM longwave radiation scheme

(Morcrette 1998) also includes a maximum-random overlap assumption but keeps the cloud fraction and cloud op-

tical thickness as two separate quantities. In RRTM, the cloud optical thickness is defined as a function of spectrally

varying mass absorption coefficients and relevant cloud water and ice paths. This quantity is then used within the

actual cloudy fraction of the layer.

Cloud longwave optical properties are represented by the emissivity  related to the condensed water amount,

and by the condensed water mass absorption coefficient  obtained following  Smith and Shi (1992) for water

clouds and Ebert and Curry (1992) for ice clouds.

The complexity of the RRTM radiation scheme for the longwave part of the spectrum makes accurate computations

expensive. In the variational assimilation framework, simplifications were made to reduce its computational cost.

A combination of artificial neural networks (Chevallier et al. 2000) and pre-computed Jacobians of the longwave

radiation flux with respect to global mean temperature and water vapour profiles (Chevallier and Mahfouf 2001)

has been defined for the linearized longwave radiation scheme.

The longwave radiative fluxes depend upon temperature, water vapour, cloud cover and liquid and ice water con-

tents. The design of the scheme allows the separation of the contribution of temperature and water vapour from that

of cloud parameters. More precisely, the upward and downward longwave fluxes at a certain height  are ex-

pressed as:

(2.23)

where the coefficients  are a function of the cloudiness matrices  computed using some overlap assump-

tion. Differentiating the above equation, a flux perturbation is computed as:

(2.24)

In the proposed approach, the coefficients ak are computed using the nonlinear (NL) model (code computing cloud

optical properties). Due to the weak nonlinearities in the variations of the radiative fluxes  with respect to tem-

perature and water vapour, the tangent-linear approximation can be used to compute perturbations of radiation

fluxes  from pre-computed mean Jacobian matrices. Perturbations of radiative fluxes with respect to cloud

parameters  are computed using a tangent-linear (TL) scheme. The trajectory of radiative fluxes required

in the tangent-linear and adjoint computations are efficiently estimated from a neutral network version of the EC-

MWF longwave radiative transfer model (called NeuroFlux) in order to avoid significant extra memory storage or
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costly re-computations. The Neutroflux is significantly faster (seven times) than the operational longwave radia-

tion code with a comparable accuracy.

2.6.5 (c)  Cloud overlap assumptions.   Cloud overlap assumptions must be made in atmospheric models in or-

der to organize the cloud distribution used for radiation and precipitation/evaporation computations. A cloud over-

lap assumption of some sort is necessary to account for the fact that clouds often do not fill the whole grid box. The

maximum-random overlap assumption (originally introduced in Geleyn and Hollingsworth 1997) is used opera-

tionally in the ECMWF model ( Morcrette 2000)). Adjacent layers containing cloud are combined by using max-

imum overlap to form a contiguous cloud and discrete layers separated by clear-sky are combined randomly as:

(2.25)

where  is cloudiness encountered between any levels i and j in the atmosphere and  is the cloud fraction

of the layer k located between levels k and k+1.

The tangent-linear (TL) and adjoint (AD) versions of the shortwave radiation scheme can be activated using the

logical switch LERADSW2 = TRUE in the namelist NAMTRAJP. The default value is set to FALSE. To decrease

a computational cost of the shortwave radiation in data assimilation, the number of spectral intervals is reduced to

two (six intervals are used in the forecast model) during minimization. The number of spectral intervals NSW is

changed in CVA1. This change also requires to read several parameters for two spectral intervals. This is done in

set-up routines SUSWN, SUCLOPN and SUAERSN.

Due to the low impact of cloud perturbations produced by the current linearized cloud scheme and in order to de-

crease the computational cost, a reduced version of the linearized longwave radiation (i.e.

 is currently used in data assimilation. This reduced version can be activated by

LERADN2 = TRUE in the namelist NAMTRAJP. If the full linearized longwave radiation should be used, the log-

ical switch LERADFL2 must also be set to TRUE in the same namelist. The default values are set to FALSE.

The linearized radiation schemes are called from RADINATL and RADINAAD, where the computation of radia-

tion fluxes is performed. Tendencies produced by the linearized longwave and shortwave radiation are computed

in RADHEATTL and RADHEATAD. All those routines are called from CALLPARTL and CALLPARAD, re-

spectively.

RADLSWTL and RADLSWAD are the drivers for the computation of the solar and thermal fluxes by calling spe-

cialized routines for shortwave radiation (SWTL and SWAD) and for longwave radiation (LWPTL and LWPAD).

2.6.6  Cloud scheme

The ECMWF diagnostic cloud scheme (Slingo 1997), used before the implementation of the current operational

prognostic scheme (Tiedtke 1993), has been linearized to be used with the linearized radiation scheme.

The diagnostic cloud scheme allows for four cloud types: convective cloud and three types of layer clouds (high,

middle and low level). The convective clouds ( ) are parametrized using the scale-averaged precipitation rate

( ) from the model convection scheme as

(2.26)

They can fill any number of model layers and their depth is determined by the convection scheme. The stratiform
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clouds ( ) are determined from a function of the layer relative humidity ( ) after adjustment for the pres-

ence of convective clouds, , as:

(2.27)

 is a critical relative humidity for cloud formation defined as

(2.28)

where  is the vertical coordinate of the pressure divided by the surface pressure.

Liquid water  and ice water  are proportional to the specific humidity at saturation . They are defined

as

(2.29)

(2.30)

where  is the fraction of condensate held as liquid water and  with  being cloud cover.

The linearized diagnostic cloud scheme has been further simplified by accounting for part of the dependencies on-

ly. The current linearized convection scheme does not provide perturbations of precipitation. This leads to a zero

perturbation of convective cloudiness since it is determined from the convective precipitation rate. A modification

of the linearized cloud scheme was also necessary in order to avoid the threshold problem in the parametrization

of the layer clouds computed as a function of relative humidity  (Eq. (2.27)). For this reason, the derivative

of the function of relative humidity has been set to zero (Janiskova et al. 2000).

The linearized versions of the diagnostic cloud scheme are CLOUDTL and CLOUDAD and they are called from

CALLPARTL and CALLPARAD, respectively. These linearized schemes can be activated using the logical switch

LEDCLD2 = TRUE in the namelist NAMTRAJP. The default value is set to FALSE.

2.6.7  Large-scale condensation

The linearized version of large-scale condensation scheme is based on a local moist adjustment scheme designed

to produce stratiform precipitation as described in Mahfouf (1999).

If (q,T) is an initial supersaturated state ( ), a final adjustment state ( ) such that  is

reached by conserving moist static energy in a given atmospheric layer. The adjusted values are obtained through

an iterative method with two updates.

The equations for the nonlinear scheme are:

(2.31)

(2.32)

with , where L is the latent heat of liquid water and  is the specific heat at constant pressure. They

are solved using a linearization of the specific humidity at saturation:  with

. Then, the linearization of  as , provides the equation for the tangent-linear scheme:

Cstrat RHe
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Cstrat f RHe( ) max
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1 RHcrit–
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= =
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σ
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T* T– λ qs T*( ) q–( )–=
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(2.33)

(2.34)

Tendencies produced by large-scale condensation are thus:

(2.35)

where  is the model time step.

This scheme also accounts for melting of snow whenever the temperature of a given layer exceeds 2\dg C. Evap-

oration of precipitation in subsaturated layer is neglected to avoid the growth of spurious unstable modes (Mahfouf

1999).

Linearized versions of the large-scale condensation scheme are CONDTL and CONDAD. Local supersaturation is

removed through a local moist-adjustment scheme (CUADJTQTL, CUADJTQAD). Supersaturation produces pre-

cipitation instantaneously (without a cloud stage). The effect of rainfall evaporation in sub-saturated layers is dis-

regarded in the linearized versions of the scheme by setting the constant RLPEVAP to 0., instead of 0.95 in the

nonlinear parametrization.

2.6.8  Deep moist convection

The physical tendencies produced by convection on any conservative variable ψ (wind components, specific hu-

midity, dry static energy) can be written in a mass-flux formulation as  (Betts 1997):

(2.36)

The first term on the right hand side represents the compensating subsidence induced by cumulus convection on

the environment through the mass flux M. The other terms accounts for the detrainment of cloud properties in the

environment with a detrainment rate D. The subscripts ‘up’ and ‘down’ refer to the updrafts and downdrafts prop-

erties respectively. Evaporation of cloud water and precipitation should also be added in Eq. (2.36) for the dry static

energy s and specific humidity q. Mass-flux theory predicts that the effect of convection on large-scale temperature

and moisture structures is dominated by compensating subsidence, as shown in the study of Gregory and Miller

(1989). Therefore, nonlinear tendencies produced by convection can be approximated by:

(2.37)

This approach is better for the heat budget than for the moisture budget (Betts 1997). As a consequence, a partial

linearization of Eq. (2.37) is performed, where the vertical transport by the mean mass flux is applied to the per-

turbations. From a nonlinear integration of the convection scheme mass-flux profiles  are used to estimate

the vertical transport of perturbed fields :

(2.38)

T′* T′–
λ

1 λγ+
--------------- γT′ q′–( )–=

q′* q′–
1

1 λγ+
--------------- γT′ q′–( )–=

∂q′
∂t

--------
1
λ
---

∂T′
∂t

---------–
q′* q′–

2∆t
------------------= =

∆t

∂ψ
∂t
-------

1
ρ
--- Mup Mdown+( )∂ψ

∂z
------- Dup ψup ψ–( ) Ddown ψdown ψ–( )+ +=

∂ψ
∂t
-------

1
ρ
--- Mup Mdown+( )∂ψ

∂z
-------≈

M z( )
ψ′

∂ψ′
∂t

---------
1
ρ
--- Mup Mdown+( )∂ψ′

∂z
---------=



 Chapter 2 ‘4D Variational Assimilation’

 25

IFS Documentation Cycle CY25r1 (Edited 2003)

This linearized equation only applies to deep convection. The underlying assumption of Eq. (2.38) is that pertur-

bations of cloud properties can be neglected.

The mass-flux profiles associated with the updrafts  and the downdrafts  are recomputed in the tangent-

linear and adjoint integrations from the stored basic state. This partial linearization implies that all the nonlinear

routines for the convection scheme have their tangent-linear and adjoint counterparts (starting form the driving rou-

tines CUCALLNTL and CUCALLNAD). However, most of them are only used to recompute the trajectory. The

only routines which contain linear statements are CUININTL (mean thermodynamical properties at half model lev-

els), CUDUDVTL (tendencies for the wind components) and CUDTDQNTL (tendencies for dry static energy and

specific humidity). Eq. (2.38) is solved numerically in the following form (see Tiedtke 1989):

(2.39)

which requires extra local storage of the profiles of entrainment E and detrainment D rates computed in CUASCN

and in CUDDRAFN (variables PDMFEN and PDMFDE). Eq. (2.39) is only applied when deep convection is di-

agnosed from the basic state.

2.6.9  Trajectory management

The ECMWF physics uses the tendencies from the dynamics, and variables at  as input to compute the ten-

dencies of a given process (represented by the operator ) for a prognostic variable :

(2.40)

where the variable  has already been updated by the dynamics and by the previous physical processes (which

are called in the following order: radiation; vertical diffusion; subgrid-scale orographic effects; moist convection;

large-scale condensation).

Thus:

(2.41)

In Eq. (2.40), if the operator  is nonlinear, its linearization around the basic state , will require to store the

model state at time step  (trajectory at ) as well as the tendencies produced by the dynamics

. The physical tendencies from the previous processes , require an additional call to the

nonlinear routines in the adjoint computations (CALLPARAD) and a local storage of the partial tendencies.

The storage of the trajectory at  is performed in EC_PHYS by the routine STORE_TRAJ_PHYS called be-

fore the driver of the ECMWF physics CALLPAR. Fields are stored in grid-point space in an array TRAJ_PHYS.

This array is allocated in the module TRAJ_PHYSICS, where also the number of the fields to be stored is defined.

The following three-dimensional fields are stored :

• for the atmosphere: the prognostic variables (wind components, temperature, specific humidity)

and their tendencies produced by adiabatic processes, the vertical velocity, the long-wave fluxes

and the solar transmissivity;

• for the soil: the prognostic variables for temperature and moisture content (used to compute the

surface fluxes from the trajectory in the linear vertical-diffusion scheme);
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• for the tiles, i.e. vegetation (surface cover) types: u- and v-stress, surface sensible heat flux, surface

evaporation and skin temperature.

A number of two-dimensional fields used at time step  need to be stored: surface pressure, surface fluxes,

skin temperature, skin reservoir, snow reservoir, roughness lengths (mainly for the vertical diffusion).

The preliminary computations (pressure and geopotential at full and half model levels, astronomy parameters) are

performed in EC_PHYS_TL and EC_PHYS_AD before calling the driver of the tangent-linear physics CALL-

PARTL or the driver of the adjoint physics CALLPARAD, and after reading the trajectory fields from

GET_TRAJ_PHYS.

t ∆t–
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Part II: DATA ASSIMILATION

CHAPTER 3   3D variational assimilation (with the first-
guess at appropriate time)

Table of contents

3.1. Introduction

3.2. 3D-FGAT

3.2.1. Solution algorithm

3.2.2. Main differences with respect to 4D-Var

3.2.3. Data selection

3.1  INTRODUCTION

3D-Var is a temporal simplification of 4D-Var. The simplest way to implement a 3D-Var within the context of an

existing 4D-Var scheme is to replace the tangent-linear (and its adjoint) model integration within the inner loops

(as defined in the previous section) by the indentity operator (LIDMODEL=.T. in yomtnewt.F90). This approach

has indeed been adopted, as it saves on maintenance of scripts and codes. It is this 3D-Var version that was used

for the production of the ERA-40 re-analysis (Uppala et al. 2005) and it is used in ECMWF operations within the

so called BC-suite to generate timely boundary conditions for the participating member states.

In this version of 3D-Var as much as possible of the 4D-Var structure is maintained. The available observations,

typically over the period of a 6-hour assimilation window, are compared with a model integration at high resolu-

tion. The comparison between observation and model is thus performed at the appropriate time: therfore the abbre-

viation 3D-FGAT (first-guess at appropriate time). This configuration is activated via the switch LFGAT=.T. in

namvar.h.

3.2  3D-FGAT

3.2.1  Solution algorithm

The tangent-linear model in 4D-Var evolves the analysis increment over time, within the assimilation window. In

3D-FGAT no such evolution takes place: one static increment in produced. The valid time of this increment is not

at the initial time of the window as in 4D-Var, but at the central time. The increment is added to the background

field, which forms the analysis at the central time. This has the consequence that a trajectory update from the start

of the assimilation window cannot be performed. The 3D-FGAT configuration is therefore based on one single out-

er-loop without iteration. There are nevertheless two minimisation steps. The first provides analysis error and back-

ground error estimates required for cycling, and also pre-conditioning vectors (Hessian eigenvectors) that are used

in the secone minimisation job-step. The resolution of the first minimisation is typically lower (T42) than for the

main one (e.g. T159).

Scatterometer de-aliasing is active and variational quality control is activated approximately halfway into the min-



Part II: ‘Data assimilation’

28

IFS Documentation Cycle CY28r1 (Edited 2004)

imisation, rendering the problem non-linear (and the cost function non-quadratic). The use of conjugate-gradient

minimisation is thus prevented. The M1QN3 algorithm is used instead.

3.2.2  Main differences with respect to 4D-Var

The main differences with respect to the standard operational 4D-Var configuration are thus

• Variational quality control is carried out within the inner-loop iterations (LQVARQC=.F.)

• The scatterometer de-aliasing is performed within the inner-loop iterations (LQSCAT=.F.)

• Use of M1QN3 instead of conjugate gradeint minimisation, due to the cost-function being quadratic

• The Jc term relies on NMI (normal mode initialisation) rather than DFI (Digital filter initialisation),

LJCDFI=.F., LJCNMI=.T..

• No iteration at outer-loop level.

• LTRAJHR=.F., which means that the observation operators are linearized around the low-resolution

trajectory, which is generated through an integration by the full non-linear model (at the resolution

of the minimisation) at the beginning of the minimisation job-step. CVA1 calls CNT2 to do this.

3.2.3  Data selection

The observational data are stored in time-slots within the ODB (just as in 4D-Var). The data selection criteria are

applied in identically the same way as in 4D-Var, allowing time sequences of data to be used also in 3D-FGAT.

The 3D scheme is however unable to extract temporal information from the data, and produces an analysis of the

temporal average of the FGAT departures. Optionally the screening data selection rules can be applied once for the

entire (6-hour) assimilation window, which would pick only the data closes to the analysis centre time. This is

called ’3D-screening’ and was the practice in the original operational 3D-Var configuration.
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CHAPTER 4   Background term

Table of contents

4.1 Introduction

4.2 Description of the algorithm

4.3 Technical implementation

4.3.1 Input files

4.3.2 Namelist parameters of

4.3.3 IFS  routines

4.3.4 Background error

4.1  INTRODUCTION

The background term described in Courtier et al. (1998) was in May 1997 replaced by a new formulation by Bout-

tier et al. (1997), available online as newjb.ps. The old code is still part of the IFS but will not be described in this

documentation.

4.2  DESCRIPTION OF THE ALGORITHM

We use the following notation:

•  is the low–resolution analysis increment, i.e. model field departures from the background,

•  is the assumed background error covariance matrix,

• , ,  and  are increments of vorticity, divergence, temperature and surface pressure,

and specific humidity, respectively, on model levels.

•  and  are the balanced parts of the  and  increments. The concept of

balance will be defined below, and

•  and  are the unbalanced parts of  and , i.e.  and

, respectively.

The incremental variational analysis problem, Eq. (1.2) of Chapter 1, is rewritten in the space defined by the change

of variable  (Section 1.4) where  satisfies  so that  takes a simple form. In operational

practice, the initial point of the minimization is the background, so that initially . The minimization

can be carried out in the space of , where  is the euclidean inner product. At the end of the minimization, the

analysis increments are reconstructed in model space by . In order to compare with observations  is

reconstructed using Eq. (2.4), in each simulation. Thus the variational analysis can be done with , the inverse

change of variable from minimization space to model space (chavarin}, without ever using CHAVAR.

The background-error covariance matrix  is implied by the design of , which currently has the form

(4.1)

δx
B
ζ η T psurf,( ) q

ηb T psurf,( )bal η T psurf,( )

ηu T psurf,( )unbal η T psurf,( ) η ηbal–

T psurf,( ) T psurf,( )bal–[ ]

δx Lχ= L LLT B= Jb
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where  is a balance operator going from the set of variables , ,  and , to the model variables

, ,  and . The  operator is the right–hand symmetric square root of the background-error cov-

ariances  of , ,  and , so that

(4.2)

So far, the formulation is perfectly general. Now, we restrict  to a simple form and choose a particular balance

operator .

The covariance matrix  is assumed to be block-diagonal, with no correlation between the parameters:

(4.3)

It implies that the  analysis is independent from the other variables. However, assuming that the unbalanced var-

iables are uncorrelated is not too restrictive because, as we shall see below, the design of the balance implies sig-

nificant multivariate correlations between the meteorological variables.

Each autocovariance block in the above matrix is itself assumed to be block-diagonal in spectral space, with no

correlation between different spectral coefficients, but a full vertical autocovariance matrix for each spectral coef-

ficient. The vertical covariance matrices are assumed to depend only on the total wavenumber . The resulting

autocovariance model is homogeneous, isotropic and non-separable in grid-point space: the correlation structures

do not depend on the geographical location, but they depend on the scale. The shape of the horizontal correlations

is determined by the covariance spectra. The same representation was used in the previous  formulation (Rabier

and McNally 1993, Courtier et al. 1998). The covariance coefficients are computed statistically using the NMC

method (Parrish and Derber 1992, Rabier et al. 1998) on 24/48-hour forecast differences to estimate the total co-

variances for each total wavenumber , and assuming an equipartition of errors between the  associated

spectral coefficients.

The balance relationship is arbitrarily restricted to the following form:

(4.4)

So that the complete balance operator  is defined by:

(4.5)

or equivalently, in matrix form:
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(4.6)

The matrix blocks ,  and  are, in general, not invertible, but  is. As explained above, the inverse of  is

not actually used in the variational analysis, because the initial point of the minimization is the background.

The matrix multiplication of  by  allows one to write explicitly the implied background error covariance ma-

trix  in terms of the meteorological variables , ,  and :

(4.7)

The blocks implied by  and its transforms by the balance operator blocks ,  and  are the balanced parts

of the covariances. For instance, the vorticity covariances  and the unbalanced temperature covariances

 are both homogeneous and isotropic, whereas the  ‘vorticity-balanced’  matrix term

depends on latitude—it is predominant in the extratropics, negligible near the equator. The  term is responsi-

ble for the geostrophic mass/wind coupling.

The ,  and  operators used to define the balance have a restricted algebraic structure.  and  are both

the product of a so-called horizontal balance operator  by vertical balance operators , :

(4.8)

The  operator is a block–diagonal matrix of identical horizontal operators transforming the spectral coefficients

of vorticity, independently at each level, into an intermediate variable  which is a kind of linearized mass vari-

able defined below. The horizontal operators in  have exactly the same algebraic structure as the standard ana-

lytical linear balance on the sphere, and this is where the latitudinal variations of the  structures come from: in

spectral space,

(4.9)

The ,  and  operators all have the same structure: block-diagonal, with one full vertical matrix per spectral

component. The vertical matrices depend only on the total wavenumber .

The actual calibration of the  operator requires the following 4 steps; each one uses a set of 24/48-hour-range

forecast differences as surrogates to background error patterns in order to calculate the statistics:

1)  operator. The horizontal balance coefficients  of  are computed by a linear regression

between the errors in vorticity and in linearized total mass , assuming the functional

relationship defined by the above equation, and building  from  using the linearized

hydrostatic relationship at level ,
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(4.10)

which relies on the definition of the model vertical geometry and of reference values for .

We use (270 K, 800 hPa) currently. The sensitivity to the somewhat arbitrary choice of these

parameters has been tested and it is negligible. Unlike in the previous  formulation,  is just an

intermediate variable in the linear regression. Modifying the reference values, e.g. to (300 K,

1000 hPa), does change the scaling of , but it is compensated by corresponding changes in the 

and  operators, so that the effective covariances are virtually unchanged.

2)  operator. The vertical blocks  of this operator are computed for each wavenumber  by

a linear regression between the spectral vertical profiles  and , respectively, of

balanced mass  (defined as  times the vorticity error patterns) and divergence. The

relationship is assumed to be

(4.11)

so that the statistical sampling is better for the small scales than for the large scales because there

are  spectral profiles to be used per total wavenumber in each forecast error pattern. At least

as many independent error patterns as number of model levels are needed in order to have a well-

posed regression problem for the very large scales.

3)  and  operators. The vertical blocks are computed for each wavenumber exactly like ,

except that now the linear regression goes from the vertical spectral profiles of  and

 to the profiles of temperature concatenated with surface pressure:

(4.12)

One notes that the  matrix is not square (the output is larger than the input because there is a

kernel in the hydrostatic relationship) but the resulting  covariances are still positive

definite by construction thanks to the  term in the expression of .

4) Error covariances. The vertical autocovariances of the , ,  and , difference

patterns are computed for each total wavenumber . Again, since there are  wavenumbers

for each  and each error pattern, at least as many linearly independent error patterns as model

levels (plus one for ) must be used in order to ensure that the autocovariances are positive

definite at the very large scales. It is strongly advised to use several times more in order to reduce

the sampling noise at large scales; this is important for the performance of the resulting

assimilation/forecast system. In the May 1997 implementation of the 3D-Var system, about 180

forecast-difference patterns have been used for 31 levels.

In addition to these 4 steps, some minor preprocessing is performed on the covariances. The vertical correlations

of humidity are set to zero above 100 hPa in order to avoid spurious stratospheric humidity increments because of

the tropospheric observations. The ,  and  vertical profiles of total variance are rescaled by an ar-

bitrary factor of 0.9 in order to account for the mismatch between the amplitudes of the 24/48-hour-forecast differ-

ences and of the 6-hour forecast errors. In the future this factor will be recalculated more precisely using

observation departures from the background in the assimilation, similarly to Hollingsworth and Lönnberg (1986).

It may be different for 3D-Var than for 4D-Var. The variance spectra are slightly modified in order to ensure that
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the horizontal error correlations of ,  and  are compactly supported (they are set to zero beyond

6000 km). This operation removes the residual sampling noise in the error covariances. No other processing is per-

formed except for a spectral truncation if the analysis resolution is lower than the statistics resolution (currently

T106). It would be easy to extrapolate the statistics to higher resolutions, but it would be very hazardous to alter

the vertical geometry of the covariances and balance operators. Instead, it is recommended to run a set of forecasts

using a model with the right vertical resolution, and recompute all the statistics from scratch.

4.3  TECHNICAL IMPLEMENTATION

The statistical calibration is done using dedicated scripts outside the IFS code. First, the 24/48-hour forecast error

differences for a set of dates are constructed in terms of spectral , ,  and . This involves running a

set of MARS requests and building the required GRIB files. Then, the forecast-error differences are read and proc-

essed by a Fortran statistics program that finally writes two files in GSA format: one with the coefficients of the

balance operator, one with the error covariances of , ,  and . These files take up a couple of meg-

abytes. They are computed for a given triangular truncation and number of levels (currently T106L31). In the co-

variance file there are 4 sets of vertical covariance matrices. The balance files contain one set of coefficients for

the  operator, and three sets of vertical balance matrices for ,  and .

4.3.1  Input files

The IFS needs these two GSA files to use  in e.g. the incremental analysis jobs. The  configuration described

here corresponds to namelist switch LSTABAL=.true. (NAMJG), and it is identified in the  code by the string

CDJBTYPE=‘STABAL96’. LSTABAL=.false. would give the old  formulation. The input files must be named

stabal96.cv and stabal96.bal. They are read in by sujbdat and sujbbal, respectively.

4.3.2  Namelist parameters of 

Some other important namelist options in NAMJG are LCFCE (to enforce uniform background errors),

L3DBGERR (to have a 3D distribution vorticity background errors), and LCORCOSU (to enforce compactly sup-

ported horizontal correlations). The switch LGUESS in NAMCT0 can be used to switch  off altogether. The

default is LGUESS=.true., i.e.  switched on.
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Figure  4.1   Calling tree for subroutine sujbcov.

(This is the  setup code tree in IFS cy16r3, option stabal96)

(namelist namjg has already been read into yomjg in routine sujb below su0yoma)

sujbcov determine  configuration (nonsep93, stabal96 or totenrgy)

allocate work arrays

sujbdat read covariance file ‘stabal96.cv’

commjbdat distribute covariances to all processors

suprecov prepare vertical interpolation

truncate / extrapolate spectrally to IFS resolution

reset q stratospheric correlations

sujbcor < lcorcosu > prepare Legendre polynomials

normalize covariance matrices into correlations

eigenmd factorize inverse vertical correlation matrices
—> arrays FGEDVNx, FGEGVM

generate horizontal correlation spectra

< lcorcosu > sujbcosu generate compactly supported
horizontal correlation spectra

inverse square root of horiz correl spectra —> array FGSCNM

print average vertical correlation matrices

< kprt>1 > print spectra and gridpoint structures of
horizontal correlations

sujbstd calculate total variances at each level

standard deviation vertical profiles times REDNMC
—> arrray FCMN / FCEMNP

suecges horizontal stdev structures (see cycling doc)

sujbbal read balance file ‘stabal96.bal’

commjbbal distribute balance to all processors

convert to IFS truncation —> arrays SDIV, STPS, BFACT/2

sujbmod (modification of vertical correlations, not supported)

sujbmap (modification of  geometry, not yet implemented)

sujbdiag (diagnostic of  structure functions, not supported)

sujbstat (online update of  statistics, not yet implemented)

sujbwrit (rewrite of  operators, not yet implemented)

< ljbtest > sujbtest (Technical test of  code)

setup random vector

cvar2in / cvar2inad adjoint test on them

cvar2 / cvar2in inverse tests on them

cvar2ad / cvar2inad inverse tests on them

Jb

Jb

Jb

Jb

Jb

Jb

Jb
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4.3.3  IFS  routines

Inside the IFS code,  is localized in the setups below subroutine sujbcov and in the inverse change of variable

cvar2in (and its adjoint and their inverses, CVAR2INAD, CVAR2 and CVAR2AD). Calling trees are shown in Fig.

4.1  and Fig. 4.2 . The computation of the cost function and its adjoint is done in sim4d(Section 2.3 in Chapter 2)-

--it is planned to move it to a dedicated subroutine. The sequence within the set-up routine is the following:

(i) SUJBDAT: Reads covariances from file stabal96.cv,
Interpolates in the vertical to the model’s vertical levels (if necessary)

Sets humidity correlations to 0, for pressures less than 100 hPa.

(ii) SUJBCOR: Sets up spectral correlation operator

Covariance matrices (one per ) are converted to vertical correlation matrices and horizontal

autocorrelation spectra. The eigenvectors and the eigenvalues of vertical correlations matrices are

computed using EIGENMD and stored in FGEDVNS and FGEGVNS-arrays (yomjg), respectively,

for later use in JGVCOR, JGVCORI, JGVCORAD and JGVCORIAD. The horizontal

autocorrelation spectra are stored in the FGSCNM–array (yomjg), for later use in JGHCOR and

JGHCORI.

(iii) SUJBSTD: Set up background error standard deviations, see Subsection 4.3.4.

(iv) SUJBBAL: Set up balance constraint. Read the file stabal96.bal and store in yomjg, for later use in

balstat, balstatad, balvert, balvertad, balverti and balvertiad as part of the change of variable

operator.

(v) SUJBTEST: Test of the adjoint of the change of variable, if LJBTEST=.true.

The distributed memory affects the setups below sujbdat and sujbbal when the data files are read in (by the master

processor only). First, the resolution of the files is read, then the relevant arrays are allocated and the actual data is

read, truncated if necessary, and broadcast. The code is designed to work at any resolution.

In the change of variable, there is a transposition of the fields between the horizontal and vertical balance operators,

balstat and balvert, repsectively. Note that the operator  is performed by calling cvar2in, so in IFS parlance 

corresponds to the inverse change of variable.

Jb

Jb

n

L L
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Figure  4.2   Calling tree for subroutine cvar2in.

4.3.4  Background error 

The background standard errors are set up below sujbstd (in SUINFCE, called from SUECGES) and used in jgnr

or jgnrs (and their adjoint and inverses, jgnrad and jgnrsi). In addition to the covariance files, they use a gridpoint

GRIB file called errgrib in order to specify the three–dimensional error patterns. The data from the file is convert-

ed to the appropriate parameters and resolution if needed. The background error fields for some parameters (wind,

height, temperature and surface pressure) are built for the screening job although they are not needed in the analysis

itself. For more information, refer to the chapter on the cycling of background errors, Chapter 6.

4.3.4 (a)  Humidity.   The humidity background errors are currently not cycled – they are computed (in SUSH-

FCE under JGNR) by a simple empirical formulation as a function of the temperature  and relative humidity

 of the background:

cvar2in < lskf > (see the simplified Kalman filter doc)

cvaru3i jgcori trmtos mpe_send /mpe_recv for spectral

to column transposition

jgvcori matrix multiplications

by FGEGVNx / FGEDVNx i.e.

sqrt of vertical correlations

trstom mpe_send / mpe_recv for column

to spectral transposition

jghcori division by FGSCNM i.e.

inverse sqrt of horizontal correlations

< lspfce > jgnrsi multiplication by FCEMN i.e.

average background errors

< else > stepo (0AA00XAG0) interface to jgnr(x)

i.e. multiply by

3D background errors

balstat apply horizontal balance operator defined by

BFACT1 / BFACT2 from vorticity to P variable

balvert trmtos mpe_send / mpe_recv for spectral

to column transposition

apply vertical balance operator defined by

SDIV / STPS from P to unbalanced variables

trstom mpe_send / mpe_recv for column

to spectral transposition

< lsubfg > addfgs add SP7A3/2 (trajectory) to SPA3/2

σb

Tb

Ub
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(4.13)

(4.14)

The standard deviation in terms of relative humidity is then converted to specific humidity, taking the variation of

 of the equation

(4.15)

where  is the relative humidity, ,  is the saturation water-vapour pressure at the temperature

in question (Tetens’ formula, Eq. (5.11) in Chapter 5) and  is pressure.

Humidity increments are forced to be negligibly small above the tropopause to avoid a systematic drift of strat-

ospheric humidity over extended periods of data assimilation. This is achieved by setting a very low value of 

for  everywhere the pressure is lower than 70hPa, and at anyother point where the pressure is lower than 500hPa

and the background temperature and pressure fields are such that the square of the buoyancy frequency exceeds

 everywhere between that level and the 70hPa level.

More specifically, for each grid column  is set to  for model levels  such that , where the level 

is determined by requiring either that it is the highest level with hPa for which

(4.16)

or, if no such level can be found for  in the range from 500 to 70hPa, that it is the lowest level for which

.

Here  and  are the background temperature and pressure at level  of the grid-column.

In addition, any values of  lower than  are reset to .

For pressures less than  = 800 hPa, and over the sea, the model of background errors above is modified by

(4.17)

where  (where LSM = land–sea mask) and =12500.
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Part II: DATA ASSIMILATION

CHAPTER 5   Observation operators and the observation 
cost function (Jo)
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5.8 Surface observation operators

5.8.1 Mathematical formulation

5.8.2 Surface values of dry static energy

5.8.3 Transfer coefficients

5.8.4 Two-metre relative humidity

5.1  INTRODUCTION

The observation operators provide the link between the analysis variables and the observations (Lorenc, 1986, Pail-

leux, 1990). The observation operator is applied to components of the model state to obtain the model equivalent

of the observation, so that the model and observation can be compared. The operator  in Eq. (1.4) signifies the

ensemble of operators transforming the control variable  into the equivalent of each observed quantity, , at

observation locations. The 3D/4D–Var implementation allows  to be (weakly) non-linear, which is an advantage

for the use of satellite radiance data, scatterometer data with aliased wind direction, cloud and precipitation data,

for example. In this chapter we define the content of each of the IFS observation operators and the associated con-

trols for all data used in 3D/4D–Var. The calculation of departures and the  costfunction are also described.

The IFS observation operators are generic in the sence that the same routine is often used for several different data

types. For example, the radiance operator (RTTOV) simulates measurements from a large number of satellite ra-

diometers (micowave and infrared), and the temperature operator (PPT) is used for TEMP, AIREP, and other data

types and it is also used to provide input to RTTOV. Similarly the routine PPQ is used for interpolation of specific

humidity to given pressures, but it can also be used for any other atmospheric mixing ratio constituents, such as

ozone and carbon dioxide. Note that many of the PP-routines were developed for the model’s pressure-level post-

processing package and are used also in that contex. 

In Table 10.3 there is a list of the observing systems currently used by 4D–Var in ECMWF’s operational data as-

similation suite. The table also indicates important restrictions on data usage and thinning of data. The observation

errors are also given in Chapter 10. In 4D-Var, the evolving model state is compared to the available observations

at the correct time, currently at half-hourly intervals. These intervals are called time-slots. The Observation Data

Base (see ODB documentation) holds the observations organized by time slots. If there are multiple reports from

the same fixed observing station within a time slot then the data nearest the analysis time are selected for use in the

analysis. Some thinning is applied for satellite data and other moving platforms reporting frequently. The thinning

rules are applied to each time slot, separately. The thinning, quality control and data selection tasks are performed

in the screening job step of 4D-Var - it is described in Chapter 10.

5.1.1  Data selection controls, and the interface to the blacklist

Most data selection criteria are coded in so called blacklist files, written in a convenient, readable blacklist language

(see the Blacklist Documentation, Jarvinen et al. 1996). The blacklist mechanism is very flexible and allows nearly

complete control of which data to use/not use in the assimilation. The ’monthly blacklist’ is the part of the blacklist

that is based on operational data monitoring results, and it is maintained by the Meteorological Operations Section.

The blacklist is consulted in the screening job. The interface is set up in BLINIT, in such a way that a number of

named  items from the header (Table 5.1) and body (Table 5.2) parts of the observation report can be passed to the

blacklist software. Depending on the blacklisting criteria flags are communicated to the routine BLACK, and those

are written to the ECMA ODB data base. Blacklist-rejected data are subsequently excluded from the CCMA ODB

and will not be present in the minimisation job steps. Data selection rules should be coded in the blacklist files

H
x yo

H

Jo



 Chapter 5 ‘Observation operators and the observation cost function (Jo)’

 41

IFS Documentation Cycle CY28r1 (Edited 2004)

whenever possible rather than in the IFS code itself. The operational blacklist history is kept in an archive.

.

Classes of data can also be switched on and off using the NOTVAR array in NAMJO, however it is preferable to

use the blacklist mechanism for this purpose. The second dimension in this array is the observation type. The first

dimension is the variable number (NVAR, see below). The elements of the NOTVAR array can take either of two

TABLE 5.1     HEADER VARIABLES FOR THE IFS/BLACKLIST INTERFACE

Index Name Description

1 OBSTYP observation type

2 STATID station identifier

3 CODTYP code type

4 INSTRM instrument type

5 DATE date

6 TIME time

7 LAT latitude

8 LON longitude

9 STALT station altitude

10 LINE_SAT line number (atovs)

11 RETR_TYP retrieval type

12 QI_1 quality indicator 1

13 QI_2 quality indicator 2

14 QI_3 quality indicator 3

15 MODORO model orography

16 LSMASK land-sea mask (integer)

17 RLSMASK land-sea mask (real)

18 MODPS model surface pressure

19 MODTS model surface temperature

20 MODT2M model 2m temperature

21 MODTOP model top level pressure

22 SENSOR satellite sensor indicator

23 FOV field of view index

24 SATZA satellite zenith angle

25 NANDAT analysis date

26 NANTIM analysis time

27 SOE solar elevation

28 QR quality of retrieval

29 CLC cloud cover

30 CP cloud top pressure

31 PT product type
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values: 0, means that the data will be used; –1, means that the data will not be used.

5.2  HORIZONTAL INTERPOLATION TO OBSERVATION POINTS

5.2.1  Method

Currently it is assumed that each observation equivalent can be computed from a single vertical profile of model

data. That is, it is assumed that each observation operator can be written as  where  is horizontal

interpolation of model data to the location of the observation.  is performed for all observations within a time-

slot directly after the correspoding model time step has been performed. The output of  is a vertical profile of

model data for each observation location. These profiles are stored in a data structure call GOM-arrays, and used

later in the vertical part of the observation operator  performed in HOP, called from OBSV. This organisation

does not permit horizontal averaging of model data over large satellite foot prints (for example). It also does not

permit horizontal integration as will be required for limb-sounding and radio-occultation data. For a future release

of IFS it is planned to extend the GOM-profile concept to GOM-planes. The orientation of the planes (one vertical

plane per observation) would be determined by the satellite viewing geometry. The  operator for those data

would receive the vertical plane of model data as input.

TABLE 5.2     BODY VARIABLES FOR THE IFS/BLACKLIST INTERFACE

Index Name Description

1 VARIAB varible name

2 VERT_CO type of vertical coordinate

3 PRESS pressure, height or channel number

4 PRESS_RL reference level pressuer

5 PPCODE synop pressure code

6 OBS_VALUE observed value

7 FG_DEPARTURE first guess departure

8 OBS-ERROR observation error

9 FG_ERROR first-guess error

10 WINCHAN_DEP window channel departure

11 OBS_T observed temperature

H HvHh x( )= Hh

Hh

Hh

Hv

Hv
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Figure  5.1   Flow diagram for subroutines scan2mdm and obsv.

COBSLAG is the master routine for the horizontal interpolation of model data to observation points. It is called

after the inverse spectral transform in SCAN2MDM, and after the so-called semi-Lagrangian buffers have been

prepared by COBS and SLCOMM2, see the flow diagram in Fig. 5.1 . The interpolation code is shared with the

semi-Lagrangian advection scheme of the dynamics. The buffers contain a halo of gridpoints big enough to enable

stepo (. . . .) scan2mdm buffer initializations

cobs setup field pointers

sc2rdg read grid-point data

load grid-point arrays

cobslag scan observation arrays

obshor fetch observation lat/lon

slint horiz interpolation

to obs point

(see semilag doc)

 

 

 

 

obsv reset ZFJO cost function

suobarea setup area index for each obs

(mainly according to satellite ID)

ecset define obs sets

sort TOVS/SATEM data

taskob decide whether to call TL/AD obs operators

zero ZFJO cost function

hop        (TL/AD) vertical operators

sum  cost-function for each area (diagnostic only)

 

sum ZFJO into FJOS cost-function

<lprtgom> prtgom debugging printout of yommvo GOM arrays

Jo
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interpolation to all observations within the grid-point domain belonging to the processor. COBSLAG calls OB-

SHOR which:

• Performs the interpolation, using SLINT

• Message-passes the result to the processors where the corresponding observations belong, and

copies the model data at observation points to the so-called GOM-arrays (yommvo, described

below) using the routine MPOBSEQ..

There are three methods of horizontal interpolation:

1) LAIDDIOBS 12-point bi-cubic interpolation, used for all upper-air fields (if NOBSHOR=203)

except clouds,

2) LAIDDIOBS Bi-linear interpolation, used for surface fields, and

3) LAIDLIC: Nearest gridpoint, used for cloud parameters.

The interpolation method for the upper-air fields can be switched to bi-linear by specifying NOBSHOR=201 in

namobs. The default is NOBSHOR=203 (bi-cubic) for the trajectory jobs, but NOBSHOR=201 (bi-linear) in the

minimisation jobs. Lists of interpolation points and weights are prepared by the routine LASCAW. In 4D-Var bi-

cubic interpolation is used at high resolution (i.e. in the trajectory runs), and bi-linear is used at low resolution (i.e.

in the main minimization). The interpolation is invoked once per 4D-Var time slot.

The adjoint (OBSHORAD) follows the same general pattern but gets further complicated by the fact that the gra-

dient from several observations may contribute to the gradient at a given gridpoint. The summation of gradients is

to done in the same order, irrespective of the number of processors, as reproducibility is desired (strictly speaking,

overall 4D-Var reproducibility is only ensured if the so called reproducibility switch is ON. This adds to computa-

tional cost, and the default is OFF). Tables for managing this are prepared in MKGLOBSTAB.

5.2.2  Storage in GOM-arrays

The GOM arrays (YOMMVO) contain vertical profiles of model values at observation points. There are namelist-

switches to control which upper-air model variables will appear in the GOM-arrays. There are five categories of

GOM-arrays:

• GOMx for conventional data, containing full model profiles of optionally , , , , 

(ozone),  (cloud liquid water),  (clod ice) and  (cloud cover)

• GOSx for conventional data, containing surface data of  (surface pressure),  (skin

temperature).  (soil water content),  (snow cover),  (roughness length) and  (skin

reservoir water content).

• GSMx for satellite radiance data, containing full model profiles similar to GOMx

• GSSx for satellite radiance data, containing surface data of , , , , , ,  and ,

where  and  are lowest model level wind components.

• GSCx for SCAT data, containing lowest model level data of , , , and , and surface data

of ,  and .

The reason for this split is purely to save on memory space. Model profiles of wind for example are not needed as

inputs to the radiance observation operator (RTTOV), so those fields are not interpolated to the sateliite radiance

locations, and are not stored, unless requested. Upper-air profiles of model data at SCAT locations are also not com-

puted. The selection of model variables to interpolate to GOMx and GSMX arrays, respectively, is flexible and is

controlled through namelist switches LGOMx and LGSMx (in namdim). The default is that only LGOM-U/V/T/

Q and LGSM-T/Q/O3 are ON, with the addition of LGSMCLW/CLI/CC in screening run to enable computation

of cloudy radiances. The adressing of the GOM-arrays is done by referring to the MAPOMM (YOMOBA) and

MABNOB (YOMOBSET) tables, e.g. ZPS(jobs) = GOSP(MAPOMM(iabnob)), where iabnob = MAB-

u v T q O3

CLW CLI CC
psurf Tskin

ws sn z0 wl

ps Ts ws sn z0 wl ul vl

ul vl

ul vl Tl ql

ps Ts z0
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NOB(jobs,kset) is an observation counter local to each processor.

The trajectory GOM5 arrays (identical to GOM) are allocated in the case that tangent linear observation operators

are used. They are to hold the trajectory interpolated to the observation locations, and the GOM-arrays, in that case,

hold the perturbations.

At the end of the adjoint observation operators the GOM-arrays are zeroed and overwritten by the gradient (in PRE-

INTAD).

The r.m.s. of the GOM arrays is printed (by PRTGOM) if the switch LPRTGOM=.true., (in YOMOBS). The de-

fault is that the print is switched on. It can be located in the log file by searching for ‘RMS OF GOM’. The printing

is done from OBSV, 1) when the GOM arrays contain the background interpolated to the observation points, 2)

when it contains  of the first simulation, 3) when it contains first TL perturpations after the initial call to the

minimizer and 4) when it contains  at the final simulation.

5.3  COMPUTATION OF THE OBSERVATION COST FUNCTION

The cost function computation follows the same pattern for all observational data. This common structure is de-

scribed in the following section. It is assumed that all observations are independent of each other, which means that

the cost function contribution from each observation station can be computed independently of others. That is to

say that there is (currently) no provision for observation error correlation between reports.

5.3.1  Variable numbers and association with observation operators

In the ODB each observed value is associated with a vertical position (’press’ with pointer MDBPPP, given in

terms of pressure, height or channel number) and a variable number (’varno’ with pointer MDBVNM). The defined

variable numbers are listed in the array NVNUMB as described in the ODB documentation. The variable number

indicates which physical quantity has been observed. Each observed quantity is linked to an IFS observation oper-

ator (in HVNMTLT). In the case there is no corresponding observation operator in IFS, no observation equivalent

will be computed, and the observation will be rejected from further processing. Each available observation operator

has been given a number (NVAR) and a short name (CVAR_NAME, three characters), set in YOMCOSJO.

There are currently JPXVAR = 25 operator names defined: U, U10, DD, FF,  H, H2, T, Z, DZ, LH, T2, TS, RAD,

SN, RR, PS, CC, CLW, Q, FFF, S0, X, PWC, TO3 and TCW, numbered sequentially in NVAR. Each number can

be referenced by variables such as NVAR_U(=1), NVAR_U10(=2) and so on. Based on the ODB variable number

for each observation, which has been associated with an observation-operator number and name, HOP calls the

appropriate observation operator routine. For example, observations with ODB variable number = NVNUMB(8),

will in HVNMTLT be associated with NVAR_T = 7 and CVAR_NAME(7) = ‘T ’, and HOP will thus call the sub-

routine PPT.

In the log file CVAR_NAME is used to label entries in the Jo-table. The Jo-table shows the  Jo-values for each

observation sub-type, for each observation operator (NVAR). RMS of observation error and background error are

also shown. See the Section on Jo-tables below.

J∇ o

J∇ o
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5.3.2  Organization in observation sets

The vertical observation operators are vectorized over NMXLEN (yomdimo) data. To achieve this the data first

have to be sorted by type and subdivided into sets of lengths not exceeding that number. NMXLEN is currently set

to 511, in SUDIMO. The observation sets may span several 4D-Var time slots, as the input to the observation op-

erators is the GOM-arrays which have been pre-prepared for all time slots during the tangent linear model integra-

tion. However, in the current operational context this is not the case, as OBSV.F90 is called once per time slot.

Furthermore, on the current IBM machines long vector loops are not very important for performance, our IBMs

being scalar machines.

The organization of the sets is done in ECSET and SMTOV and the information about the sets is kept in yomobset.

TABLE 5.3     ASSOCIATION BETWEEN VARIABLE NUMBERING AND OBSERVATION OPERATOR ROUTINES. THE 
CVAR-NAMES ALSO APPEAR IN THE PRINTED JO-TABLE IN THE LOG-FILE

NVAR CVAR_NAME
Observation operator

routine
Description

1 U PPUV Upper air wind components

2 U10 PPUV10M 10-metre wind components

3 DD Wind direction

4 FF PPUV Wind speed

5 H PPRH Relative Humidity

6 H2 PPRH2M 2-metre relative humidity

7 T PPT Temperature

8 Z PPGEOP Geopotential

9 DZ PPGEOP Thickness

10 LH PPRH Layer mean RH (Meteo-France)

11 T2 PPT2M 2-metre temperature

12 TS Surface temperature (M-France)

13 RAD RADTR Radiance data

14 SN Snow (M-France)

15 RR Rain rate (Meteo-France

16 PS PPPS Surface pressure

17 CC PPTCC Cloud cover

18 CLW PPCLW Cloud liqud water

19 Q PPQ Specific humidity

20 FFF PPUV10M 10-metre wind speed

21 S0 Sigma_0

22 X Reserved

23 PWC PPPWC Layer water content or TCWV

24 TO3 PPPWC Layer ozone content

25 TCW Layer cloud water content
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Radiance observation sets (e.g. ATOVS, AIRS, SSMI) must not contain data from more than one instrument. That

is to say that inside HOP, HOPTL and HOPAD (and routines called form there) data from several instruments are

not mixed - different instrument are handled in separate calls. This is controlled by sorting according to the area-

parameter, which for radiance data is an indicator of satellite ID and instrument, prior to forming the sets. The area-

parameter is determined in SUOBAREA, and is irrelevant for the observation processing for all data other than the

radiance data. 

5.3.3  Cost function

The master routine controlling the calls to the individual observation operators is called HOP. This routine deals

with all different types of observations.

The HOP/HOPTL/HOPAD routines are called from TASKOB/TASKOBTL/TASKOBAD (called from OBSV/

OBSVTL/OBSVAD) in a loop over observation sets. The data type of each set is know from the information in

tables such as MTYPOB(KSET) stored in yomobset.

The following describes HOP//HOPTL/. The adjoint HOPAD follows the reverse order.

• First prepare for vertical interpolation using the routine PREINT. Data on model levels are

extracted from the GOM-arrays (YOMMVO). Pressures of model levels are computed using

GPPRE. Help arrays for the vertical interpolation are obtained (PPINIT) and * and  are

computed (CTSTAR). * and  are later used for extrapolation of temperature below the

model’s orography, Subsection 5.6.1 (b). The routine PREINTS deals with model surface fields

needed for the near-surface observation operators and PREINTR deals with those fields that are

specific to the radiance observation operators.

• The observation array is then searched to see what data is there. The ‘body’ of each observation

report is scanned for data, and the vertical coordinate and the variable-number for each datum is

retained in tables (ZVERTP and IVNMRQ). These tables will later constitute the ‘request’ for

model equivalents to be computed by the various observation operators. Tables of pointers to data

(‘body’ start addresses) and counters are stored (arrays IPOS and ICMBDY).

• Then the forward calculations are performed. There is an outer loop over all known ‘variable

numbers’. If there are any matching ocurrences of the loop-variable number with the content of

IVNMRQ, then the relevant observation operator will be called. A variable-number and an

observation operator are linked by a table set up in the routine HVNMTLT. The interface routines

PPOBSA (upperair) and PPOBSAS (surface) are used, which in turn call PPFLEV and the

individual operator routines. For radiance data the interface is RADTR which calls the radiative

transfer code.

• In HDEPART, calculate the departure  as

, (5.1)

where the two terms in brackets have been computed previously: the first one in the high resolution

trajectory run and the second one in the LOBSREF call, described in Section 2.2.

If LOBSTL then  is

, (5.2)

which simplifies to what has been presented in Section 1.4.
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The TOVS radiance bias correction is also carried out at this point by subtracting the bias estimate

(kept in the NCMTORB-word of ODB) from the calculated departure.

Finally the departure is divided by the observation error  (NCMFOE in ODB) to form the

normalized departure.

• Departures of correlated data are multiplied by , see Subsection 5.3.5. The division by  has

already taken place in HDEPART, so  at this point is in fact a correlation (not a covariance)

matrix.

• The cost function is computed in HJO, as

(5.3)

for all data, even for SCAT data when LQSCAT=.T., as in current 4D-Var with quadratic cost-

function. When LQSCAT=.F. (as in current 3D-Var configuration) the SCAT cost function

combines the two ambiguous winds (subscripts 1 and 2) in the following way (also in HJO,

(5.4)

These expressions for the cost function are modified by variational quality control, see Section 5.4.

The cost-function values are store in two tables, as detailed in 5.3.4.

• HJO, also stores the resulting effective departure in the NCMIOM0-word of ODB, for reuse as the

input to the adjoint. The effective departure is the normalized departure after the effects of (vertical)

observation error correlation and quality control have been taken into account,

, where the QC-weight will be defined below, Section 5.4.

5.3.3 (a)  Adjoint.   We have now reached the end of the forward operators. In the adjoint routine HOPAD some

of the tasks listed above have to be repeated before the actual adjoint calculations can begin. The input to the adjoint

(the effective departure) is read from the ODB. The expression for the gradient (with respect to the observed quan-

tity) is then simply

(5.5)

which is calculated in HOPAD for all data. The gradient of  is much more complicated and is calculated in

a separate section of HOPAD . The adjoint code closely follows the structure of the direct code, with the adjoint

operators applied in the reverse order.

5.3.4  Jo tables

There are two different tables for storing the  values. One is purely diagnostic (JOT, yomcosjo.h), and is used

for producing the printed  tables in the log-file (PRTJO called rom EVCOST). JOT is a FORTRAN90 derived

type with items containing cost function value, data count, observation error, background error and codetype, for

each observation type and for each observed variable (as defined by NVAR above).

The actual -table is called FJOS (yomcosjo). FJOS is indexed by the absolute observation number, iab-

nob=MABNOB(jobs,kset), so that the contributions from each individual observation can be summed up in a pre-

determined order (in EVCOST), to ensure reproducibility, irrespective of number of processors and tasks.
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5.3.5  Correlation of observation error

The observation error is assumed uncorrelated (i.e. the matrix  is diagonal) for all data except time-sequences of

SYNOP/DRIBU surface pressure and height data (used by default in 4D-Var, Järvinen et al. 1999). There used to

be code for vertical correlation of observation error for radiosonde geopotential data and SATEM thicknesses, but

these were removed in 21r2. Similar can easily be reintroduced again in a later cycle, provided the correlation acts

on data within a single report (vertical or inter-channel correlation).

The serial correlation for SYNOP and DRIBU data is modelled by a continuous correlation function 

where =RTCPART=0.3 and =RTCEFT=6.0 hours, under the switch LTC (namjo). The remaining fraction

 of the error variance is assumed uncorrelated (see COMTC).

When  is non-diagonal, the ‘effective departure’  is calculated by solving the linear system of equations

 for , using LAPACK routines SPOTRF (Choleski decomposition) and SPOTRS (backwards substi-

tution), as is done in COMTC.

5.4  VARIATIONAL QUALITY CONTROL

The variational quality control, VarQC, has been described by Andersson and Järvinen (1999). It is a quality con-

trol mechanism which is incorporated within the variational analysis itself. A modification of the observation cost

function to take into account the non-Gaussian nature of gross errors, has the effect of reducing the analysis weight

given to data with large departures from the current iterand (or preliminary analysis). Data are not irrevocably re-

jected, but can regain influence on the analysis during later iterations if supported by surrounding data. VarQC is

a type of buddy check, in that it rejects those data that have not been fitted by the preliminary analysis (i.e. the

current state vector), often because it conflicts with surrounding data.

5.4.1  Description of the method

The method is based on Bayesian formalism. First, an a priori estimate of the probability of gross error  is

assigned to each datum, based on study of historical data. Then, at each iteration of the variational scheme, an a

posteriori estimate of the probability of gross error  is calculated (Ingleby and Lorenc, 1993), given the cur-

rent value of the iterand (the preliminary analysis). VarQC modifies the gradient (of the observation cost function

with respect to the observed quantity) by the factor  (the QC-weight),which means that data which are

almost certainly wrong ( ) are given near-zero weight in the analysis. Data with a  are con-

sidered ‘rejected’ and are flagged accordingly, for the purpose of diagnostics and feedback statistics, etc.

The normal definition of a cost function is

(5.6)

where  is the probability density function. Instead of the normal assumption of Gaussian statistics, we assume

that the error distribution can be modelled as a sum of two parts: one Gaussian, representing correct data and one

flat distribution, representing data with gross errors. We write:

(5.7)

where subscript  refers to observation numer .  and  are the Gaussian and the flat distributions, respectively:
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(5.8)

(5.9)

The flat distribution is defined over an interval  which in Eq. (5.9) has been written as a multiple of the obser-

vation error standard deviation . Substituting Eqs. (5.7) to (5.9) into Eq. (5.6), we obtain after rearranging the

terms, an expression for the QC-modified cost function  and its gradient , in terms of the normal cost

function 

: (5.10)

(5.11)

(5.12)

(5.13)

where

(5.14)

(5.15)

5.4.2  Implementation

The a priori information i.e.  and  are set during the screening, in the routine DEPART, and stored in the

NCMFGC1 and NCMFGC2-words of the ODB. Default values are set in DEFRUN, and can be modified by the

namelist namjo. VarQC can be switched on/off for each observation type and variable individually using LVAR-

QC, or it can be switched off all together by setting the global switch LVARQCG=.F.. Since an as good as possible

‘preliminary analysis’ is needed before VarQC starts, it is necessary to perform part of the minimization without

VarQC, and then switch it on.

HJO computes  according to Eq. (5.11) and the QC-weight, , according to Eq.(5.14).

The 3D-Var assimilation system (Chapter 3) can handle non-quadratic cost functions because it is using the

M1QN3 minimization routine. This allows VarQC to be activated after NITERQC (40 by default) iterations during

the minimization process. The 4D-Var assimilation system (Chapter 2) by default use a conjugate gradient mini-

mization method that requires a strictly quadratic cost function. So in 4D-Var we use a quadratic formulation of

VarQC, controlled by LQVARQC (default .T.).

In the non-quadratic formulation the QC-weight, , Eq.(5.14) is updated for each simulation based on the nor-
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malized departure values calculated from the latest model state. However, to obtain a strictly quadratic cost func-

tion the QC-weight is not allowed to change during the minimisation process, because the cost function shape

would then change. Also, when LQVARQC = .T. it is not possible to activate VarQC in the middle of the minimi-

sation process, i.e. NITERQC MUST be zero, because this would otherwise introduce a sudden jump in the cost

function. Therefore, in 4D-Var assimilations VarQC is not applied during the first outer-loop but only for the sec-

ond (and possibly subsequent) outer-loop iteration(s).

The quadratic VarQC implementation satisfies the quadratic constraint by calculating the QC-weight, , based

on the high resolution trajectory fields and using this constant weight during the next minimisation step. The cost

function value is increased/reduced for each simulation during the minimisation by a factor *(norm_dep_LR-

norm_dep_HR), linearized in the vicinity of the high resolution cost function at norm_dep_HR. For the minimisa-

tion the most important input is the modification of the gradient by the weight . During the trajectory run the

high resolution departure is stored in ROBODY(..,MDBIFC1(NUPTRA+1)) in HDEPART. For each simulation

during the next minimisation step the high resolution departure is read and normalized by the final observation er-

ror in HJO)HJO loop 1.3.2. This is used as input to the VarQC weight calculations (loop 1.5.3-1.5.4 in HJO). It is

assured that the same weight is used for each simulation in the minimisation if LLQVARQC_MIN =. T., because

ZFJOS_HR(JOBS,JBODY) is constant during the minimisation. The cost function value is calculated like

Jo_varqc_LR = Jo_varqc_HR+ *(norm_dep_LR-norm_dep_HR)

The a posteriori probability of gross error is stored in the ODB and passed to BUFR feedback.  Storing in ODB is

done at the final simulation of the last minimisation if LQVARQC =. F., but done during the final trajectory run if

LQVARQC=.T. in order to use the updated final trajectory for calculating the QC-weight based on final high-res-

olution analysis values. This is done in HJO section 1.6.

Variational quality control for time correlated observations: The same method as above is (by default) applied for

time correlated observations (LTC=.T.). Here the high resolution departure values are required for all the time cor-

related observations. This is achieved by storing the normalized high resolution departures in the array RTCND-

PHR in HJO) and reading them in COMTC. They are then copied to local array ZTCNDPHR_W and then used

instead of the low resolution departures in the calculation (overwriting ZOM1DEP_W by high resolution values).

5.5  OBSERVATION OPERATORS - GENERAL

The operator  is subdivided into a sequence of operators, each one of which performs part of the transformation

from control variable to observed quantity:

(i) The inverse change of variable (CHAVARIN) converts from control variables to model variables

(ii) The inverse spectral transforms put the model variables on the model’s reduced Gaussian grid

(controlled by SCAN2MDM).

(iii) A 12-point bi-cubic or 4-point bi-linear horizontal interpolation, similar to the semi-lagrangian

interpolation routines described elsewhere, gives vertical profiles of model variables at observation

points (controlled by COBS, COBSLAG). The surface fields are interpolated bi-linearly to avoid

spurious maxima and minima. The three steps (i) to (iii) are common to all data types. Thereafter

follows:

(iv) Vertical integration of, for example, the hydrostatic equation to form geopotential, and of the

radiative transfer equation to form radiances (if applicable), and

(v) vertical interpolation to the level of the observations.

The vertical operations depend on the variable. The vertical interpolation is linear in pressure for temperature (PPT)

and specific humidity (PPQ), and it is linear in the logarithm of pressure for wind (PPUV). The vertical interpola-

tion of geopotential (PPGEOP) is similar to wind (in order to preserve geostrophy) and is performed in terms of

wi

wi

wi

wi
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departures from the ICAO standard atmosphere for increased accuracy (Simmons and Chen, 1991, see Section 5.6

below). The current geopotential vertical interpolation together with the temperature vertical interpolation are not

exactly consistent with hydrostatism. A new consistent and accurate vertical interpolation has been devised by Me-

teo-France, which may be important for intensive use of temperature information. The new routines have been test-

ed by ECMWF and as the results were not unambiguously positive the new routines have not yet been adopted –

and they are not described in this documentation. In the meantime, the old routines are still used (switch

LOLDPP=.true. in namct0), under the names PPT_OLD, PPGEOP_OLD and PPUV_OLD, with tangent linear

PPTTL_OLD, PPGEOPTL_OLD and PPUVTL_OLD and adjoint PPTAD_OLD, PPGEOPAD_OLD and

PPUVAD_OLD.

The vertical interpolation operators for SYNOP 10m wind (PPUV10M) and 2 m temperature (PPT2M) match an

earlier version of the model’s surface layer parametrisation. The vertical gradients of the model variables vary

strongly in the lowest part of the boundary layer, where flow changes are induced on very short time and space

scales, due to physical factors such as turbulence and terrain characteristics. The vertical interpolation operator for

those data takes this into account following Monin–Obukhov similarity theory. Results using such operators, which

follow Geleyn (1988)  have been presented by Cardinali et al. (1994). It was found that 2m temperature data could

not be satisfactorily used in the absence of surface skin temperature as part of the control variable, as unrealistic

analysis increments appeared in the near-surface temperature gradients. The Monin–Obukhov based observation

operator for 10m wind, on the other hand, is used for all 10m winds (SYNOP, DRIBU, TEMP, PILOT and SCAT).

Relative humidity is assumed constant in the lowest model layer to evaluate its 2m value (PPRH2M), see Subsec-

tion 5.8.4. The model equivalent of SSMI total column water vapour data is obtained by vertical integration of 

(in GPPWC and PPPWC). Observation operators also exist for precipitable water content (also PPPWC) and thick-

nesses (PPGEOP).

The variational analysis procedure requires the gradient of the objective function with respect to the control varia-

ble. This computation makes use of the adjoint of the individual tangent linear operators, applied in the reverse

order. The details regarding observation operators for conventional data can be found in Vasiljevic et al. (1992),

Courtier et al. (1998), and in the following sections.

5.6  THE OBSERVATION OPERATOR FOR CONVENTIONAL DATA

5.6.1  Geopotential height

The geopotential at a given pressure  is computed by integrating the hydrostatic equation analytically using the

ICAO temperature profile and vertically interpolating , the difference between the model level geopotential and

the ICAO geopotential (Simmons and Chen, 1991). The ICAO temperature profile is defined as

(5.16)

where  is 288 K,  is the geopotential above 1013.25 hPa and  is 0.0065  in the ICAO troposphere

and 0 in the ICAO stratosphere (the routine PPSTA). The ICAO tropopause is defined by the level where the ICAO

temperature has reached 216.5 K (SUSTA). Using this temperature profile and integrating the hydrostatic equation

provides  and the geopotential  as a function of pressure (PPSTA). We may then evaluate the geo-

potential  at any pressure  following

(5.17)
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where  is the model surface pressure and , the model orography.  is obtained by vertical interpolation

from the full model level values . The interpolation is linear in  up to the second model level (PPINTP)

and quadratic in  for levels above it (PPITPQ, see below). The full model level values are obtained integrat-

ing the discretized hydrostatic equation using the routine GPGEO of the forecast model, following Simmons and

Burridge (1981):

(5.18)

with

for  and .

5.6.1 (a)  Quadratic vertical interpolation near the top of the model.   Above the second full level of the mod-

el, the linear interpolation (PPINTP)is replaced by a quadratic interpolation in , performed in the routine PPIT-

PQ:

(5.19)

where ,  and  are constants determined so that the above equation fits the heights at the top levels

( ). The interpolation formula is:

(5.20)

where 1,2 and 3 refer to levels , respectively.

5.6.1 (b)  Below the model’s orography.   The extrapolation of the geopotential below the model’s orography

is carried out as follows: Find  (surface temperature) by assuming a constant lapse rate , from the model level

above the lowest model level (subscript ), see the routine CTSTAR,

(5.21)

(5.22)

Find the temperature at mean sea level,  (also in CTSTAR,

(5.23)

(5.24)
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where  is 290.5 K and  is 255 K. The geopotential under the model’s orography is (in PPGEOP) calculated

as:

(5.25)

where .

5.6.2  Wind

In PPUV a linear interpolation in  (PPINTP) is used to interpolate  and  to the observed pressure levels up

to the second full model level, above which a quadratic interpolation is used (PPITPQ, see Subsection 5.6.1 (a).1).

Below the lowest model level wind components are assumed to be constant and equal to the values of the lowest

model level.

5.6.3  Humidity

Specific humidity , relative humidity  and precipitable water content  are linearly interpolated in , in

PPQ, PPRH and PPPWC, respectively. Upper air relative humidity data are normally not used, but could be used,

if required. The use of surface relative humidity data is described in Subsection 5.8.4.

5.6.3 (a)  Saturation vapour pressure.   The saturation vapour pressure  is calculated using Tetens’s

formula:

(5.26)

using FOEEWM (mixed phases, water and ice) in the model and FOEEWMO (water only) for observations. The

use of water-phase only is in accordance with the WMO rules for radiosonde and synop reporting practices. Note

that these statement functions compute , with the parameters set according to Buck (1981) and

the AERKi formula of Alduchov and Eskridge (1996), i.e.  hPa,  and  K

over water, and for FOEEWM  and  K over ice, with K. Furthermore in

FOEEWM the saturation value over water is taken for temperatures above  and the value over ice is taken for

temperatures below . For intermediate temperatures the saturation vapour pressure is computed as a com-

bination of the values over water  and ice  according to the formula

(5.27)

with  K.

5.6.3 (b)  Relative humidity.   In GPRH relative humidity  is computed:

(5.28)
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and then in PPRH interpolated to the required observed pressure levels (using PPINTP). Below the lowest model

level and above the top of the model is  assumed to be constant. Saturation vapour pressure is calculated using

FOEEWMO if GPRH has been called form the observation operator routines, and using FOEEWM if called from

the model post processing.

5.6.3 (c)  Precipitable water.   In GPPWC precipitable water is calculated as a vertical summation from the top

of the model:

(5.29)

and then in PPPWC interpolated to the required observed pressure levels (using PPINTP).  is assumed to be

zero above the top of the model. Below the model’s orography  is extrapolated assuming a constant .

5.6.3 (d)  Specific humidity.   Specific humidity  is in PPQ interpolated to the required observed pressure lev-

els (using PPINTP). Below the lowest model level and above the top of the model is  assumed to be constant and

equal to  and , respectively.

5.6.4  Temperature

Temperature is interpolated linearly in pressure (PPINTP), in the routine PPT. Above the highest model level the

temperature is kept constant and equal to the value of the highest model level. Between the lowest model level and

the model’s surface the temperature is interpolated linearly, using:

(5.30)

Below the lowest model level the temperature is extrapolated by

(5.31)

with , for , but  is modified for high orography to ,

where

(5.32)

for , and

(5.33)

for . If  then  is reset to zero. The two temperatures  and  are computed

using Eqs. (5.21) to (5.24).
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5.7  SATELLITE OBSERVATION OPERATORS

The processing within 3D/4D–Var of satellite data follows the same general layout as that of conventional data.

The same vertical interpolation routines are used whenever possible. The main difference in the organization is that

the radiative transfer code, RTTOV-7 (Saunders and Matricardi 1998; Matricardi et al., 2001), currently requires

the model profiles to be interpolated to NLSAT=43 fixed pressure levels from 1013.25 hPa to 0.1 hPa on which the

radiative transfer coefficients are determined. Radiances are assimilated directly (Andersson et al. 1994) rather than

retrieved products, wherever possible. The current operational configuration uses ATOVS level-1C radiances (Mc-

Nally et al. 1999), geostationary water vapour clear-sky radiances (Munro et al. 2004) SCAT ambiguous surface

winds (Stoffelen and Anderson, 1997; Isaksen and Janssen 2004) from ERS-2 and QuikSCAT, SSM/I total radi-

ances (Bauer et al. 2002) and SATOB cloud motion winds of various types (Tomassini et al. 1997; Bormann et al.

2003). Operators also exist for SATEM thicknesses and PWC (Kelly and Pailleux, 1988; Kelly et al. 1991), SSM/

I total-column water vapour (TCWV) and wind speed, which however are not curently in use.

5.7.1  Set-up of the radiative-transfer code

There are two set–up routines (GETSATID and RTSETUP) for the radiative transfer computations and both are

called from SURAD. The routine RTSETUP calls RTTVI (in the satrad library) which reads in the transmittance

coefficients to memory for the satellites present. There is a file containing these coefficients for TOVS, VTPR and

other satellites and all satellites through to NOAA-17 are supported. Geostationary imager radiances (METEOSAT

and GOES) follow the same path as Level-1C radiances in IFS.

5.7.1 (a)  Satellite identifiers and the satellite group table.   Satellite identifiers are dealt with in just one place

in the IFS and that is in the routine GETSATID. The ODB contains the identifiers as given in the original BUFR

messages. Lists of identifiers for which data exist in any given ODB are prepared in the routine SURAD. The rou-

tine GETSATID matches those BUFR satellite identifiers with the more traditional satellite numbers, used by the

RT–code (e.g. 10 for NOAA–10 and 5 for METEOSAT-5). The id–conversion tables can be modified through a

series of namelists: NAMTOVS; NAMDMSP; NAMMETEOSAT; NAMGOES; and NAMGMS. The satellite data

are furthermore associated with a sensor number (yomtvrad) to be used for example as an array index in the 

table (JOT), and with a sequence number for addressing the transmittance coefficients (rtcoef_pos) within the RT-

TOVS code, for example. Note that this sequence number is universally determined across all processors, so if

NOAA-12 (BUFR id=202) is satellite-1 on one processor then it will be satellite-1 on all other processors, too. The

various satellite-related indices are gathered in the FORTRAN90 data structure called the ’satellite group table’,

satgrp_t (yomtvrad)), containing elements: bufrid, codetype, sensor, satgroup, rtid, rtseries, rtsubtype, rtcoef_pos,

number of channels, and a channel number list.

5.7.1 (b)  Satellite sensors.   The various types of radiance data are classified by sensor. Each satellite sensor is

assigned a number, in yomtvrad: currently HIRS = 0, MSU = 1, SSU = 2, AMSUA = 3, AMSUB = 4, SSMI = 6,

VTPR1 = 7, VTPR2 = 8, METEOSAT = 20, and GOES = 21 (GOES = 22 from CY25R3 onwards). The sensor

number is used as index to various tables containing observation errors, BgQC thresholds, VarQC parameters, the

Jo-table JOT, et cetera. See the routine DEFRUN.

5.7.1 (c)  Fixed pressure levels and RT validation bounds.   The list of the NLSAT = 43 fixed pressure levels is

passed from the RTTOV library satrad (where they have been read from the transmittance coefficients file) to RT-

SETUP and SURAD and copied to yomtvrad. RTSETUP also similarly obtains (from RTTOV) lists of tempera-

ture, humidities and ozone limits indicating the vaild range of the RT transmittance regression. The RT code is not

reliable in conditions beyond these limits. Checks are applied in RADTR.

Jo
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5.7.1 (d)  Radiance observation errors, bias and emissivity.   Observation errors and bias corrections for 1C ra-

diances are written to the odb in a call to RAD1COBE (from HRETR). The bias correction is stored in the NCM-

TORB word and later applied at each iteration of 3D/4D–Var, in the routine HDEPART, sd explained above.

Microwave (EMIS_MW) and infrared (EMIS_IR) emissivity are computed in RAD1CEMIS and stored in the

ODB for later use by RTTOV. The routine EMIS_IR) uses the regression of ISEM-6 (Sherlock, 1999) to compute

emissivities for the infrared channels of VTPR, HIRS, Meteosat and GOES.

5.7.2  Radiances

The routine HOP interpolates the model profiles of temperature, humidity and ozone ( ,  and ) to the NL-

SAT(=43) RT levels (  and ) and calls the interface RADTR to the RT code RTTOV. The standard routines

PPT and PPQ are used to carry out the vertical interpolation, and they are called through the PPOBSA interface,

as usual. Various radiance preparations have been gathered in the routine HRADP. In HRADP. the model’s pres-

sure at the surface height of the observation location (given in the report) is calculated, using PPPMER.

For the purpose of radiance calculations  (the lowest model level temperature) and 

(specific humidity at the lowermost of the RT pressure levels). These quantities represent a very shallow layer of

air near the surface and contribute little to the calculated radiances—it was not considered necessary to use PPT2M

and PPRH2M (Section 5.8) in this context. In order to make the radiance cost function continuous in  it was

necessary to ensure that  and  approach  and  as the pressure on any of the RT levels approches .

This is done in a section of HRADP. More details on the radiative transfer code RTTOV can be found in Eyre

(1991), updated by Saunders and Matricardi (1998).

The ‘sink-variable’ at satellite FOVs: In the case of 1C, or ‘raw’ radiance data, as used since May 1999 (McNally

et al. 1999) surface skin temperature is retrieved by 3D/4D-Var at each field of view, if the switch LTOVSCV is

on (default is on), in namelist NAMVAR. This is done for all infrared and microwave satellite sensors and instru-

ment. The handling of the SST retrieval at the radiance FOVs is performed in the routine HRADP/HRADPTL/

HRADPAD, called from HOP/HOPTL/HOPAD. The background SST is provided by the model trajectory integra-

tion, and a background error of 1K / 5K is assigned over sea / land, respectively (stored in TOVSCVER, module

YOMTVRAD). The gradient with respect to SST obtained from RTTOV is temporarily store in the TOVSCVX

array and later transferred to its location in the distributed control vector (Chapter 2). The next iteration of the min-

imisation provides updated SST increments (also stored in TOVSCVX) that are used by RTTOVTL in subsequent

iterations. The outer-loop iterations result in a new linearisation state SST, stored in TOVSCVX5. All the SST-

related information at FOV locations that needs to be passed between job-steps, reside in the ODB, in the satellite

predictors table. This approach has more recently been adopted for CO2 retrieval at AIRS FOVs, within the COCO

projects (Engelen et al. 2004).

In HOP the observation array is searched for radiance data. The compressed ODB (after screening) contains only

those data to be used by the analysis. A list of existing channel numbers for each report is constructed. Model ra-

diances for exactly those channels are then requested from the RT–code, via the interface RADTR. The routine

RADTR checks that the input model profile is within the valid range of the transmittance regression. It packets the

profiles into chunks of work of the appropriate maximum size for the RT–code (currently 65). The RT packet size

has been communicated to IFS in the call to RTSETUP. The output is radiances for the channels requested.

The tangent linear HOPTL and the adjoint HOPAD follow the same pattern as HOP. In both the TL and the adjoint

 and  have to be recomputed before the actual tangent linear and adjoint computations can start. The pointers

to the radiance data in observation array are obtained just as it was done in the direct code. 
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5.7.3  Thicknesses

The pressures of layer bounds (top T, and bottom B) are found (in HOP) by scanning the observation array for

thickness data. The geopotential for the top and the bottom of the layer are computed, using PPGEOP (Section 5.6),

and the thickness is given by the difference .

5.7.4  Precipitable water from SATEM and SSM/I

As for thicknesses, the pressures of layer bounds are found by scanning the observation array for TOVS PWC data.

For SSMI TPW, the top pressure is set to the top of the model and the lower pressure bound is . The PWC for

the top and the bottom of the layer are computed, using PPPWC (Section 5.6.3), and the layer PWC is given by the

difference .

5.7.5  Ozone-layer retrievals from satellites

Ozone is used in the form of integrated layers bounded by a top and bottom pressure which are given as a part of

the observation. The unit for ozone is . For ozone the same observation operator is used as for precipitable

water (PPPWC (Section 5.5)). The same concept is applied to all data, whethertotal column data (like TOMS and

GOME) or data with higher vertical resolution (like SBUV).

5.7.6  Scatterometer winds

In HOP, the observation array is scanned for SCAT data. Normally two ambiguous pairs of –component and -

component observations are found at each SCAT location—with directions approximately 180 degrees apart. Quik-

SCAT can have 2, 3 or 4 ambiguous winds. Only the most likely wind (highest a-priori probability) and its opposing

(135 to 180 apart) ambiguity are used. If there are no ambiguities in the allowed range then all ambiguities are re-

jected. In 3D/4D-Var both winds are used and the ambiguity removal takes place implicitly through the special

SCAT cost-function, Eq. (2.14), in HJO (Stoffelen and Anderson, 1997). If however LQSCATT=.true. (namjo), the

normal quadratic  will b e used. In this case only the SCAT wind nearest the high resolution background will be

used (which is determined in a section of HOP).

As PPUV10M (Section 5.8) is used also for SCAT data (since cy18r6), the observation operator is exactly the same

as for SYNOP. SHIP and DRIBU winds. The  (surface roughness) comes from the coupled wave model. The

simpler logarithmic wind law can be used optionally under the switch LSCASUR=.F. in NAMOBS (true by de-

fault).

In the adjoint (SURFACAD) there is a separate section of HOP for the calculation of the .

5.8  SURFACE OBSERVATION OPERATORS

All surface data are processed in the routine SURFACEO Preparations for the vertical interpolation is done as for

all other data in PREINT (see Subsection 5.6.1 (b)), and for surface data there are a few additional tasks which are

performed in a separate routine, PREINTS. In PREINTS. surface roughness over sea, dry static energy (SUR-

BOUND), Richardson number, drag coefficients and stability functions (EXCHCO), are computed, as detailed in

the following.

5.8.1  Mathematical formulation

An analytical technique (Geleyn, 1988) is used to interpolate values between the lowest model level and the sur-

face. When Monin–Obukhov theory is applied:

φT φB–

ps

PWCB PWCT–

kg m 2–

u v
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(5.34)

(5.35)

(5.36)

where  are wind and energy variables,  are friction values and  is von Kármán’s constant.

The temperature is linked to the dry static energy  by:

(5.37)

(5.38)

Defining the neutral surface exchange coefficient at the height  as:

(5.39)

The drag and heat coefficients as:

(5.40)

(5.41)

we can set the following quantities:

, , (5.42)

and considering the stability function in stable conditions as:

(5.43)

we obtain integrating Eqs. (5.34) and (5.35) from 0 to  (the lowest model level):
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(5.44)

(5.45)

In unstable conditions the stability function can be expressed as:

(5.46)

and the vertical profiles for wind and dry static energy are:

(5.47)

(5.48)

The temperature can then be obtained from  as:

(5.49)

When  is set to the observation height, Eqs. (5.44) and (5.45) and Eqs. (5.47)–(5.49) give the postprocessed wind

and temperature. To solve the problem, we have to compute the dry static energy at the surface

 (Subsection 5.8.2), with ,  and  values depending on the drag and heat exchange

coefficients Eq.  as detailed in Subsection 5.8.3.

5.8.2  Surface values of dry static energy

To determine the dry static energy at the surface we use Eqs. (5.37) and (5.38) where the humidity at the surface

is defined by:

(5.50)

 is given by (Blondin, 1991):

(5.51)

with

(5.52)

where  is the soil moisture content and  is the soil moisture at field capacitiy (2/7 in volumetric units).

Eq. (5.51) assigns a value of 1 to the surface relative humidity over the snow covered and wet fraction of the grid
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box. The snow-cover fraction  depends on the snow amount : 

where  m is a critical value. The wet skin fraction  is derived from the skin-reservoir water

content :

, 

where

 

with  m being the maximum amount of water that can be held on one layer of leaves, or as

a film on bare soil,  is the leaf-area index, and  is the vegetation fraction. 

5.8.3  Transfer coefficients

Comparing the Eqs. (5.34) – (5.35) integrated from  to  with Eqs. (5.39) to (5.41),  and  can be

analytically defined:

(5.53)

(5.54)

Because of the complicated form of the stability functions, the former integrals have been approximated by analyt-

ical expressions, formally given by:

(5.55)

where  is given by Eq. (5.39). The bulk Richardson number  is defined as:

(5.56)
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where  is the virtual potential temperature. The functions  and  correspond to the model instability func-

tions and have the correct behaviour near neutrality and in the cases of high stability (Louis, 1979; Louis et al. 1982)

(a) unstable case 

(5.57)

(5.58)

C=5

(b) Stable case 

(5.59)

(5.60)

d = 5

5.8.4  Two-metre relative humidity

In GPRH relative humidity is computed according to Eq. (5.28). The relative humidity depends on specific humid-

ity, temperature and pressure (  and , respectively) at the lowest model level. It is constant in the surface

model layer, see PPRH2M.
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Part II: DATA ASSIMILATION

CHAPTER 6   Background, analysis and forecast errors 

Table of contents

6.1 Nomenclature

6.2 Input and ‘massaging’ of background errors

6.3 Diagnosis of background error variances

6.4 Calculation of eigenvalues and eigenvectors of the Hessian

6.5 The Preconditioner

6.6 Calculation of analysis-error variances

6.7 Calculation of forecast error variances

6.1  NOMENCLATURE

The calculation of standard deviations of background errors is unfortunately an area where the use of inaccurate

nomenclature is widespread. For example, standard deviations of background error are almost universally referred

to as ‘background errors’. Likewise, standard deviations of analysis and forecast error are referred to as ‘analysis

errors’ and ‘forecast errors’. Although inaccurate, this nomenclature has been adopted in the following for the sake

of brevity.

A second source of confusion is that terms ‘background error’ and ‘forecast error’ are often used interchangeably.

This confusion has even crept into the code, where the buffer which contains the standard deviations of background

error is called FCEBUF. Such confusion is clearly unwise when discussing the calculation of forecast errors. The

following sections will describe the processing of error variances during a single analysis cycle. The term ‘back-

ground error’ will refer exclusively to the standard deviations of background error which are used in the back-

ground cost function. The background errors are an input to the analysis. The term ‘forecast error’ will refer to an

estimate of the standard deviation of error in a short-term forecast made from the current analysis. The forecast

errors are calculated by inflating an estimate of the standard deviation of analysis error, and are an output from the

analysis system.

6.2  INPUT AND ‘MASSAGING’ OF BACKGROUND ERRORS

Background errors for use in  are initialised by a call to SUINFCE. This is part of the  set-up descibed in

Subsection 4.3.3. First, a call to INQGRIB is made. This returns a description of the data in the background error

file (filename errgrib). COMMFCE1 communicates the description of the data to other processors. After checking

some parameters and allocating arrays to hold the background errors, a call to READGRIB reads the errors into a

local array. The errors are communicated to the other processors by a call to COMMFCE2. Optionally (under the

control of LFACHR) the errors may be increased in the tropics at this stage. (This is not done by default, and is not

recommended.) The background errors may be on a regular latitude–longitude, or reduced Gaussian grid. They are

interpolated bilinearly in latitude and longitude onto the reduced Gaussian analysis grid by a call to SUINFCE. 

Jb Jb
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At this stage, all processors have complete fields of background error. Each processor now allocates a buffer (con-

fusingly called FCEBUF) in yomfceb to hold background errors for those gridpoints which are local to the proces-

sor.

A large loop over variables follows. For each variable, the GRIB parameter code is examined. Depending on the

setting of LSTABAL, LRDQERR, and on the presence or absence of vorticity errors in the background error file,

the variable may be ignored (by cycling VARIABLE_LOOP) or an offset, IOFF, into the background error buffer

is calculated.

The background errors are interpolated onto the model levels by a call to SUVIFCE. A number of variable-depend-

ent things now happen. First, geopotential height errors are converted to geopotential by multiplying by . Second,

wind component errors are converted to vorticity errors by an ad hoc scaling. (Note that if vorticity errors are avail-

able in the file, then these will be used by preference. Wind component errors will be ignored.) Finally, if errors

for the unbalanced components of temperature, divergence, ozone or surface pressure are not present in the file,

the corresponding elements of the background error buffer are initialized to sensible values.

Background errors for specific humidity are read from the background-error file if the namelist variable

LRDQERR is set. Currently, it is usual to calculate specific humidity errors as a function of background humidity

and various other parameters. This is done by a call to STEPO(‘0IB00Z000’), which in turn calls SUSHFCE. The

calculation of background errors for specific humidity is described in Subsection 4.3.4.

Next, one of two routines is called. SUMDFCE calculates a vertically average ‘pattern’ of background error. This

is required if the background errors are to be represented as a product of a vertical profile of global mean error and

a horizontal pattern, and was the default with the ‘old’ . The pattern is stored in FGMWNE. Note in particular

that SUMDFCE is called if horizontally-constant background errors are requested by setting LCFCE. In this case,

all elements of FGMWNE are set to one.

Alternatively, SUPRFFCE is called to calculate global mean profiles of the input background errors. This is the

default. The profiles are stored in FCEIMN.

The final step in processing the background errors is to call STEPO(‘00000Y000’). This, in turn, calls SUSEPFCE

to modify the background errors. The modification takes one of two forms. If separable background errors have

been requested, the contents of the background error buffer are replaced by the product of the vertical profile stored

in FCEMN and the horizontal pattern stored in FGMWNE. Otherwise, the background errors for each variable at

each level are multiplied by the ratio of the corresponding elements of FCEMN and FCEIMN. The result of this

operation is to adjust the global mean profiles of background error to match those stored in FCEMN.

6.3  DIAGNOSIS OF BACKGROUND ERROR VARIANCES

The analysis errors are calculated by subtracting a correction from the variances of background error. The first

stage in the calculation is therefore to determine the background error variances. This is done by subroutine

BGVECS, which is called from CVA1. One of two methods may be employed, depending on whether NBGVECS

is equal to, or greater than, zero. In either case, the estimated variances of background error are stored in the anal-

ysis error buffer, ANEBUF (in yomaneb).

If NBGVECS is zero, as it is by default, then background errors for variables which are explicitly present in the

background error buffer, FCEBUF, are copied into ANEBUF and squared. Errors for those variables whose back-

ground errors are defined implicitly through the change of variable are estimated using simple scaling of appropri-

ate explicit errors. This scaling is performed by a call to ESTSIGA.

If NBGVECS is non-zero, then the variances of background error are estimated using randomization. This method

g
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assumes that the change of variable transforms the background error covariance matrix into the identity matrix. A

sample of NBGVECS vectors drawn from a multi-dimensional Gaussian distribution with zero mean and identity

covariance matrix is generated by calls to the Gaussian random number generator GASDEV These vectors are

transformed to the space of physical variables by CHAVARIN. The transformed variables form a sample drawn

from the distribution of background errors. A call to STEPO(‘0AA00A000’) transforms each vector to gridpoint

space and accumulates the sums of squares in ANEBUF. Finally, the sums of squares are divided by the number

of vectors by a call to SCALEAE to provide a noisy, but unbiassed estimate of the variances of background error

actually used in the analysis. The noise may be filtered by a cal to FLTBGERR, which transforms the variances to

spectral coefficients, multiplies each coefficient by , and then transforms to

grid space. The default is to filter with a very large value of NBGTRUNC. Effectively, the background errors are

simply spectrally truncated. It is highly recommended that the filtering is performed, since it prevents a grid-scale

numerical instability which occurs when the error growth model introduces spatial features which cannot be re-

solved by the spectral control variable.

The code allows two further configurations of the background error estimation. Neither is operational at present.

The two configurations are controlled by switches LBGOBS and LBGM (namvar), respectively. If LBGOBS=.T.

then the full set of tangent-linear observation operators will be applied to the NBGVECS random vectors, in model

grid point space. This is done in the routine BGOBS called from VEC2GP, under SCAN2MTL. The TL routines

are required as the observation operators have been linearized around the background state. The result is back-
ground errors in observation space. They are stored and accumulated in ANEBUF and written out as grib-fields,

for geopotential, temperature, wind, humidity, total ozone, total column water vapour, TOVS and ATOVS radiance

channels, 10 metre wind and 2 metre temperature. If in addition LBGM=.T. then the randomized estimate of back-

ground error will be propagated in time, using the adiabatic tangent linear model, i.e. a call to CNT3TL from

BGVECS. The eigenvectors of the analysis Hessian (next section) are also propagated similarly in time, by a call

to CNT3TL from XFORMEV, to obtain flow dependent background errors. The number of model integrations

required by LBGM is NBGVECS+invtot, which is typically 50+100=150. If LBGM=.T. then the simplified error

growth model (Section 6.7) is not used. In that case the routine ESTSIG is used only to limit the error growth pro-

duced by the model to within 10 and 90 % of the climate variance for vorticity.

The background errors diagnosed by BGVECS may be written out for diagnostic purposes by setting LWRISIGB.

The errors are written by a call to WRITESD (called from CVA1)..

6.4  CALCULATION OF EIGENVALUES AND EIGENVECTORS OF THE HESSIAN

The second stage in the calculation of analysis errors is to determine eigenvalues and eigenvectors of the Hessian

of the cost function. This is done using a combined Lanczos and conjugate-gradient algorithm, CONGRAD, called

from CVA1 under the control of LAVCGL. Note that CONGRAD requires that the cost function is strictly quad-

ratic. The tangent linear model and observation operators must be invoked by setting L131TL and LOBSTL.

(L131TL should be set even in 3D-Var.) Variational quality control must be disabled by unsetting LVARQCG and

LQSCATT must be set to request a quadratic cost function for scatterometer observations.

CONGRAD starts by transforming the initial control variable and gradient to a space with euclidian inner product.

Typically, this transformation is simply a multiplication by SCALPSQRT, but may also involve preconditioning

via calls to PRECOND. The transformed initial gradient is normalized to give the first Lanczos vector. Depending

on the setting of LIOWKCGL, the Lanczos vectors are stored either on the MIO file associated with unit NWK-

CGL, or in the allocated array VCGLWK.

cos2 min n NBGTRUNC⁄( ) 1,( )π 2⁄( )
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Each iteration of the conjugate-gradient/Lanczos algorithm starts by calculating the product of the Hessian and the

latest search direction. This is calculated as . This finite difference formu-

la is exact, since the cost function is quadratic.

The optimal step is calculated as the point at which the gradient is orthogonal to the search direction. The control

variable and gradient at the optimal point are also calculated. Once the gradient at the optimal point is known, it is

orthogonalized with respect to previous gradients, and the search direction and gradient for the next iteration are

calculated. The tridiagonal matrix of the Lanczos algorithm is initialized and its eigenvalues and eigenvectors are

determined by a call to the NAG routine F08JEF

The leading eigenvalue of the tridiagonal system is compared against the leading converged eigenvalue of the Hes-

sian matrix. This provides a sensitive test that the algorithm is behaving correctly. Any increase in the leading ei-

genvalue provides an early indication of failure (for example, due to a bad gradient) and the algorithm is

immediately terminated. The calculation is not aborted, since the test detects the failure of the algorithm before the

converged eigenvalues and eigenvectors become corrupted.

The new Lanczos vector is calculated by normalizing the gradient and the subroutine loops back to perform the

next iteration.

After the last iteration, the converged eigenvectors of the Hessian are calculated by calling WREVECS. Note that

the criterion used to decide which eigenvalues have converged is relaxed at this stage to , where

 is given by EVBCGL. The default vaule for EVBCGL is .The eigenvectors are passed to XFORMEV, which

calculates the analysis errors. This part of the calculation is described in Section 6.6.

Finally, CONGRAD transforms the control vector and gradient from the euclidian space used internally to the usual

space of the control variable. 

6.5  THE PRECONDITIONER

CONGRAD allows the use of a preconditioner. The preconditioner is a matrix which approximates the Hessian

matrix of the cost function. The preconditioner used in CONGRAD is a matrix of the form

(6.1)

where the vectors  are orthogonal. The pairs  are calculated in PREPPCM, and are intended to approx-

imate some of the eigenpairs (i.e. eigenvalues and associated eigenvectors) of the Hessian matrix of the cost func-

tion. They are calculated as follows.

A set of  vectors, , is read in using READVEC. These vectors are assumed to satisfy

(6.2)

where  is the background-error covariance matrix, and  is the analysis-error covariance matrix. Vectors which

meet this criterion can be written out from an earlier forecast error calculation by setting LWRIEVEC. The vectors

are transformed to the space of the control vector by calls to CHAVAR to give an approximation to the inverse of
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the Hessian matrix

(6.3)

(Here,  denotes the change-of-variable operator implemented by CHAVAR.)

Let us denote by  the matrix whose columns are the vectors . A sequence of Householder transformations is

now performed to transform  to upper triangular. Let us represent this sequence of Householder transforma-

tions by the matrix . Then  is upper triangular, which means that  is zero except for an

 block in the top left hand corner.

It is clear that  has only  non-zero eigenvalues. Moreover, the non-zero eigenvalues are the ei-

genvalues of the  block matrix, and the eigenvectors of  are the eigenvectors of the block

matrix, appended by zeroes. These eigenvalues and eigenvectors are calculated by a call to the NAG routine

F02FAF.

Now, since  is an orthogonal matrix, we have . So, we may write Eq. (6.3) as

(6.4)

Let us denote the eigenpairs of  by . Then we may write Eq. (6.4) as

(6.5)

The orthogonality of  and the orthonormality of the eigenvectors , means that the vectors  are orthonor-

mal. They are, in fact, the required vectors,  of the preconditioner matrix.

Inverting Eq. (6.5) gives

(6.6)

Defining  gives the required approximation to the Hessian matrix.

The preconditioner vectors are sorted in decreasing order of , and all vectors for which  are rejected. These

vectors cannot be good approximations to eigenvectors of the Hessian matrix, since the eigenvalues of the Hessian

matrix are all greater than or equal to one. A final refinement to the calculation is to reduce large values of  to a

maximum of 10. This was found to be necessary in practice to avoid ill-conditioning the minimization.

The numbers  are stored in RCGLPC. The vectors,  are stored in VCGLPC.

Application of the preconditioner is straightforward, and is performed by subroutine PRECOND. This routine can

also apply the inverse, the symmetric square root, or the inverse of the symmetric square root of the preconditioner

matrix. Application of the latter matrices relies on the observation that if
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(6.7)

with orthonormal , then the expressions for ,  and  result from replacing  in Eq. (6.7) by

,  and  respectively.

6.6  CALCULATION OF ANALYSIS-ERROR VARIANCES

The eigenvectors and eigenvalues of the Hessian matrix calculated by CONGRAD are passed to XFORMEV,

which uses them to estimate the analysis error variances. If preconditioning has been employed, then the eigenvec-

tors and eigenvalues provide an approximation to the preconditioned Hessian, , of the form

(6.8)

The approximation is equivalent to setting to one all but the leading  eigenvalues of the preconditioned Hessian.

The first step is to undo the preconditioning. Multiplying to the left and right by , gives

(6.9)

Substituting for the preconditioner matrix from Eq. (6.7), gives the following

(6.10)

where

(6.11)

Operationally, preconditioning is not used. However XFORMEV makes no particular use of this fact. It simply sets

 to zero in Eqs. (6.10) and (6.11).

The first step in XFORMEV is to calculate the vectors . They are stored in VCGLWK.

The next step is to invert the approximate Hessian matrix defined by Eq. (6.10). Let  be the matrix whose columns

are the vectors . Then, applying the Shermann–Morrison–Woodbury formula, the inverse of the approximate

Hessian matrix is
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(6.12)

The matrix  is formed and its Cholesky decomposition is calculated using the NAG routine F07FDF.

This gives a lower triangular matrix  such that

(6.13)

The matrix  is calculated by back-substitution.

The final stage in the calculation of the analysis errors is to transform the columns of the matrix  to the

space of model variables by appplying the inverse change of variable, CHAVARIN. This gives the required ap-

proximation to the analysis error covariance matrix

(6.14)

where , and where  represents the inverse of the change of variable. The columns of  may be

written out (e.g. for diagnostic purposes, or to form the preconditioner for a subsequent minimization) by setting

LWRIEVEC. The columns of  are then transformed to gridpoint space, and their sums of squares (i.e. the diag-

onal elements of  in gridpoint space) are subtracted from the variances of background error which were stored

in ANEBUF before the minimization by BGVECS.

The analysis errors are calculated as the difference between the background errors and a correction derived from

the eigenvectors of the Hessian. If the background errors are underestimated, there is a danger that the correction

will be larger than the background error, giving negative variances of analysis error. This is unlikely to happen if

the background errors are estimated using randomization, or for variables whose background errors are explicitly

specified in the background cost function, but is possible for variables such as temperature whose background er-

rors are not explicitly specified. To guard against this eventuality, if NBGVECS is zero, then the variances of anal-

ysis error for variables whose background errors are not explicit are estimated by applying a scaling to the explicit

variables by a call to ESTSIGA from CVA1. The variances are then converted to standard deviations and written

out by a call to WRITESD.

6.7  CALCULATION OF FORECAST ERROR VARIANCES

The analysis errors are inflated according to the error growth model of Savijärvi (1995) to provide estimates of

short term forecast error. This is done by a call to ESTSIG. There is also an option to advect the background errors

for vorticity as if they were a passive tracer. The advection is performed by ADVSIGA

The error growth model is

(6.15)

Here,  represents growth due to model errors,  represents the exponential growth rate of small errors, and 

represents the standard deviation of saturated forecast errors.

The saturation standard deviations are calculated as  times the standard deviation of each field. The standard

deviations have been calculated for each month from the re-analysis dataset. ESTSIG reads these climatological

error fields from file ‘stdev_of_climate’ by calling READGRIB, and interpolates them in the horizontal and verti-
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cal using SUHIFCE and SUVIFCE. The climatological errors may also be artificially increased in the tropics under

the control of LFACHRO. This is the default, and is recommended in preference to using LFACHR, since it means

that the forecast errors that are archived, and are used to screen observations, are closer to those used to formulate

the background cost function. If climate standard deviations are not available for any field, they are estimated as

10 times the global mean background error for the field.

The growth due to model error is set to 0.1 times the global mean background error per day. The exponential growth

rate, , is set to 0.4 per day.

The error growth model is integrated for a period of NFGFCLEN hours. The integration is done analytically using

the expression given by Savijärvi (1995). Two precautions are taken in integrating the error growth model. First,

negative analysis error variances are set to zero. Second, the growth rate due to model error is limited to a sensible

value with respect to the saturation errors. This was found to be necessary to prevent numerical problems when

calculating specific humidity errors for the upper levels of the model.

ESTSIG overwrites the contents of ANEBUF with the estimated variances of forecast error. The variances are con-

verted to standard deviations and written out by WRITESD.

b
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Part II: DATA ASSIMILATION

CHAPTER 7   Gravity-wave control

Table of contents

7.1 Introduction

7.2 Normal-mode initialization

7.3 Computation of normal modes

7.3.1 Vertical modes

7.3.2 Horizontal modes and help arrays

7.4 Implementation of NMI

7.5 Computation of BASED ON NMI

7.6 Digital filter initialization

7.7 Implementation of DFI as a weak constraint in 4D-Var

7.1  INTRODUCTION

In 3D-Var, gravity-wave control is achieved via the techniques of normal-mode initialization (NMI), in 4D-Var a

weak constraint digital filter is used

Section 7.2 provides a brief overview of NMI techniques, together with references to scientific papers in which

further details can be found. Section 7.3 describes the computation of normal modes and related arrays. Section 7.4

documents the implementation of nonlinear NMI in 3D- and 4D-Var, while Section 7.5 describes the computation

of  based on NMI. Section 7.6 gives an overview of digital filter initialization techniques while Section 7.7 de-

scribes its implementation as it is used in the 4D-Var assimilation system.

7.2  NORMAL-MODE INITIALIZATION

If the model equations are linearized about a state of rest, the solutions can (with a certain amount of arbitrariness)

be classified into ‘slow’ (Rossby) and ‘fast’ (gravity) modes. This classification defines two mutually orthogonal

subspaces of the finite-dimensional vector space containing the model state . Thus, the model state can be written

as

(7.1)

where  is the ‘slow’ component and  the ‘fast’ component. Linear NMI consists of removing the fast com-

ponent altogether ( ). Since the model is nonlinear, a much better balance is obtained by setting the tenden-

cy of the fast component to zero ( ); it is this balance condition which nonlinear NMI seeks to impose.

Nonlinear NMI was first demonstrated by Machenhauer (1977), in the context of a spectral shallow-water model.

For a multi-level model, the first stage in the modal decomposition is a vertical transform; each vertical mode then
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has its own set of horizontal slow and fast modes (for the shallower vertical modes, all the corresponding horizontal

modes can be considered as ‘slow’). In the case of a multi-level spectral model using the ECMWF hybrid vertical

coordinate the details may be found in the report by Wergen (1987), which also describes techniques for taking into

account forcing by physical (non-adiabatic) processes and the diurnal and semi-diurnal tidal signals. Although

these options are still coded in the IFS, they are no longer used operationally at ECMWF and will not be described

in this documentation.

Implicit normal mode initialization (Temperton 1988) is based on the observation that, except at the largest hori-

zontal scales, the results of NMI can be reproduced almost exactly without computing the horizontal normal modes

at all. The calculation reduces to solving sets of elliptic equations. In the case of a spectral model (Temperton

1989), these sets of equations are tridiagonal in spectral space. The IFS code includes the option of ‘partially im-

plicit NMI’, in which the initialization increments are computed using the full ‘explicit’ NMI procedure for large

horizontal scales while the remaining increments at smaller horizontal scales are computed using the simpler im-

plicit procedure.

7.3  COMPUTATION OF NORMAL MODES

7.3.1  Vertical modes

The vertical normal modes depend on the number of levels in the model and on their vertical distribution. They also

depend on the choice of reference temperature SITR (assumed isothermal) and reference surface pressure (SIPR).

The vertical modes used by the initialization routines are also used in the semi-implicit scheme for the forward in-

tegration of the model. The computation of  and  also uses the vertical normal modes, but for these purposes

different values of SITR and SIPR may be selected. Thus the vertical modes are computed both in SUDYN and

SUSINMI, the latter being used especially in 4D-Var where it is necessary to alternate between applications using

different choices of SITR and SIPR. The vertical modes are computed by first calling SUBMAT to set up a vertical

structure matrix and then calling an eigenvalue/eigenvector routine EIGSOL (at the end of SUDYN, it calls routine

RG in the auxiliary library). After reordering and normalization, the eigenvectors (vertical modes) are stored in the

matrix SIMO, while the corresponding eigenvalues (equivalent depths) are stored in the array SIVP. The inverse of

SIMO is computed and stored in SIMI.

7.3.2  Horizontal modes and help arrays

The horizontal normal modes depend on the equivalent depths (see above) and the chosen spectral truncation NX-

MAX. For ‘explicit’ NMI, NXMAX is equal to the model’s spectral truncation NSMAX. Normally, ‘partially im-

plicit NMI’ is chosen by setting the switch LRPIMP to .TRUE. In this case the explicit NMI increments are used

only up to spectral truncation NLEX (21 by default) but in order to blend the explicit and implicit increments

smoothly, explicit increments are computed up to a slightly higher resolution. By default,

.

For most applications of the NMI procedure in the operational suite, it is considered that the larger horizontal scales

are best left uninitialized (they include, for example, atmospheric tidal signals and large-scale tropical circulations

driven by diabatic processes). To cater for this option there is another logical switch, LASSI (‘adiabatic small-scale

initialization’), which sets to zero all the initialization increments for total wavenumbers up to NFILTM (= 19 by

default). Since only the small-scale increments are used, the NMI can be completely implicit: NLEX is set to 0 and

there is no need to calculate the ‘explicit’ horizontal normal modes.

All the horizontal-normal-mode computations are carried out only for the first NVMOD vertical modes. By default,

Jb Jc

NXMAX NLEX 5+=
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NVMOD = 5.

The horizontal modes are computed by calling SUMODE3. In turn, SUMODE3E computes the explicit modes and

their frequencies while SUMODE3I computes the ‘help’ arrays required to invert the tridiagonal systems encoun-

tered in implicit NMI.

7.4  IMPLEMENTATION OF NMI

Nonlinear NMI is invoked by calling NNMI3. Model tendencies are computed by calling STEPO to perform one

(forward) timestep. The tendencies are then supplied to MO3DPRJ which computes the required increments, using

the ‘explicit’ (Machenhauer) or the ‘implicit’ scheme (or both, after which the results are merged). The increments

are added to the original spectral fields and the process is iterated NITNMI (by default 2) times.

7.5  COMPUTATION OF  BASED ON NMI

In the notation of Eq. (7.1), the penalty term  is defined by 

(7.2)

where  is an empirically chosen weighting factor,  is the current state of the control variable and  is the back-

ground. The norm  is based on a weighted sum of squares of spectral coefficients. Only the first NVMOD ver-

tical modes are included in the evaluation of (7.2).

 is computed by calling the routine COSJC. Control passes through JCCOMP to NMIJCTL, where  is eval-

uated by calling STEPO twice, then projecting the differences in the tendencies on to the gravity modes via

MO3DPRJ, and finally computing  in NMICOST.

7.6  DIGITAL FILTER INITIALIZATION

Digital filter initialization consists in removing high frequency oscillations from the temporal signal represented

by the meteorological fields. A general description of digital filter initialization can be found in Lynch (1993). It

can be implemented as a strong constraint by filtering the model fields at the beginning of each forecast or as a

weak constraint as described in Gustaffson (1992) and  Gauthier and Thepaut (2001).

Time oscillations exceeding a cut-off frequency  can be filtered by applying a digital filter to a time

series  for ,  being the timestep. This proceeds by doing a convolution of  with a step

function  so that

The step function  is found to be
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In practice, the convolution is restricted to a finite time interval of time span . We can write  and

with . This truncation introduces Gibbs oscillations which can be attenuated by introducing a Lanczos

window which implies that the weights  are defined as  with

An alternative which is used at ECMWF has been proposed by Lynch(1997) to use a Dolph-Chebyshev window in

which case

where , ,  and  is the Chebyshev polyno-

mial of degree . The time span of the window is chosen so that .

7.7  IMPLEMENTATION OF DFI AS A WEAK CONSTRAINT IN 4D-VAR

In the context of 4D-Var data assimilation, the digital filter is used as a weak constraint. A penalty term is added

to the cost function and replaces the NMI based penalty term. The implementation is based on Gauthier and The-

paut (2001). The filtered increments are calculated as:

Where N is the number of time steps in the minimisation and delta represents increments.

During each integration of the tangent linear model in the inner loop of the 4D-Var, the digital filter is applied to

the increments and the partial sum accumulated by EDIGFIL. This gives a filtered increment valid at the mid-point

of the assimilation window (arrays RACCSPA2 and RACCSPA3). The value of the non-filtered increment valid

at the same time is also stored by ECOPSP in arrays RSTOSPA2 and RSTOSPA3. These routines are called in

CNT4TL each time-step. 

The adjoint model integration calculates the gradient in EDIGFILAD. The gradient is obtained by a single back-

ward integration of the adjoint model. The adjoint calculations associated with the digital filter is a virtually cost

free addition to the adjoint observation cost function calculations.

The filtering weights used by the digital filter are calculted in once during the setup phase by SUEFW. The default

is is to use a Dolph-Chebyshev non-recursive filter (NTPDFI=4).
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The weak constraint term which is added to the cost function is the moist energy norm of the departure between

those two states times a weight factor. All these computations are conducted in spectral space and applied to the

spectral fields. The default mode at ECMWF is to redefine the norm so the digital filter is only applied to divergence

(LDIVONLY=.true.). A larger weight factor (ALPHAG=100.) is in that case used in the weak constraint term. 

The norm of the departure is computed in two steps. In EVJCDFI, the difference between RACCSPA2/

RACCSPA3 and RSTOSPA2/RSTOSPA3 is computed and multiplied with  alphag for the subset of wave numbers

and vertical levels associated with each  processor. The cost contribution is  calculated for each wavenumber and

vertical level using the specified norm. The contributions for all wavenumbers, levels and variables are gathered

on each processor by GATHERCOST2 and the total cost contribution is summed  in  array RSUMJCDFI for each

variable and level. Finally, in EVCOST, the contributions from each variable and level are added to obtain the value

of the penalty term.
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Part II: DATA ASSIMILATION

CHAPTER 8   Diagnostics. 
8.1. Introduction

8.1.1. Influence matrix diagnostic in 4D-Var

8.1.2. How to compute Self-Sensitivity

8.2. Observational influence and self-sensitivity for a DA scheme

8.2.1. Linear statistical estimation in numerical weather prediction

8.2.2. Approximate calculation of self-sensitivity in a large variational analysis system

8.3. The Gradient test

8.1  INTRODUCTION

8.1.1  Influence matrix diagnostic in 4D-Var

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression

analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the

analysis, the analysis change that would occur by leaving one observation out, and the effective information content

(degrees of freedom for signal) in any sub-set of the analysed data. The corresponding concepts have been derived

in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to

compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-di-

mension variational data assimilation system (the 4D-Var system of the European Centre for Medium-Range

Weather Forecasts). 

8.1.2  How to compute Self-Sensitivity

From clear-case branch: in /scripts/gen/ifsmin, namelist NAMVAR for the forecast error calculation (fce) must

have LANOBS=.true.

In directory /vol/verify/sms/userID/exp/include, namelist NAMVAR in ifsmin (for forecast error calculation) must

have LANOBS=.true.

Self-Sensitivities are stored in ODB  (CCMA) in the word  an_sens_obs. The final Self-Sensitivities are computed

by dividing the content in an_sens_obs to (the content of)  final_obs_error for every observation assimilated

A Fortran program is available (the program has been developed by Carla Cardinali, work is in progress to provide

a user-version) to unload Self-Sensitivity from ODB and visual it with Metview.

8.2  OBSERVATIONAL INFLUENCE AND SELF-SENSITIVITY FOR A DA SCHEME

8.2.1  Linear statistical estimation in numerical weather prediction

Data assimilation systems for NWP provide estimates of the atmospheric state x by combining meteorological ob-

servations y with prior (or background) information xb. A simple Bayesian Normal model provides the solution as
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the posterior expectation for x, given y and xb. The same solution can be achieved from a classical frequentist ap-

proach, based on a statistical linear analysis scheme providing the best linear unbiased estimate (Talagrand, 1997)

of x, given y and xb. The optimal GLS solution to the analysis problem (see Lorenc, 1986) can be written

(8.1)

The vector xa is the ‘analysis’. The gain matrix K ( ) takes into account the respective accuracies of the back-

ground vector xb and the observation vector y as defined by the  covariance matrix B and the  covari-

ance matrix R, with

(8.2)

Here, H is a  matrix interpolating the background fields to the observation locations, and transforming the

model variables to observed quantities (e.g. radiative transfer calculations transforming the models temperature,

humidity and ozone into brightness temperatures as observed by several satellite instruments). In the 4D-Var con-

text introduced below, H is defined to include also the propagation in time of the atmospheric state vector to the

observation times using a forecast model.

Substituting (8.2) into (8.1) and projecting the analysis estimate onto the observation space, the estimate becomes

(8.3)

It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background (in observa-

tion space, Hxb) and the observations y, weighted by the  square matrices and , respectively. 

 In this case, for each unknown component of Hx, there are two data values: a real and a ‘pseudo’ observation. The

additional term in (8.3) includes these pseudo-observations, representing prior knowledge provided by the obser-

vation-space background Hxb. From (8.3), the analysis sensitivity with respect to the observations is obtained

(8.4)

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by 

(8.5)

We focus here on the expressions (8.4) and (8.5). The influence matrix for the weighted regression DA scheme is

actually more complex (see Appendix 1), but it obscures the dichotomy of the sensitivities between data and model

in observation space. 

The (projected) background influence is complementary to the observation influence. For example, if the self-sen-

sitivity with respect to the ith observation is Sii, the sensitivity with respect the background projected at the same

variable, location and time will be simply 1-Sii. It also follows that the complementary trace, tr(I−S) = p−tr(S), is

not the df for noise but for background, instead. That is the weight given to prior information, to be compared to

the observational weight tr(S). These are the main differences with respect to standard LS regression. Note that the

different observations can have different units, so that the units of the cross-sensitivities are the corresponding unit
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ratios. Self-sensitivities, however, are pure numbers (no units) as in standard regression. Finally, as long as R is

diagonal, (2.6) is assured, but for more general non-diagonal R-matrices it is easy to find counter-examples to that

property.

Inserting (8.1) into (8.4), we obtain

(8.6)

As  is equal to the analysis error covariance matrix A, we can also write S = R-1HAHT.

8.2.2  Approximate calculation of self-sensitivity in a large variational analysis system

In a optimal variational analysis scheme, the analysis error covariance matrix A is approximately the inverse of the

matrix of second derivatives (the Hessian) of the cost function J, i.e. A = (J)-1 (Rabier and Courtier, 1992). Given

the large dimension of the matrices involved, J and its inverse cannot be computed explicitly. Following Fisher

and Courtier (1995) we use an approximate representation of the Hessian based on a truncated eigen-vector expan-

sion with vectors obtained through the Lanczos algorithm. The calculations are performed in terms of a trans-

formed variable �, ��������= L-1(x-xb), with L chosen such that . The transformation L thus reduces the

covariance of the prior to the identity matrix. In variational assimilation L is referred to as the change-of-variable

operator (Courtier et al. 1998).

(8.7)

The summation in (8.7) approximates the variance reduction B-A due to the use of observations in the analysis.

(λi,νi) are the eigen-pairs of A. In ECMWF’s operational data assimilation system, the variances of analysis error

are computed according to this method. The variances are inflated to provide estimates of short-term forecast

(background) error variances to be used as background errors in the next analysis cycle (Fisher, 1996). The Hessian

eigen-vectors are also used to precondition the minimization (Fisher and Andersson, 2001). The computed eigen-

values are not used to minimize the cost function but only to estimate the analysis covariance matrix. It is well

known, otherwise, that the minimization algorithm is analogous to the coniugate-gradient algorithm. Because the

minimum is found within an iterative method, the operational number of iterations is sufficient to find the solution

(with required accuracy) but does not provide a sufficient number of eigen-pairs to estimate the analysis error var-

iances.

The diagonal of the background error covariance matrix B in (8.7) is also computed approximately, using the ran-

domisation method proposed by Fisher and Courtier (1995). From a sample of N random vectors ui (in the space

of the control-vector ), drawn from a population with zero mean and unit Gaussian variance, a low-rank represen-

tation of B (in terms of the atmospheric state variables x) is obtained by 

(8.8)

This approximate representation of B has previously been used by Andersson et al. (2000) to diagnose background

errors in terms of observable quantities, i.e. HBHT.

Inserting (8.7) and (8.8) into (8.6) we arrive at an approximate method for calculating S, that is practical for a large
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dimension variational assimilation  (both 3D and 4D-Var):

(8.9)

Only the diagonal elements of S are computed and stored in ODB - that is, the analysis sensitivities with respect to

the observations, or self-sensitivities Sii. The cross-sensitivity Sij for i ≠ j, that represents the influence of the jth

observation to the analysis at the ith location, is not computed. Note that the approximation of the first term is un-

biased, whereas the second term is truncated such that variances are underestimated. For small M the approximate

Sii will tend to be over-estimates. For the extreme case M=0 Eq. (8.9) gives S=R-1HBHT which in particular can

have diagonal elements larger than one if elements of HBHT are larger than the corresponding elements of R.  The

number of Hessian vectors operationally computed is M=40 and the number of random B vectors is N=50. 

In general, in the operational system, 15% of the global influence is due to the assimilated observations in any one

analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast

containing information from earlier assimilated observations. About 25% of the observational information is cur-

rently provided by surface-based observing systems, and 75% by satellite systems.

Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas

or in dynamically active regions. Background error correlations also play an important role: High correlation di-

minishes the observation influence and amplifies the importance of the surrounding real and pseudo observations

(prior information in observation space). Incorrect specifications of background and observation error covariance

matrices can be identified, interpreted and better understood by the use of influence matrix diagnostics for the va-

riety of observation types and observed variables used in the data assimilation system.

Self-sensitivities cannot be larger than one (they are bounded in the interval zero to one) but, because of the small

number of eigenpair we can compute, Sii can be greater than one.   Approximations in both of the two terms of (8.9)

contribute to the problem. In the second term the number of Hessian eigen-vectors is truncated to M. The term is

therefore underestimated, and Sii will tend to be over-estimated. The degree of over-estimation depends on the

structure of the covariance reduction matrix B-A. 

For an analysis in which observations lead to strongly localised covariance reduction (such as the humidity analysis

with its short co-variance length scales ~180 km, and large observational impacts) a large M is required to approx-

imate B-A accurately. The approximate computation is mostly affecting the self-sensitivities close to the upper

bound leaving the self-sensitivities <0.7 almost unaffected.

To conclude, the self-sensitivity provides a quantitative measure of the observation influence in the analysis. In

robust regression, it is expected that the data have similar self-sensitivity (sometimes called leverage) - that is, they

exert similar influence in estimating the regression line. Disproportionate data influence on the regression estimate

can have different reasons: First, there is the inevitable occurrence of incorrect data. Second, influential data points

may be legitimately occurring extreme observations. However, even if such data often contain valuable informa-

tion, it is constructive to determine to which extent the estimate depends on these data. Moreover, diagnostics may

reveal other patterns e.g. that the estimates are based primarily on a specific sub-set of the data rather than on the

majority of the data. In the context of 4D-Var there are many components that together determine the influence

given to any one particular observation. First there is the specified observation error covariance R, which is usually

well known and obtained simply from tabulated values. Second, there is the background error covariance B, which

is specified in terms of transformed variables that are most suitable to describe a large proportion of the actual back-

ground error covariance. The implied covariance in terms of the observable quantities is not immediately available

for inspection, but it determines the analysis weight given to the data. Third, the dynamics and the physics of the
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forecast model propagate the covariance in time, and modify it according to local error growth in the prediction.

The influence is further modulated by data density. Low influence data points occur in data-rich areas while high

influence data points are in data-sparse regions or in dynamically active areas. Background error correlations also

play an important role. In fact, very high correlations drastically lessen the observation influence in favour of back-

ground influence and amplify the influence of the surrounding observations. 

With the approximate method used here, out-of-bound self-sensitivities occur if the Hessian representation based

on an eigen-vector expansion is truncated, especially when few eigen-vectors are used. However, this problem af-

fects only a small percentage of the self-sensitivities computed in this study, and in particular those that are closer

to one. Remaining values greater than one can be due to large background to observation error ratio, which is one

factor that is known to contribute towards ill-conditioning and poor convergence of the 4D-Var algorithm. 

8.3  THE GRADIENT TEST

If LTEST=.true. a gradient test will be performed both before and after minimization. This is done by the routine

GRTEST. In the gradient test a test value  is computed as the ratio between a perturbation of the co-t-function

and its first order Taylor expansion:

(8.10)

with . Repeatedly increasing  by one order of magnitude, printing  at each step should show 

approaching one, by one order of magnitude at a time, provided  is approximately quadratic over the interval

. The near linear increase in the number of 9’s in the print of  over a wide range of  (initially as well

as after minimization) proves that the coded adjoint is the proper adjoint for the linearization around the given state

.

The behaviour of the cost function in the vicinity of  in the direction of the gradient  is also diagnosed by

several additional quantities for each . The results are printed out on lines in the log-file starting with the string

‘GRTEST:’. To test the continuity of , for example, a test value  is computed:

(8.11)

and printed. For explanation of other printed quantities see the routine GRTEST itself. A range of additional test

was introduced in CY28r2.
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10.1  INTRODUCTION

This chapter describes the observation screening in the ECMWF 3D/4D-Var data assimilation. A more general de-

scription can be found in Järvinen and Undén (1997). The purpose of the observation screening is to select a clean

array of observations to be used in the data assimilation. This selection involves quality checks, removal of dupli-

cated observations, thinning of their resolution etc.. The current selection algorithm has been operational since Sep-

tember 1996 and was to a large extent designed to reproduce the functionalities of the corresponding codes in the

ECMWF OI analysis (Lönnberg and Shaw 1985; 1987; Lönnberg, 1989).

This chapter was prepared in September 1997 by Heikki Järvinen, Roger Saunders and Didier Lemeur. It was up-

dated in February 1999 by Roger Saunders for TOVS processing, by Elias Holm and Francois Bouttier for the re-

mainder, with further updates in October 2004 (to cy28r1) by Erik Andersson, Drasko Vasiljevic, Tony McNally

(radiance data) and Hans Hersbach (scatterometer). 

10.2  THE STRUCTURE OF THE OBSERVATION SCREENING

10.2.1  The incoming observations

Before the first trajectory integration of the assimilation various observation processing steps take place. The ob-

servations for the current assimilation period are extracted from the Reports Data Base (RDB) of observations, cod-

ed in BUFR. The extracted data recide in separate BUFR files for each main observing system, e.g. conventional,

ATOVS, geostationary radiances, AIRS and so on. These data have already undergone some rudimentary quality

control, e.g. a check for the observation format and position, for the climatological and hydrostatic limits, as well

as for the internal and temporal consistency. The so-called RDB flag has been assigned according to the outcome

of such checks.

The Observation Data Base (ODB, see separate documentation) is filled from the BUFR files in a sequence of jobs

called BUFR2ODB. These jobs are multi-tasked running on parallel servers. Several or all observation types can

run synchroniously. The resulting ’raw’ ODB is processed further by the IFS, in preparation for the main analysis

tasks. These ODB and data manipulation tasks are referred to as ’the make CMA replacement’ (for historical rea-

sons), and are activated by the switch LMKCMARPL. MKCMARPL entails format conversions, changes of some

observed variables, such as calculation of relative humidity from dry and wet bulb temperatures and wind compo-

nents from speed and direction. The assignment of observation error statistics is also done at this stage, at least for

conventional data.

The resulting ‘extended’ ODB data base (the ECMA) contains all the observational information for the data win-

dow as required for 3D/4D-Var as well as all data that are going to be monitored. The next step is that the obser-

vations are compared to the model as it is integrated for the length of the assimilation window (Chapter 2). The

observation minus model differences (the departures) are computed as described in Chapter 5 and stored in the

ODB. These departures are an important input to the data selection procedures as many quality-control decisions

depend on the magnitude of the departure. The collection of routines that perform data selection are jointly referred

to as ’the screening’. The purpose of the observation screening is to select the best quality observations, to detect

duplicates, and reduce data redundancy through thinning.

10.2.2  The screening run

The ECMWF 3D/4D-Var data assimilation system makes use of an incremental minimization scheme, as described

in Chapter 2. The sequence of jobs starts with the first (high resolution) trajectory run. During this run the model

counterparts for all the observations are calculated through the non-linear observation operators, and the observa-
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tion minus model difference (the departures) are calculated. As soon as these background departures are available

for all observations, the screening can be performed.  Prior to the screening the model fields are deallocated (deal-

mod) as most of the information necessary in the screening is stored in the observation data base (ODB). For the

observation screening, the background errors (available as grid data in the ’errgrib’ file, see Chapter 14) are inter-

polated to the observation locations for the observed variables (INIFGER, SUFGER and GEFGER).

Technically, the final result of the observation screening is a pair of ODBs. The original ‘extended’ observation

data base now contains observations complemented by the background departures, together with quality control

information for most of the observations. This ECMA ODB remains on disc for later use in feedback creation. The

compressed ODB, the CCMA, is a subset of the original observations, and is passed for the subsequent minimiza-

tion job. The CCMA contains only those observations that are to be used in the minimisation.

10.2.3  General rationale of the observation screening

The general logic in the 3D/4D-Var observation screening algorithm is to make the independent decisions first, i.e.

the ones that do not depend on any other observations or decisions (DECIS). One example is the background qual-

ity control for one observed variable. These can be carried out in any order without affecting the result of any other

independent decision. The rest of the decisions are considered as mutually dependent on other observations or de-

cisions, and they are taken next, following a certain logical order. For instance, the horizontal thinning of TOVS

reports is only performed for the subset of reports that passed the background quality control. Finally, the CCM

data base is created for the minimization in such a way that it only contains the data that will be used.

10.2.4  3D- versus 4D-Var screening

In the original 3D-Var assimilation system the screening rules were applied once, for the complete set of observa-

tions spanning a six-hour period. In the early implementation of the 4D-Var assimilation system, the same adta se-

lection approach called ’3D-screening’ was applied over the 6-hour long 4D-Var time window, which resulted in

essentially the same screening decisions as in 3D-Var.

In summer 1997, a new screening procedure called 4D-screening was implemented that took into account the tem-

poral distribution of the observations. The time window is divided into time-slots of typically half-hour length (15

minutes for the first and the last time slots). The 3D-screening algorithm was then applied separately to observa-

tions within each time-slot. This allowed more data to be used by 4D-Var, for instance, all messages from an hourly

reporting station can now be used, whereas only one (closest to central time) would have been allowed by the re-

dundancy check in the 3D-screening. The 4D-screening behaviour is activated by switch LSCRE4D; it is meant to

be used in conjunction with time correlation of observation errors where appropriate, as explained in Järvinen et

al (1999) and in Chapter 5. Also the current 3D-FGAT configuration (Chapter 3) relies on 4D-screening

(LSCRE4D=.T.).

10.3  THE INDEPENDENT OBSERVATION SCREENING DECISIONS 

10.3.1  Preliminary check of observations

The observation screening begins with a preliminary check of the completeness of the reports (PRECH). None of

the following values should be missing from a report: observed value, background departure, observation error and

vertical coordinate of observation. Also a check for a missing station altitude is performed for synop, temp and

pilot reports. The reporting practice for synop and temp mass observations (surface pressure and geopotential

height) is checked (REPRA), as explained in the appendix. At this stage also, the observation error for synop geo-
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potential observations is inflated if the reported level is far from the true station level (ADDOER). The inflation is

defined as a proportion of the difference between the reported level and the true station altitude by adding 2% of

the height difference to the observation error.

10.3.2  Blacklisting

Next, the observations are scanned through for blacklisting (subroutine BLACK). At the set-up stage the blacklist

interface is initialized (BLINIT) to the external blacklist library. The interface between the IFS and the blacklist

described in further detail in Chapter 5, and in the full Blacklist documentation available elsewhere. The blacklist

files (Chapter 14) consist formally of two parts. Firstly, the selection of variables for assimilation is specified in

the ’data selection’ part of the blacklist file. This controls which observation types, variables, vertical ranges etc.

will be selected for the assimilation. Some more complicated decisions are also performed through the data selec-

tion file; for instance, an orographic rejection limit is applied in the case of the observation being too deep inside

the model orography. This part of the blacklist also provides a handy tool for experimentation with the observing

system, as well as with the assimilation system itself. Secondly, a ’monthly monitoring’ blacklist file is provided

for discarding the stations that have recently been reporting in an excessively noisy or biased manner compared

with the ECMWF background field.

10.3.3  Background quality control

.

The background quality control (FIRST) is performed for all the variables that are intended to be used in the as-

similation. The procedure is as follows. The variance of the background departure  can be estimated as

a sum of observation and background error variances , assuming that the observation and the background

errors are uncorrelated. After normalizing with , the estimate of variance for the normalized departure is given

by . In the background quality control, the square of the normalized background departure is considered

as suspect when it exceeds its expected variance more than by a predefined multiple (FGCHK, SUFGLIM). For

the wind observations, the background quality control is performed simultaneously for both wind components (FG-

WND). In practice, there is an associated background quality-control flag with four possible values, namely 0 for

a correct, 1 for a probably correct, 2 for a probably incorrect and 3 for an incorrect observation, respectively

(SUSCRE0). Table 10.1 gives the predefined limits for the background quality control in terms of multiples of the

expected variance of the normalized background departure. These values are set in DEFRUN and can be changed

in namelist NAMJO. For satob winds the background error limits are modified as explained in Appendix A

TABLE 10.1    THE PREDEFINED LIMITS FOR THE BACKGROUND QUALITY CONTROL, GIVEN IN TERMS OF MULTIPLES 
OF THE EXPECTED VARIANCE OF THE NORMALIZED BACKGROUND DEPARTURE. 

Variable Flag 1 Flag 2 Flag 3

u, v 9.00 16.00 25.00

z, ps 12.25 25.00 36.00

dz x x x

T 9.00 16.00 25.00

rh, q 9.00 16.00 25.00

Flag values are denoted by 1 for a probably correct, 2 for a probably
incorrect and 3 for an incorrect observation. The variables are
denoted by u and v for wind components, z for geopotential height,
ps for surface pressure, dz for thickness, T for temperature, rh for
relative humidity and q for specific humidity, respectively.
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There is also a background quality control for the observed wind direction (FGWND). The predefined error limits

of 60o, 90o and 120o apply for flag values 1, 2 and 3, respectively. The background quality control for the wind

direction is applied only above 700 hPa for upper-air observations for wind speeds larger than . If the

wind-direction background quality-control flag has been set to a value that is greater than or equal to 2, the back-

ground quality-control flag for the wind observations is increased by 1. For scatterometer winds, a test for high

wind speeds and cold SST is applied in the IFS routine FGWND.

10.4  SCREENING OF SATELLITE RADIANCES

This part of the documentation will be provided by the Satellite Section.

10.5  SCATTEROMETER PROCESSING

10.5.1  Introduction

This section describes the flow of ERS, NSCAT, and QuikSCAT scatterometer data through the assimilation sys-

tem. The retrieval of 50 km QuikSCAT winds and some tasks for ERS are performed in the module PRESCAT,

which, being part of the OBS family, are run before the screening. But it is most natural to describe the whole

processing step here. This section provides a working knowledge of the software, and guidance on possible mod-

ifications and updates. It is not intended to explain the scientific background of microwave remote sensing or scat-

terometry and assumes some knowledge of these topics (see Stoffelen 1999).

Besides the introduction, this section is broken into five subsections. The next subsection gives background infor-

mation on scatterometer processing at ECMWF. It includes a brief description of the various instruments, their pe-

riod of functioning and operational assimilation at ECMWF. Besides it provides some history of the software, lists

persons who contributed to the changes and outlines the structure and function of the whole library. Subsection

10.5.3 gives concise information on the location of scatterometer data in the ECMWF archives. Subsections

10.5.4–10.5.6 describe the line of processing for scatterometers (used or) currently in use at ECMWF, i.e. (ERS-1

and) ERS-2, (NSCAT) and QuikSCAT.

10.5.2  Background and general Scatterometer geometry

ESA’s ERS-1 scatterometer was launched in July 1991 and stopped operating in June 2000. Its successor, ERS-2,

was launched in 1995 and is still working. However, due to the loss of a proper functioning of its gyroscopes in

January 2001 the yaw attitude control of the spacecraft became deteriorated. This especially affected the quality of

scatterometer data, and as a result, its worldwide distribution was suspended. However, these problems were over-

come by the combination of alternative on-board attitude control and the introduction of a completely revised on-

ground processor. As a result, ESA resumed data distribution on 21 August 2003. Due to the loss of the on-board

low-bit-rate recorders a few months earlier, global coverage was lost and data coverage is since then confined to

the North-Atlantic and part of the Mediterranean. Data from ERS-2 were introduced into operations at ECMWF in

January 1996, have been used until the suspension in January 2001, and were re-introduced on 9 March 2004. The

NSCAT instrument was part of the payload of the ADEOS-I satellite, which was launched in August 1996. NSCAT

data have been available from mid September 1996 until the spacecraft failure on June 30 1997. NSCAT data have

never been part of the operational 4-D Var system. The QuikSCAT satellite, carrying the SeaWinds scatterometer

instrument, was launched in June 1999. Its data was introduced in the operational 4-D Var system on 22 January

2002 and has been assimilated since that date. A second SeaWinds instrument, being on-board the Midori-II satel-

lite, was launched in December 2002. Unfortunately, the Midori-II mission was lost in October 2003, which oc-

15 m s 1–
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curred just a few weeks before the planned public release of the SeaWinds data. Consequently data from this

instrument was never assimilated at ECMWF.

The scatterometers aboard the ERS-1 and ERS-2 satellites are of identical design. Operating at C-band frequency,

three antennas at the right-hand side from the flight direction ( ,  and ) illuminate the ocean surface.

Inside the 450 km wide swath, 19 nodes define a 25 km product. For each such node, average backscatter values

for the three beams are determined from a 50 km by 50 km footprint, i.e., the 25 km product is over-sampled. More

detailed information on the ERS scatterometers can be found in Attema (1986), its impact on the ECMWF assim-

ilation system in Isaksen (1997) and Isaksen and Stoffelen (2000).

The NSCAT scatterometer that was part of the payload of the ADEOS-I satellite, consisted of three antennas on

each side of the spacecraft. It operated at Ku-band frequency, and provided coverage in two simultaneous 600 km

wide swaths, separated by a 350 km wide nadir gap. The resolution of the backscatter and wind product was 50 km.

More detailed information on the NSCAT scatterometer can be found in the appendix of Chelton et al. (2000), its

impact on the ECMWF assimilation system in Leidner et al. (2003).

The Seawinds scatterometer aboard the QuikSCAT and Midori-II satellites, finally, consists of two rotating beams

operating at Ku-band frequency with incidence angles w.r.t. the normal of the ocean surface of  respectively

. Each beam provides a fore and an aft measurement. They cover a swath of 1,800 km in diameter, although

only the inner 1,400 km is illuminated by both beams. The product is determined on a 25 km resolution, defining

76 across nodes. The first eight and last eight nodes contain two backscatter measurements (outer beam only), the

other nodes can have up to 4 backscatter measurements. More detailed information on the QuikSCAT scatterometer

can be found in Leidner et al. (2000), its impact on the ECMWF assimilation system in Hersbach et al. (2004).

Ad Stoffelen, David Anderson and Ross Hoffman were the first to work on the problem at ECMWF. Stoffelen and

Anderson worked on quality control (QC) and wind retrieval issues in the OI system of these days. Hoffman looked

at assimilation of backscatter information directly in 3D-Var. Once in operations, several others (Herve Roquet,

Catherine Gaffard, Didier LeMeur and Lars Isaksen) took turns monitoring and improving the use of the data. Later

Mark Leidner worked on the use of data from NASA scatterometers (NSCAT and QuikSCAT) and the operational

implementation of the assimilation of QuikSCAT data was completed by Hans Hersbach and Lars Isaksen. The re-

introduction of ERS-2 scat data in March 2004, and the formulation of an improved geophysical model function

CMOD5, now being used for the inversion of ERS backscatter triplets to winds, was performed by Hans Hersbach.

Source code for scatterometer processing resides in ClearCase under the project name SCAT. The library contains

the following directories:

• etimesort/ source code for pre-processing ERS data

• module/ shared modules

• qbukey/ source code for adding RDB info to QuikSCAT 50km BUFR

• qfilter/ source code for pre-processing QuikSCAT 25km BUFR

• qretrieve/ source code for SeaWinds wind retrieval

• dcone_qc/ source code to perform a global quality control check on QuikSCAT data with the goal

to detect instrument anomalies

• qsca_split/ source code that allows for the distribution of QuikSCAT pre-processing over several

processors (not active)

• monitoring/ empty directory in which scatterometer monitor software may reside in future

• test/ empty directory for future test code

NSCAT-specific codes have not been put in ClearCase, because the satellite stopped operating in June 1997, i.e.

its data will never be used in operations.

45° 90° 135°

46°
56°
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10.5.3  Location of scatterometer data in the ECMWF archives

The analysis input data for both ERS and QuikSCAT are available from MARS in BUFR format. This is not the

case for NSCAT data. Data for the entire NSCAT 9-month mission are stored on ecfs in HDF format at

• ecfs:/oparch/nscat/50km/L17 - Level 1.7 files (backscatter data) and

• ecfs:/oparch/nscat/50km/L20 - Level 2.0 files (wind data), instead.

No SeaWinds data from Midori-II are present in the ECMWF archives.

The MARS archive definitions for the different wind scatterometer observations are given in Table 10.2.

10.5.4  ESA scatterometer (ERS-1 and ERS-2) processing

Fig. 10.1  shows a simple flow chart for ERS processing at ECMWF. Below the processing chain is described in

general and the functionality of each executable in the scat library in particular.

Data for a given time window (12 hours in operations) are retrieved from MARS into patches of 6 hours, and time-

wise centered around 00H, 06H, 12h and 18H. These data are then input to program TIMESORT, which sorts the

observations by time and removes duplicate records. Duplicate records occur in the input data because more than

one ground station may receive the same ERS data. Duplicated data are almost identical and their time stamps will

differ by a small margin (< 4 seconds). The software for removing duplicates, or occasionally even triplets, resides

in etimesort. The original algorithm was redesigned in CY28R1.

ERS winds are retrieved as part of the IFS observation pre-processor (IFS Documentation Part I “Observation

processing” Chapter 10). Here, the three backscatter measurements are decoded from BUFR, and used to retrieve

winds for 50 km diameter foot prints (the ERS winds are available at an over-sampled 25 km resolution). It is not

possible to determine a unique wind vector solution, at least two ambiguous solutions will be found. Only the most

likely wind and the first one in the opposite direction are kept and written to the observation data base (ODB) file.

For this ERS winds are retrieved in-house, rather than using the unique wind distributed by ESA, to be able to sup-

ply two winds to the variational data assimilation system at ECMWF, and to be able to apply bias corrections to

backscatter values before wind retrieval, and finally to be able to apply quality controls to the retrieved winds via

the retrieval residual.

TABLE 10.2    THE MARS ARCHIVE DEFINITIONS

BUFR/MARS
obstype

CMA code type Satellite ID

ERS-1 122 122 1

ERS-2 122 122 2

NSCAT 136 210 280

QuikSCAT 137* 300 281

QuikSCAT 138* 301 281

*For QuikSCAT the BUFR format changed in February 2000 which is
reflected in the change of MARS obstype from 137 to 138 and the
change in the BUFR sequence descriptor.
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Figure  10.1   ERS processing

The in 25km-resolution available ERS data is subject to horizontal thinning, and is controlled by LSCATTHI and

NTHINSCA in namelist NAMMKCMA. In the across-swath direction the inner two nodes are skipped (smallest

incidence angles) because the scatterometer operates best at larger incidence angles. Then, every NTHINSCA node

is used (default NTHINSCA = 4 results in use of node 3, 7, 11, 15, and 19). Along swath, the generic thinning pro-

cedure as described in Section 10.6.6 (minimum distance (NTHINSCA/4)*50km and maximum distance of

(NTHINSCA/4)*100km) is applied. As a result, the data are used at a resolution of 100 km instead of the original

25 km sampling distance. It should be noted that the thinning process is actually set up in the observation pre-

processing (IFS), but that only a flag is assigned at that stage, which is then applied in the screening. In that way

all the data are completely pre-processed before assimilation, and the subsequent information kept in the feedback

files allows to perform their monitoring at the full resolution.

In the IFS, both retrieved winds are used in the assimilation system. In 3D-Var, an observation cost function with

two minima (see pp_obs/HJO) is used. This function is not quadratic, but depends on the fourth power and root of

the product of the departures of  and  (Stoffelen and Anderson (1997)):

. (10.1)

In the vicinity of each solution, this cost function looks quadratic. The observation error σ0 is 2 m/s (defined in the

obs_preproc/QSCATIN routine). Since the introduction (CY25R3) of the conjugate gradient minimisation tech-

nique, such a non-quadratic cost function is not longer allowed in 4D-Var. Instead, cost function (10.1) is replaced

by:

(10.2)
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where  corresponds to the wind solution that is closest to the high-resolution trajectory. As a result, both re-

trieved wind solutions are still used. However, de-aliasing is now performed in the outer loop, enabling for a purely

quadratic cost function in the inner loop. The choice between cost function (10.1) and (10.2) is determined by the

logical LQSCATT (.FALSE. for cost (10.1), .TRUE. for expression(10.2)).

Quality control decisions made by the IFS screening run are:

• High wind speed check: Data rejected if observed or first guess wind speeds are above 35 m/s

(RSCAWLI). Performed by obs_preproc/fgwnd

• Sea ice check: Data rejected if sea-ice fraction is higher than 0.01 (RSCATLI). Performed by

obs_preproc/fgwnd

• Global quality control: If the average distance-to-the-cone residual for the backscatter

measurements during an observation time slot (30 min.) for any of the active nodes is above the QC

threshold, all ERS data for that time slot is blacklisted. This is done by the routine obs_preproc/

scaqc.

There is no background wind check performed on ERS scatterometer data, but data may be de-weighted or effec-

tively removed from the analysis during the minimization in 4D-Var by variational quality control (see Section 2.6

or Andersson and Järvinen (1999)).

Quality control decisions and departures from background and analyses are appended to each subset in the feed-

back BUFR message.

ERS feedback messages have a PRESCAT section sandwiched between the original ERS and the feedback data.

The PRESCAT section contains outputs about the quality of the winds from the retrieval.

Here are the ERS-specific key words and bits to examine in the feedback message:

• Winds retrieved at ESA: BUFR descriptor 11012 for speed and 11011 for direction winds

available in observation part of BUFR file.

• Winds retrieved at ECMWF: BUFR descriptor 11192 for  and 11193 for  winds retrieved in

obs_preproc/ERSIN.

• Background departures x 2 ambiguities: BUFR descriptor 224255 for  (‘U - COMPONENT

AT 10 M’) and for  (‘V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR

descriptor 33210 = 1, BUFR descriptor 33211 = 1001.

• Analysis departures x 2 ambiguities: BUFR descriptor 224255 for  (‘U - COMPONENT AT 10

M’) and for  (‘V - COMPONENT AT 10 M’). BUFR descriptor 8024 = 33, BUFR descriptor

33210 = 9, BUFR descriptor 33211 = 999.

• Report rejected by across-swath thinning if bit 1 of BUFR descriptor 33229 (Report Event Word

2) is set. QC decision made in obs_preproc/SCAQC.

• Report rejected by along-swath thinning if bit 10 of BUFR descriptor 33220 (Report Event Word

1) is set. QC decision made in obs_preproc/THINNER.

• Report rejected if Sea Ice faction too high: if bit 12 of BUFR descriptor 33220 (Report Event

Word 1) is set. QC decision made by program IFS in subroutine obs_preproc/fgwnd.

• Report rejected by high wind speed check if bit 16 of BUFR descriptor 33220 (Report Event

Word 1) is set. QC decision made in obs_preproc/fgwnd..

• Report rejected if global QC fails: if bit 16 of BUFR descriptor 33220 (Report Event Word 1) is

set. QC decision made in obs_preproc/ERSQC. Note that currently this bit can be set for two

different reasons, which is to be resolved in next model cycle.

• Datum 4D-Var quality control status: BUFR descriptor 33233 (Report Status Word 1) = 1/2/4/8

1 - active, 2 - passive, 4 - rejected, 8 - blacklisted Datum. 4D-Var variational quality control

rejection BUFR descriptor 33236 (Datum event Word 1) bit 27 = 1.

J1.2

u v

u
v

u
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10.5.5  NASA scatterometer (NSCAT) processing

NSCAT data has been used experimentally for impact experiments in 4D-Var as well as a surrogate for QuikSCAT

data (Ku-band scatterometer as well). The processing is not automatic in IFS, as is the case for ERS and Quik-

SCAT. The NSCAT data quality is more consistent compared to ERS and QuikSCAT, because the archived

NSCAT data are a re-processed science product, not an “as-is” real-time product.

The format and content of HDF NSCAT files are thoroughly documented in QuikSCAT Science Data Product Us-

er’s Manual (available from ECMWF or JPL). Level 1.7 and 2.0 files are present for each orbit in the mission. Each

backscatter file has a corresponding wind file.

Assimilation experiments with NSCAT data are only possible after offline processing of the data. Please contact

the research department for further information.

10.5.6  NASA scatterometer (QuikSCAT) processing

Fig. 10.2  shows a simple flow chart for QuikSCAT processing at ECMWF. Below the processing chain is de-

scribed in general. The processes QSCAT_FILTER, QSCAT25TO50KM, DCONE_QC and QSCAT_BUFR are part of the

SCAT library. They are performed in the module PRESCAT, which is part of the OBS family. The processes

SCREENING, and 4D-VAR, being part of the IFS library, are performed in the AN family. The FEEDBACK process,

being part of the ODB library, is performed in the LAG family.

QuikSCAT data are received in the SeaWinds Real-Time BUFR Data Product (SWS_Met BUFR) format. This lev-

el 2B product contains both backscatter and wind information. The provided wind product is not used, however.

Instead, wind information is retrieved directly by inversion of the backscatter product (see IFS Documentation

Part I “Observation processing” Chapter10). A detailed description of the SWS_Met BUFR data content can be

found in Leidner et al. (2000). The SWS_Met BUFR product is archived in MARS as indicated in Subsection

10.5.3.

Data for a given time window (12 hours in operations) are retrieved from MARS into six-hourly patches, time cen-

tered around 00H, 06H, 12h and 18H. These data are input to the program qfilter/QSCAT_FILTER, which sorts the

observations by time, and removes duplicate/incomplete records. Duplicate and incomplete records are part of the

QuikSCAT real-time data stream because of Seawinds’ conically-scanning geometry. See Leidner et al. (1999) for

a discussion of duplicate and incomplete records introduced by the scanning geometry.

QuikSCAT winds are inverted from the backscatter information with the program qretrieve/QSCAT25TO50KM. In

contrast to ERS scatterometer data (see above), where the inversion from backscatter values to winds are defined

in the IFS library, the wind inversion is defined in the SCAT library. Input to qretrieve/QSCAT25TO50KM are the

sorted and undoubled 25 km QuikSCAT BUFR messages. They are decoded, consecutive rows are paired together,

backscatter measurements are grouped into 50 km boxes, and winds are retrieved at this resolution. This means that

from the 76 across track 25 km vector cells, 38 vector cells at 50 km resolution are created. Motivation for this

transformation is that a 50 km resolution is more representative to the scales that are resolved by the increments in

4D-Var.
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Figure  10.2   QuikSCAT processing

The 50 km wind product is based on all backscatter measurements available within that cell, i.e., four 25 km sub-

cells. For this a Maximum Likelihood Estimator (MLE) is optimized expressing the misfit between observed and

modelled backscatter values (based on the QSCAT-1 geophysical model function). Some details are described in

the IFS Documentation (Part I “Observation processing” Section 10.2). The sum contains up to 16 backscatter

measurements. In practice this number may be smaller because of:

• only outer-beam measurements are available (up to 8 values, for nodes 1–4 and 35–38),

• missing backscatter values,

• missing Kp values (see Leidner et al., 2000),

• the land, sea, and/or ice flag available in the product is set,

• rain contamination.

More details on the extraction of rain-contamination information can be found in the IFS Documentation (Part I:

Observation Processing, chapter 10.3). Instead of the rejection on the basis of rain contamination, the code has been

prepared (qretrieve/DIST2CONE) to reject backscatter values on the basis of a distance-to-cone method developed

by Portabella and Stoffelen (2000). At the moment, such a replacement requires a (small) modification of the

SCAT library in ClearCase.

The inversion is performed in the routine qretrieve/INVERT50. On output it returns up to four ambiguous wind so-

lutions. These winds are bias-corrected (details see IFS Documentation, Part I “Observation processing” Section

10.1.5) in such a way that on average, QuikSCAT wind speeds are in line with their ECMWF first-guess collocated
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counterparts.

On output of qretrieve/QSCAT25TO50KM, a 50 km BUFR file is created. Among other quantities, it contains speed

and direction of all wind solutions (ordered from most likely to least likely), the wind speed biases that were ap-

plied, all 16 underlying backscatter measurements, values of the resulting MLE’s, rain flag and distance-to-cone

information of the underlying 25 km wave vector cells.

The in this way created 50 km BUFR six-hourly files are input to the program dcone_qc/DCONE_QC. Goal is the

detection of possible instrument anomalies. Typically when such anomalies occur, the set of backscatter values (up

to 16 for the 50 km product) does not agree well with any set of backscatter values based on the geophysical model

function. As a result, the MLE for the most-likely wind solution obtained in qretrieve/INVERT50 will be too large.

Occasionally large values can be caused by statistical fluctuations or by local geophysical parameters not taken into

account by the model function. Consistently large values, however, indicate an instrument anomaly. In dcone_qc/

DCONE_QC the across-node wise average MLE for each six-hour data file is compared to what should be expected

on average. This average value is a factorization over expectation values as function of across node number, the

wind speed of the most-likely solution and the number of backscatter values used in qretrieve/INVERT50. These

normalizing values were determined for the period between 18 UTC 31 August 2001 and 12 UTC 31 September

2001 and are defined in dcone_qc/INIT. If any of the normalized averages for nodes for node 5 to 34 (i.e., where

both outer and inner beam measurements are available) is larger than 1.45, the entire six-hour BUFR file is suspect.

In such case bit 7 of the WVC Quality Flag (21109) is set for all observations. Otherwise, the BUFR file is not

modified. This global quality control was introduced in the ECMWF assimilation system on 14 April 2002. During

the three-months period before its introduction, in which QuikSCAT data was assimilated without a global QC

check, it would only have been active for the six-hourly files of 12 UTC 12 March 2002 and 12 UTC 19 March

2002. For diagnostic reasons, node-wise normalized averages and all observations for which the normalized dis-

tance to the cone exceeds 25, are printed to the obs/prescat.1 logfile. Reason why this quality control acts on six-

hourly files, rather than on 30-minute time slots, as it is performed for ERS scatterometer data, is that the natural

fluctuations of the MLE are larger for QuikSCAT data than they are for ERS data. As a result, 30-minute averages

were found to be too short.

The qbukey/BUFR_QSCAT program adds RDB information to the 50 km BUFR file.

In IFS, ambiguous winds are reordered (most likely solution, solution that is most anti-parallel to the most likely,

and then the remaining two in order of likeliness). Only the first two winds are input to 4D-Var using the same cost

function as for ERS (i.e., the double well or purely quadratic cost function (10.1) respectively (10.2), including

 m/s, see also Stoffelen and Anderson 1997). Only difference with ERS is, that the weight of the cost is

reduced by a factor of four. In this way, QuikSCAT data is effectively assimilated on a resolution of 100 km. Cal-

culation of the cost occurs in the IFS routine pp_obs/hjo.

Quality control decisions made by the IFS screening run are:

• Sea ice check: Data rejected if sea-ice fraction is higher than 0.01 (RSCATLI). Performed by

obs_preproc/fgwnd

• Sweet zone check: Data rejected if it is in the region of the swath for which no inner beam

measurement is available (node 1–4 and node 35–38). This is done by the routine obs_preproc/

scaqc.

• Insufficient number of ambiguities: Data reject if less than two ambiguous wind solutions are

available (obs_preproc/scaqc).

• lack of azimuth diversity: Data reject when the angle between the first and second reordered

solution is less than 135 degrees. This mainly occurs for observations in the nadir part of the swath.

This is done by the routine obs_preproc/scaqc.

σ0 2=
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• rain contamination: Data reject if more than one 25 km sub-cell (from which the 50 km cell is

constructed) is rain contaminated (see IFS Documentation Part I: Observation Processing, chapter

10.3 for details). This is done by the routine obs_preproc/scaqc.

• Global QC: Data reject if the global-performance flag (see dcone_qc/DCONE_QC program above)

is set. This is done by the routine obs_preproc/scaqc.

In addition the obs_preproc/scaqc. code has been prepared to reject data in case for more than one 25 km sub-cell

the normalized distance-to-the-cone is too large (see the program qretrieve/QSCAT25TO50KM, and Portabella and

Stoffelen 2000 for its description). It is not active at the moment.

There is no background wind check performed on QuikSCAT scatterometer data, but data may be de-weighted or

effectively removed from the analysis during the minimization in 4D-Var by variational quality control (Section

2.6 or Andersson and Järvinen (1999)).

After the processing in 4D-Var, a 50 km feedback file is created. Starting from the 50km BUFR file created in the

qbukey/BUFR_QSCAT program, it adds information obtained during the 4D-Var process. Here the QuikSCAT-spe-

cific key words and bits to examine in the feedback message:

• Background departures x 4 ambiguities: Like for ERS described above. Only the first two

departures have been used in the 4D-Var cost function.

• Analysis departures x 4 ambiguities: Like for ERS described above. Only the first two departures

have been used in the 4D-Var cost function.

• Report rejected if sea ice fraction is too high: Like for ERS described above.

• Report rejected if number of winds is < 2: if bit 3 of BUFR descriptor 33220 (Report Event Word

1) is set. QC decision made in obs_preproc/scaqc..

• Report rejected if wind directions are too close: if bit 2 of BUFR descriptor 33229 (Report Event

Word 2) is set. QC decision made in obs_preproc/scaqc..

• Report rejected if data not in the sweet zone: if bit 3 of BUFR descriptor 33229 (Report Event

Word 2) is set. QC decision made in obs_preproc/scaqc..

• Report rejected if data is rain contaminated: if bit 4 of BUFR descriptor 33229 (Report Event

Word 2) is set. QC decision made in obs_preproc/scaqc..

• 25km normalized distance-to-the cone is too large (rejection is not active): if bit 16 of BUFR

descriptor 33229 (Report Event Word 2) is set. Decision made in obs_preproc/scaqc..

• Report rejected if global QC fails: if bit 16 of BUFR descriptor 33229 (Report Event Word 1) is

set. QC decision made in  obs_preproc/scaqc..

• Datum 4D-Var quality control: Like for ERS described above.

10.6  THE DEPENDENT OBSERVATION SCREENING DECISIONS

10.6.1  Update of the observations

Just before performing the dependent screening decisions, the flag information gathered so far is converted into a

status of the reports, namely: active, passive, rejected or blacklisted, and also into a status of the data in the reports

(FLGTST). The reports with a RDB report flag value 2 (probably incorrect) or higher for latitude, longitude, date

and time are rejected. For the observed data there are RDB datum flags for the variable and for the pressure, i.e.

the pressure level of the observation. The rejection limits for these are as follows: all data are rejected for the max-

imum RDB datum flag value 3 (incorrect), non-standard-level data are rejected for the maximum RDB datum flag

value 2, and for the pressure RDB datum flag the rejection limit is 1 (probably correct). The background quality

control rejection limits are flag value 3 for all the data, and flag value 2 for the non-standard-level data.
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10.6.2  Global time–location arrays

Some of the dependent decisions require a global view to the data which is not available as the memory is distrib-

uted. Therefore ad hoc global time–location arrays are formed and broadcast in order to provide this view

(GLOBA, DISTR.

10.6.3  Vertical consistency of multilevel reports

The first dependent decisions are the vertical-consistency check of multilevel reports (VERCO), and the removal

of duplicated levels from the reports. The vertical-consistency check of multilevel reports is applied in such a way

that if four consecutive layers are found to be of suspicious quality, even having a flag value one, then these layers

are rejected, and also all the layers above these four are rejected in the case of geopotential observations. These

decisions clearly require the quality-control information, and they are therefore ‘dependent’ on the preceding de-

cisions.

10.6.4  Removal of duplicated reports

The duplicated reports will be removed next. That is performed (MISCE, DUPLI, REDSL) by searching pairs of

collocated reports of the same observation types, and then checking the content of these reports. It may, for in-

stance, happen that an airep report is formally duplicated by having a slightly different station identifier but with

the observed variables inside these reports being exactly the same, or partially duplicated. The pair-wise checking

of duplicates results in a rejection of some or all of the content of one of the reports.

10.6.5  Redundancy check

The redundancy check of the reports, together with the level selection of multi-level reports, is performed next for

the active reports that are collocated and that originate from the same station (REDUN). In 3D-screening, this

check applies to the whole observation time window. In 4D-screening (LSCRE4D=.true.), this check applies sep-

arately in each timeslot.

For land synop and paob reports, the report closest to the analysis time with most active data is retained, whereas

the other reports from that station are considered as redundant and are therefore rejected from the assimilation (RE-

DRP, REDMO). For ship synop and dribu observations the redundancy check is done in a slightly modified fash-

ion (REDGL). These observations are considered as potentially redundant if the moving platforms are within a

circle with a radius of 1° latitude. Also in this case only the report closest to the analysis time with most active data

is retained. All the data from the multilevel temp and pilot reports from same station are considered at the same

time in the redundancy check (REDOR, SELEC). The principle is to retain the best quality data in the vicinity of

standard levels and closest to the analysis time. One such datum will, however, only be retained in one of the re-

ports. A wind observation, for instance, from a sounding station may therefore be retained either in a temp or in a

pilot report, depending on which one happens to be of a better quality. A synop mass observation, if made at the

same time and at the same station as the temp report, is redundant if there are any temp geopotential height obser-

vations that are no more than 50 hPa above the synop mass observation (REDSM). 

10.6.6  Thinning

Finally, a horizontal thinning is performed for the AIREP, TOVS, GEOS, SSM/I, SATOB and ERS SCAT reports.

The horizontal thinning of reports means that a predefined minimum horizontal distance between the nearby re-

ports from the same platform is enforced. For AIREP reports the free distance between reports is currently enforced

to about 60 km (Cardinali et al. 2003). The thinning of the AIREP data is performed with respect to one aircraft at

a time (MOVPL, THIAIR). Reports from different aircraft may however be very close to each other. In this remov-
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al of redundant reports the best quality data is retained as the preceding quality controls are taken into account. In

vertical, the thinning is performed for layers around model levels, thus allowing more reports for ascending and

descending flight paths. 

Thinning of TOVS, GRAD, SSM/I , SATOB and ERS SCAT reports are each done in two stages controlled by

THINN. For TOVS (THINNER), a minimum distance of about 70 km is enforced and, thereafter, a repeat scan is

performed to achieve the final separation of roughly 250 km or 120 km between reports from one platform. This

is controlled through settings in DEFRUN, that can also be modified through namelist (NAMSCC). The thinning

algorithm is the same as used for AIREPs except that for TOVS a different preference order is applied: a sea sound-

ing is preferred over a land one, a clear sounding is preferred over a cloudy one and, finally, the closest observation

time to the analysis time is preferred. For geostationary water vapour radiances, a similar thinning in two stages is

applied with currently about 70 km minimum distance and about 125 km final separation (THINNER). During the

thinning, preference is given to data having the largest fraction of clear sky in the clear-sky radiance average, high

infrared brightness temperature (for GOES data) and, finally, a small standard deviation of brightness temperatures

within the CSR mean. A similar thinning technique is applied to SSM/I data and SATOB high-density data (THIN-

NER). Note that prior to assimilation a coarser pre-thinning may take place already during observation pre-process-

TABLE 10.3    A SUMMARY OF THE CURRENT USE OF OBSERVATIONS IN THE 3D/4D-VAR DATA ASSIMILATION AT  
ECMWF. THESE USAGE RULES ARE SUBJECT TO CHANGE. FOR THE MOST CURRENT INFORMATION WE REFER TO 

THE DATA-SELECTION BLACKLIST FILES. THESE FILES ARE ARCHIVED, SO THE HISTORY IS PRESERVED.

Observation type Variables used Remarks

synop, ship u, v, ps (or z), rh u and v used only over sea, in the tropics also over low terrain
(< 150 m). Orographic rejection limit 6 hPa for rh, 100 hPa for z
and 800 m for ps.

airep u, v, T Thinned to approximately 60 km along flight tracks. Ascending and
descending aircraft are thinned in the vertical to the model resolu-
tion.

satob u, v Selected areas and levels. Thinning of high-density winds. Strict
background check to avoid slow wind-speed bias in the data.

dribu u, v, ps Orographic rejection limit 800m for ps

temp u, v, T, q Used on all reported levels. q only below 300 hPa. 10 m u and v
used over land only in tropics over low terrain (< 150 m). Oro-
graphic rejection limit 10 hPa for u, v and T, and -4 hPa for q

pilot u, v Used on all reported levels. 10 m u and v used over land only in
tropics over low terrain (< 150 m). Orographic rejection limit
10 hPa for u and v

profilers u, v Thinned to 5 hPa separation in the vertical. Data from American,
European and Japanese networks are used.

radiance data Tb Info to be supplied by the Satellite Section

paob ps Used south of 19oS. Orographic rejection limit 800 m for ps

scatterometer u, v Not used in full resolution. Used if SST is warmer than 
273 K or if both observed and background wind less than 35 

The variables are as in Table 10.1, with the addition that Tb stands for brightness temperature. The obser-
vation types are shortened by synop for synoptic surface observations, airep for aircraft reports, satob for
satellite cloud track winds, dribu for drifting buoy reports, temp for radiosonde soundings, pilot for wind
soundings, tovs for satellite temperature soundings, paob for pseudo observations of surface pressure
obtained from satellite images.
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ing in order to reduce otherwise excessive data volumes. 

The screening of SATOB data has been extended for atmospheric motion wind observations, including individual

quality estimate. The quality information from the quality control performed by the producer at extraction time is

appended to each wind observation. This Quality Indicator (QI) is introduced as an additional criterion in the thin-

ning step; priority is given to the observation with the highest QI value.

Apart from this thinning, the other observation dependent decisions involved by the screening of the scatterometer

data come essentially from the application of a sea-ice contamination test from the model sea-surface-temperature

analysis, using a minimum threshold of 273 K, and a high-wind rejection test with an upper-wind speed limit set

to 35  for the higher of the scatterometer and background winds (FGWND).

10.6.7  A summary of the current use of observations

A summary of the current status of use of observations in the 3D-Var data assimilation is given in Table 10.3. For

most current information we refer to the data-selection balcklist files themselves. The history of such files as used

in ECMWF operations is also available.

10.6.8  Compression of the ODB

After the observation screening roughly a fraction of 1/10 of all the observed data are active and so the compressed

observation ODB (the CCMA) for the minimization run only contains those data. The large compression rate is

mainly driven by the number of TOVS data, since after the screening there are only 10–20% of the TOVS reports

left, whereas for the conventional observations the figure is around 40%. As a part of the compression, the obser-

vations are re-sorted amongst the processors for the minimization job in order to achieve a more optimal load bal-

ancing of the parallel computer.

10.7  A MASSIVELY-PARALLEL COMPUTING ENVIRONMENT

The migration of operational codes at the ECMWF to support a massively-parallel computing environment has set

a requirement for reproducibility. The observation screening needs to result in exactly the same selection of obser-

vations when different numbers of processors are used for the computations. As mentioned earlier, in the observa-

tion screening there are the two basic types of decision to be made. Independent decisions, on one hand, are those

where no information concerning any other observation or decision is needed. In a parallel-computing environment

these decisions can be happily made by different processors fully in parallel. For dependent decisions, on the other

hand, a global view of the observations is needed which implies that some communication between the processors

is required. The observation array is, however, far too large to be copied for each individual processor. Therefore,

the implementation of observation screening at the ECMWF is such that only the minimum necessary information

concerning the reports is communicated globally.

The global view of the observations is provided in the form of a global ‘time–location’ array for selected observa-

tion types. That array contains compact information concerning the reports that are still active at this stage. For

instance, the observation time, location and station identifier as well as the owner processor of that report are in-

cluded. The time–location array is composed at each processor locally and then collected for merging and redistri-

bution to each processor. After the redistribution, the array is sorted locally within the processors according to the

unique sequence number. Thus, every processor has exactly the same information to start with, and the dependent

decisions can be performed in a reproducible manner independently of the computer configuration.

The time–location array is just large enough for all the dependent decisions, except for the redundancy checking
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of the multilevel temp and pilot reports. This is a special case, in the sense that the information concerning each

and every observed variable from each level is needed. Hence, the whole multilevel report has to be communicated.

The alternative to this would be to force the observation clusters of the multilevel reports always into one processor

without splitting them. In that case the codes responsible for the creation of the observation arrays for assimilation

would need to ensure the geographical integrity of the observation arrays distributed amongst the processors. This

is, however, not possible in all the cases, and the observation screening has to be able to cope with this. Currently,

it is coded in such a way that only a limited number of multilevel temp and pilot reports, based on the time–location

array, are communicated between the appropriate processors as copies of these common stations.

APPENDIX A  

A.1  BAD REPORTING PRACTICE OF SYNOP AND TEMP REPORTS

The way the synoptic surface stations report mass observations (pressure or geopotential height) is considered as

bad if the 

• station altitude is above 800 m and station reports mean sea level pressure

• station altitude is above 800 m and station reports 1000 hpa level

• station altitude is above 1700 m and station reports 900 hpa level

• station altitude is below 300 m and station reports 900 hpa level

• station altitude is above 2300 m and station reports 850 hpa level

• station altitude is below 800 m and station reports 850 hpa level

• station altitude is above 3700 m and station reports 700 hpa level 

• station altitude is below 2300 m and station reports 700 hpa level

• station altitude is below 3700 m and station reports 500 hpa level

The reporting practice is also considered as bad if the station reports 500 gpm, 1000 gpm, 2000 gpm, 3000 gpm or

4000 gpm level pressure, respectively, and station altitude is more than 800 m different from the reported level.

For temp geopotentials the reporting practice is considered as bad if the

• station altitude is above 800 m and station reports 1000 hpa level

• station altitude is above 2300 m and station reports 850 hpa level 

• station altitude is above 3700 m and station reports 700 hpa level

A.2  REVISED BACKGROUND QUALITY CONTROL FOR SELECTED OBSERVATIONS 

The background quality-control rejection limits are applied more strictly for some observation types than stated in

Table 10.1. The special cases are the following ones

• airep wind observations with zero wind speed are rejected if the background wind exceeds 5 m/s

• for airep and dribu wind observations the rejection limit is multiplied by 0.5, and for pilot wind by

0.8

• for satob wind observations the rejection limit is multiplied by 0.1, except below 700 hPa level

where it is multiplied by 0.2

• no background quality control is applied for scatt winds

• for dribu surface pressure observations the rejection limit is multiplied by 0.9, and for paob surface

pressure by 0.7

• for airep temperature observations the rejection limit is multiplied by 1.6
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A.3  USE OF ATMOSPHERIC MOTION WINDS

This appendix describes those parts of the ECMWF assimilation system which involves some special code for the

AMW case, i.e. the data selection and the FG quality check. It refers to the operational status as from December

1996. A thinning procedure was introduced for high-density winds in Spring 1998.

A.3.1  Data selection

There are several model independent checks which AMW data have to pass in order to be considered for the as-

similation process: 

Check on longitude/latitude

• AMW must be within a circle of 55° from the sub-satellite point

Check on levels depending on the computational method 

• WW CMW and WVMW must be above 400 hPa

• VIS CMW must be below 700 hPa

• IR CMW can be used at all levels.

Check on land/sea 

• All AMW over sea are used

• AMW over land is not used north of 20ºN. .

• For Meteosat (0º mission) instead of 20ºN this threshold is 35ºN to allow usage of AMW over north

Africa.

• For Meteost (63º mission) the use of AMW has been extended over Asia if above 500 hPa. This is

restriced for longitudes east of 30ºE.

• AMW are blacklisted over the Himalayas as a precautionary measure.

• AMW over land south of 20ºN (35ºN for Meteosat) is used if above 500 hPa.

Check on satellite (35ºN for Meteosat) is used if above 500 hPa. 

This is a temporary selection on certain channels or satellites. At present channels and satellite used are:

• METEOSAT cloud tracked winds with 90 min temporal sampling

• METEOSAT IR (not at medium level), VIS, WV

• METEOSAT HVIS, also at asynoptic times, only if 

(

• GOES IR & WV (NOT at asynoptic times)

• GMS IR & VIS 

A.3.2  Background quality check

The background quality check is based on a comparison of the AMW deviation from the background. Observed

wind components are checked together. The AMW is flagged with j = 1 or 2 or 3 if this deviation squared is greater

than a predetermined multiple ERRLIM * ZREJMOD of its estimated variance, as given by the following expres-

sion:

if [  D2  >  (sfg 2 + sobs 2 ) * ERRLIMj  * ZREJMOD] then flag = j where D 2 = 1/2 (Du2 +D v2) with Du, Dv

wind component deviations from background; sfg std of the background wind component error (mean for u and

v); sobs std of the observation wind component error, 2  for levels below 700 hPa included, 3.5  at 500

hPa, 4.3  at 400 hPa and 5  for all levels above; ERRLIMj  is  8 for j = 1, 18 for j = 2 and 20 for j = 3.

The value of ZREJMOD depends on the level of AMW and normally its value is:

• ZREJMOD =  0.2 for low level

QI2 0≡
Automatic Quality Control  PASSED≡
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• ZREJMOD =  0.1 for all others levels

A special check or asymmetric check is applied when the observed speed is more than 4  slower than the

background speed SPDfg. This check has a more restrictive rejection limit: 

• ZREJMOD = 0.15 at low level

• ZREJMOD =  0.07 in the tropics

• ZREJMOD  =  0.075 – 0.00125 * SPDfg all others 

• ZREJMOD  =  0.0  if  SPDfg > 60  (observation gets always flag j = 3)

When the data is passed to the following variational quality control its probability of being used depend on the 

flag j. With flag j = 1 the data will be assimilated, with flag j =2 it will be given an intermediate probability and

might be used or not and finally the analysis will reject all data with j = 3

m s 1–
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Part II: DATA ASSIMILATION

CHAPTER 11   Analysis of snow
Snow depth is a model prognostic variable that needs to be analysed. Its analysis is performed in a module that is

currently separated from the analysis of the atmosphere and of the soil wetness. This module includes also the sea-

surface temperature, sea-ice fraction and screen-level temperature and relative humidity.

Table of contents

11.1 Organization

11.2 Snow-depth analysis

11.3 Technical aspects

11.1  ORGANIZATION

The snow analysis is a 3-D sequential analysis performed every 6 hours using a successive correction method. The

snow-depth background  (units: m) is estimated from the short-range forecast of snow water equivalent 

(units: m of water equivalent) and snow density  (units : kg m-3):

 (11.1)

The snow analysis Sa is performed using snow-depth observations, the snow-depth background field, and NOAA

/ NESDIS snow extent. If snow-depth observations are not available, the snow accumulation / melting is simulated

from the model six-hour forecast. The use of the satellite derived snow extent is optional. As an alternative, snow

climate can be used to ensure the stability of the scheme and to give a seasonal snow trend in areas without any

observations.

11.2  SNOW-DEPTH ANALYSIS

The snow analysis is a two-step algorithm (Drusch et al. 2004). In the first step, the background field Sb (as defined

above) is compared with the NOAA / NESDIS snow extent product. Grid boxes, which are snow free in the first

guess but snow covered in the satellite derived product are updated with a constant snow depth of 10 cm. In the

second step, the actual Cressman analysis is performed based on observations So from SYNOP reports and snow

free satellite observations, which enter the analysis with a snow depth of 0 cm. The actual interpolation is given

through:

(11.2)
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The weight function  is the product of functions of the horizontal distance  and vertical displacement  (mod-

el minus obs height) between the observation and analysis points:

, (11.3)

where

(11.4)

and

The snow depth is preserved when the model height is above the observing station, but it is severely reduced below.

The observation height for the satellite data is obtained from model orography at T511 spectral resolution. The in-

fluence distances are set to rmax= 250 km and hmax = 300 m. 

In addition to the preliminary quality control in the observation data base, the following checks are applied for each

grid point :

• if  only snow depth observations below 140 cm are accepted.

• this limit is reduced to 70 cm if .

• snow-depth observations are rejected if they differ by more than 50 cm from the background.

• when only one snow-depth observation is available within the influence radius , the snow

depth increments are set to zero.

• snow-depth analysis is limited to 140 cm.

• snow-depth increments are set to zero when larger than  mm (where  is

expressed in Celsius)

• snow-depth analysis is set to zero if below 0.04 cm

• if there is no snow in the background and in more than half of the observations within a circle of

radius , the snow-depth increment is kept to zero.

It is expected that the satellite derived snow extent can be used in the analysis to replace the role of snow depth

climatology in correcting for the model bias. However, there is the option to weight the analysis of snow depth with

the climatological value Sclim to provide the final analysis:

 

The relaxation coefficient   can be changed through the namelist (see Section 11.3). Its default value is set to

0.02, which corresponds to a time scale of 12.5 days at six-hourly cycling. 
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The snow density is unchanged in the analysis process : 

Areas with permanent snow and ice (defined using the Global Land Cover Characterization product) are set to an

arbitrary high value at each analysis cycle ( ). 

11.3  TECHNICAL ASPECTS

The snow analysis software is implemented as a branch of the more comprehensive surface and screen-level anal-

ysis (SSA) package. The other branches currently include two-metre temperature and relative humidity analysis,

and also sea surface temperature and sea-ice fraction analyses. The program organization when performing snow

analysis is roughly as follows: 

• SSA 

• CONTROL_SSA 

• INISNW 

• SCAN_DDR

• COORDINATES

• GETFIELDS

• sub_prep_ues.F90

• SCAN_CMA

• SCAN_OBS

• LAND_OBS

• INITIAL_REJECTION

• REDUNDANT_OBS

• SNOW_ANALYSIS

• CRES_FILL

• sub_prep_nes.F90

• SUCSNW

• SCAN_OBS

• FG2OBS

• SUCSNW

• SNOW_FG

• FDB_OUTPUT

• PRINT_SUMMARY

• PLOTDATA

• FEEDBACK

The main program SSA calls CONTROL_SSA where most of the setup and namelist handling are done. Routine

INISNW performs initialization of the actual snow analysis by sensing the size of the observation array file (CMA-

file) in SCAN_DDR and generating latitudinal coordinates that stem from the model resolution in concern and ze-

ros of the Bessel function.

After this, all input fields are read into memory in GETFIELDS. They consist of the snow water equivalent and

snow density from the first-guess (6-hour forecast), 2 m temperature first guess, snow-depth climate (varies month-

ly with a linear temporal interpolation), land/sea mask and finally the orography in a form of the geopotential.

In sub_prep_nes.F90 the satellite data, which contain no snow are retrieved from buffr. 

In SCAN_CMA observations are read into memory and a quick validity check of the non-applicable observations

for this analysis is performed. Furthermore, the land/sea mask is calculated in LAND_OBS for the retained snow

ρs
a ρs

b=

Ws
a 10m=
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depth observation points.

Additional screening is done in INITIAL_REJECTION and in REDUNDANT_OBS. The former one sets up an

internal table where all the observations which survived from the quick screening are placed with a minimum con-

text information. This routine rejects some of the observations entered into the table due to inconsistencies. 

The routine REDUNDANT_OBS removes time duplicates and retains the observations of the station in concern

with the closest (and the most recent) to the analysis time. Since only synoptic observations are considered, slowly

moving platform handling present in the REDUNDANT_OBS is not applicable to the snow analysis.

The actual snow analysis is performed under SNOW_ANALYSIS. In a first step, the first guess field is updated

with the satellite observations (routine CRES_FILL). The satellite observations, which contain snow are retrieved

from buffr (routine SUB_PREP_NES). The analysis technique is Cressman’s successive correction method (rou-

tine SUCSNW). The structure functions are set to be separable in horizontal and vertical directions. A special

mountain region handling is performed, depending whether the datum or grid points is in the valley or at high al-

titudes, as explained before. 

The snow-depth background (i.e. first guess) field is constructed from the model first-guess snow water equivalent

and snow density. Once the snow-depth first guess field is present, it is used to calculate the first guess departure

at snow-depth observation points. This increment is finally added to the snow depth fields at grid points producing

the final snow depth output field, which is output in routine FDB_OUTPUT.

The accuracy of the analysis is estimated in PRINT_SUMMARY where some important statistics are summarized.

The internal observation table can be printed if requested from PLOTDATA and an updated observation file for

feedback purposes can be created in routine FEEDBACK. 

The main logicals of the namelist NAMSSA are:

• L_SNOW_ANALYSIS: When set to TRUE, the snow analysis is performed. 

• L_SNOW_DEPTH_ANA: When set to TRUE, the snow analysis is performed in snow depth (in

opposition to snow water equivalent assuming a constant value of 250 kg m-2 for observed snow

density).

• L_USE_SNOW_CLIMATE: When set to true, a relaxation of the snow analysis towards a monthly

climatology is performed with a time scale of 12.5 days (the relaxation coefficient is passed through

NAMSSA).

• L_USE_FG_FIELD: When set to TRUE the snow analysis is set to the first-guess value (no use of

observations) and there is no relaxation to climatology.

• L_USE_SCOVER_NESDIS: When set to TRUE, the NOAA / NESDIS satellite product is used.
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CHAPTER 12   Land-surface analysis

Table of contents

12.1 Introduction

12.2 Screen-level analysis

12.2.1 Methodology

12.2.2 Quality controls

12.2.3 Technical aspects

12.3 Soil analysis

12.1  INTRODUCTION

Soil temperature and soil water content are prognostic variables of the forecasting system and, as a consequence,

they need to be initialised at each analysis cycle. Currently the land surface analysis is performed every 6 hours and

is decoupled from the atmospheric analysis. The absence of routine observations on soil moisture and soil temper-

ature requires to use proxy data. The ECMWF soil analysis relies on SYNOP temperature and relative humidity at

screen-level (2 m) available on the GTS (around 12000 reports over the globe are provided every 6 hours). Firstly,

a screen-level analysis is performed for temperature and humidity. Secondly, the screen-level analysis increments

are used as inputs to perform the analysis in the soil.

12.2  SCREEN-LEVEL ANALYSIS

12.2.1  Methodology

Two independent analyses are performed for 2 m temperature and 2 m relative humidity. The method used is a two-

dimensional univariate statistical interpolation. In a first step, the background field (6 h or 12 h forecast) is inter-

polated horizontally to the observation locations using a bilinear interpolation scheme and background increments

 are estimated at each observation location . 

The analysis increments  at each model grid-point  are then expressed as a linear combination of the first-

guess increments (up to  values) :

(12.1)

where  are optimum weights given (in matrix form) by :

(12.2)

The column vector  (dimension ) represents the background error covariance between the observation  and

the model grid-point . The matrix  describes the error covariances of background fields between pairs
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of observations. The horizontal correlation coefficients (structure functions) of  and  are assumed to have the

following form:

(12.3)

where  is the horizontal separation between points  and  and  the e-folding distance taken to 300 km (hard

coded in subroutine OIINC).

Therefore : 

(12.4)

with  the standard deviation of background errors.

The covariance matrix of observation errors  is set to  where  is the standard deviation of observation

errors and  the identity matrix. 

The standard deviations of background and observation errors are set respectively to 1.5 K and 2 K for temperature

and 5% and 10% for relative humidity. The number of observations closest to a given grid point that are considered

to solve (12.1) is  (scanned within a radius of 1000 km). The analysis is performed over land and ocean

but only land (ocean) observations are used for model land (ocean) grid points. 

12.2.2  Quality controls

Gross quality checks are first applied to the observations such as  and  where  is the

dewpoint temperature. Redundant observations are also removed by keeping only the closest (and more recent) to

the analysis time.

Observation points that differ by more than 300 m from the model orography are rejected.

For each datum a check is applied based on statistical interpolation methodology. An observation is rejected if it

satisfies : 

(12.5)

where  has been set to 3, both for temperature and humidity analyses.

The number of used observations every 6 hours varies between 4000 and 6000 corresponding to around 40% of the

available observations.

The final relative humidity analysis is bounded between 2% and 100%. The final MARS archived product is dew-

point temperature that uses the 2 m temperature analysis  to perform the conversion :

(12.6)
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(12.7)
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12.2.3  Technical aspects

The technical aspects are similar to the snow analysis (see Chapter 11) expect for the computation of the analysis

increments obtained from the subroutine OIUPD instead of SUCSNW (Cressman interpolation).

Subroutine OISET selects the  closest observations from a given grid-point.

Subroutine OIINC provides the analysis increments from Equations (12.1) and (12.2), by first computing

 (in subroutine EQUSOLVE - inversion of a linear system) which does not depend upon the

position of the analysis gridpoint and then estimating  (in subroutine DOT_PRODUCT).

Most of the control parameters of the screen-level analysis are defined in the namelist NAMSSA:

1) C_SSA_TYPE : ‘t2m’ for temperature analysis and ‘rh2m’ for relative humidity analysis

2) L_OI : ‘ true’ for statistical interpolation and ‘false’ for Cressman interpolation 

3) N_OISET : number of observations (parameter )

4) SIGMAB : standard deviation of background error (parameter )

5) SIGMAO : standard deviation of observation error (parameter )

6) TOL_RH : Tolerance criteria for RH observations (parameter  in Equation (12.5))

7) TOL_T : Tolerance criteria for T observations (parameter  in Equation (12.5))

8) SCAN_RAD_2M(1) : Scanning radius for available observations (set to 1000 km)

12.3  SOIL ANALYSIS

The soil analysis scheme is based on an “local” optimum interpolation technique as described in Mahfouf (1991)

and Douville et al. (2001). The analysis increments from the screen-level analysis are used to produce increments

for the water content in the first three soil layers (correponding to the root zone) : 

(12.8)

and for the first soil temperature layer : 

(12.9)

The coefficients  and  are defined as the product of optimum coefficients  and  minimising the variance of

analysis error and of empirical functions  , and reducing the size of the optimum coefficients when the

coupling between the soil and the lower boundary layer is weak.

(12.10)
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with

(12.12)

where  represents the correlation of background errors between parameters  and .

The statistics of background errors have been obtained from a series of Monte-Carlo experiments with a single-

column version of the atmospheric model where initial conditions for soil moisture have been perturbed randomly.

They were obtained for a clear-sky situation with strong solar insolation. Empirical functions are aimed to reduce

soil increments when atmospheric forecast errors contain less information about soil moisture. To obtain negligible

soil-moisture corrections during the night and in winter,  is a function of the cosine of the mean solar zenith

angle , averaged over the 6 h prior to the analysis time :

(12.13)

The optimum coefficients are also reduced when the radiative forcing at the surface is weak (cloudy or rainy situ-

tations). For this purpose, the atmospheric transmittance  is computed from the mean downward surface solar

radiation forecasted during the previous 6 hours  as :

(12.14)

where  is the solar constant.

The empirical function  is expressed as :

(12.15)

with  and . 

The empirical function  reduces soil moisture increments over mountainous areas :

(12.16)

where  is the model orography, =500 m and =3000 m.

Furthermore, soil moisture increments are set to zero if one of the following conditions is fufilled:

1) The last 6 h precipitation exceeds 0.6 mm

2) The instantaneous wind speed exceeds 10 m s-1

3) The air temperature is below freezing
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4) There is snow on the ground

To reduce soil moisture increments over bare soil surfaces, the standard deviations and the correlations coefficients

are also weighted by the vegetation fraction , where low and high vegetation cover are defined in

Chapter 7 of the Physics Documentation.

The statistics of forecast errors necessary to compute the optimum coefficients are given in Table 12.1.

The correlations have been produced from the Monte-Carlo experiments. The standard deviation of background

error for soil moisture  is set to 0.01 m3m-3 on the basis of ECMWF forecasts differences between day 1 and

day 2 of the net surface water budget (precipitation minus evaporation minus runoff).

The standard deviation of analysis error  is given by the screen-level analysis from : 

(12.17)

From the values chosen for the screen-level analyis  and  %.

.

Soil moisture increments  are such that they keep soil moisture within the wilting point  and the field ca-

pacity  values, i.e. : 

• if  then 

• if  then 

Finally the coefficients providing the analysis increments are :

(12.18)

and

(12.19)

TABLE 12.1    STATISTICS OF BACKGROUND ERRORS FOR SOIL MOISTURE DERIVED FROM MONTE-CARLO 
EXPERIMENTS

Coefficient Value

–0.82

–0.92

–0.90

0.83

0.93

0.91

1.25 K

9.5 %

–0.99
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θ∆ θpwp
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θb θcap< θa min θcap θb θ∆+,( )=
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a Cv α F1×× F2F3=

b Cv β F1×× F2F3=

c 1 F2–( )F3=
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The coefficient  is such that soil temperature is more effective during night and in winter, when the temperature

errors are less likely to be related to soil moisture. This way, 2 m temperature errors are not used to correct soil

moisture and soil temperature at the same time

In the 12 h 4D-Var configuration, the soil analysis is performed twice during the assimilation window and the sum

of the increments is added to the background values at analysis time. 

c
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Part II: DATA ASSIMILATION

CHAPTER 13   Analysis of sea-ice concentration and sea 
surface temperature

Table of contents
13.1 Introduction

13.2 Sea-ice concentration

13.2.1 NCEP dataset

13.2.2 ECMWF re-sampling to model grid

13.3 SST analysis

13.3.1 Daily NCEP dataset

13.3.2 ECMWF re-sampling to model grid

13.4 Technical implementation

13.1  INTRODUCTION

The analyses of sea-ice concentration (CI) and sea surface temperature (SST) are based on daily global 0.5º datasets

provided by NCEP. The sea-ice product from NCEP is derived from SSM/I (Special Sensor Microwave / Imager)

observations. The SST product is an Optimal Interpolation (OI) analysis based on ship, buoy, and satellite meas-

urements. At ECMWF, the NCEP fields are re-sampled to the reduced Gaussian grid used in the IFS, and are qual-

ity checked.

CI and SST are analysed six-hourly before the atmospheric variational analysis. Since sea-ice concentration and

SST are kept constant during the ten-day forecast and the NCEP fields enter the analysis once a day, the analyses

are updated once a day. In the current set up, the CI analysis is done before the SST analysis. The SST field from

the previous analysis is used as a quality check in the ice analysis. The CI analysis is then used to determine the

SST for grid boxes containing sea ice. Both analyses are performed for model sea grid boxes i.e. those, which con-

tain less than 50% land. Only the Great Lakes and the Caspian Sea are covered in the NCEP datasets. 

13.2  SEA-ICE CONCENTRATION

ECMWF’s sea-ice concentration analysis is based on the corresponding daily NCEP product as described by

Grumbine (1996). The primary source of information is 19 GHz and 37 GHz SSM/I antenna temperatures. This

document describes the processing at NCEP including the ice algorithm and the re-sampling to the reduced Gaus-

sian grid used in the IFS.

13.2.1  NCEP dataset

This section describes the final quality controlled NCEP dataset, which is the input to the IFS, following Grumbine

(1996). The sea-ice concentration algorithm, which generates total, first-year, and multiyear concentration from
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one set of SSM/I brightness temperatures is introduced in 13.2.1 (b). 

13.2.1 (a)  Brightness-temperature processing.   Brightness-temperature grids are produced using a 12-hour

window, before and after 0000 UTC of the current day. The data extraction program is run at 1230 or 1330 UTC

(8:30 Eastern Local Time) and, in general, 12 orbits out of 14 possible orbits are included in the analysis. Bright-

ness temperatures are then calculated from the antenna temperatures included in the Satellite Data Record (SDR)

following Hollinger et al. (1987). Quality checks are applied at two stages: (i) Antenna temperature scans are re-

moved if the corresponding surface types (encoded into an 8 bit byte) do not fall in the range of 0 to 7. (ii) Bright-

ness-temperature checks are applied using thresholds established by Gloersen et al. (1994).

13.2.1 (b)  Gridding and computation of sea-ice concentration.   Quality-checked antenna temperatures are

remapped from scan points onto a 25.4 km, true at 60º, polar stereographic grid oriented to 80º W in the northern

hemisphere, and 100º E in the southern hemisphere. The northern hemisphere grid is  pixels with the

pole at (191, 231). The southern hemisphere grid is  pixels with the pole at (151, 181).

After the antenna temperatures are converted to brightness temperatures, sea-ice concentrations are calculated us-

ing the algorithm described by Cavalieri et al. (1991). The algorithm calculates the total (C), first-year (CF), and

multiyear (CM) sea-ice concentrations from the microwave polarization (PR) at 19 GHz (T19H/V) and the spectral

gradient ratio (GR), which uses the vertically polarized 37 GHz and 19 GHz brightness temperatures T37V and T19V,

respectively (Cavalieri et al. 1991)

(13.1)

(13.2)

C, CF, and CM are then obtained through:

 (13.3)

 (13.4)

(13.5)

with

(13.6)

The coefficients ai, bi, and ci (i =0,3) are functions of a set of nine brightness temperatures. These brightness tem-

peratures referred to as algorithm tie points are observed SSM/I radiances of known ice-free ocean, first-year sea

ice, and multi-year ice for each of the three SSM/I channels. 

The weather filter proposed by Gloersen and Cavalieri (1986) is extended to adjacent pairs of points to take the

coarse resolution of the 19 GHz observations, which does not match the polar stereographic grid resolution, into

account. Since the satellite does not observe the poles, the disk of missing data on the northern hemisphere is filled

according to a Laplacean with boundary values specified by the observations. This method gives the minimum gra-

dient fill pattern. In addition, the Laplacean of ice concentration is small in regions away from the ice edge, which

the polar data gap always is.

Values for sea-ice concentration vary between 0% and 128%. Above 128, there are flags denoting different data

385 465×
345 355×

PR T19V T19H–( ) T19V T19H+( )⁄=

GR T37V T19V–( ) T37V T19V+( )⁄=
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conditions: Land (157), Bad Data (166), Weather (177), Coast (195), and No Data (224).

13.2.1 (c)  Final filtering and gridding for NWP .   SST is used as a final filter. If the analysed SST is greater

than 2º C, sea-ice concentration is set to 0. As stated by Grumbine (1996), this filter is good as long as low concen-

trations are not being considered important. For NWP applications the polar stereographic product is sampled to

 resolution using the nearest-neighbour technique. 

13.2.2  ECMWF re-sampling to model grid

At ECMWF, the  dataset (CINCEP) is currently being used operationally. A bi-linear interpolation is

applied to transform the NCEP data from the regular latitude / longitude grid to the reduced Gaussian model grid.

Before May 2001, the CI product in polar stereographic projection was used. In this case, a Cressman spatial inter-

polation is performed to transform the data to the reduced Gaussian grid:

(13.7)

with a maximum radius  rmax of 120 km. CIb and CIb’ are the first guess (ice concentration from the previous day)

at the model grid point and at the observation, respectively. The weighting function is given by:

(13.8)

After the interpolation has been performed the following quality checks are applied:

1) Sea-ice concentration below 20% is set to 0%.

2) Sea-ice concentration greater 100% is set to 100%.

3) If the SST is higher than 1º C sea-ice concentration is set to 0%. 

4) Grid boxes north of 82.5º N are set to 100%. 

If the total change in global ice concentration exceeds 0.2%, the CI analysis is considered to be wrong and aborted.

13.3  SST ANALYSIS

For the operational ten-day forecasts, ECMWF uses the NCEP daily real-time global SST product (RTG_SST) at

0.5º resolution. For the seasonal forecasts the weekly the 1.0º product ('Reynolds SST') is temporally interpolated

to daily values.

13.3.1  Daily NCEP dataset

The information provided in this section was extracted from http://polar.wwb.noaa.gov.sst. The daily SST product

has been developed at NCEP / MMAB (Marine Modelling and Analysis Branch). It was implemented in the pro-

duction suite 30 January, 2001.

A two-dimensional variational interpolation analysis of the most recent 24-hour buoy and ship data, satellite re-

trieved SST data, and SSTs derived from satellite observed sea-ice coverage is used to generate the 0.5º dataset.
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The algorithm employs the following data-handling and analysis techniques:

1) Satellite retrieved SST values are averaged within 0.5º grid boxes with day and night 'superobs'

created separately for each satellite.

2) Bias calculation and removal, for satellite retrieved SST, is the technique employed in the seven-

day Reynolds–Smith climatological analysis.

3) SST report from individual ships and buoys are separately averaged within grid boxes.

4) The first guess is the prior (un-smoothed) analysis with one-day's climate adjustment added.

5) Late arriving data, which did not make it into the previous SST analysis, are accepted if they are

less than 36 hours old.

6) Where ice cover exceeds 50%, surface temperature is calculated using salinity climatology in

Millero's formula for the freezing point of salt water:  

with S in psu.

7) An inhomogeneous correlation-scale-parameter l, for the correlation function exp(-d2/l2) is

calculated from a climatological temperature gradient, as:

with d and l in km and  in º C / km.

The RTG_SST analysis is done over all ocean areas, the Great Lakes, and the Caspian Sea. The spatial grid

(720×360) is defined with indices starting just east of the Greenwich Meridian and near the South Pole.

13.3.2  ECMWF re-sampling to model grid

The interpolation from the regular latitude / longitude grid to the reduced Gaussian model grid is done by bi-linear

interpolation. Ice-free grid boxes are up dated with the latest SST value retrieved from the archive. For grid boxes

characterized by sea-ice concentrations exceeding 20% the SST is set to –1.7º C. 

13.4  TECHNICAL IMPLEMENTATION

Technically, CI and SST analyses are controlled using the logical expressions L_sst_analysis, lssmidata, licenmc,

and lsstnmc. If L_sst_analysis is ‘true’, the analyses are performed (control_ssa.F90). lssmidata, licenmc, and lsst-

nmc address the input data handling. In the current set up, lssmidata and lsstnmc are set to ‘true’ and licenmc is set

to ‘false’ (setcomssa.F90). Whenever there are no ice data in polar stereographic projection available (which is the

case from 9/05/2001 onwards) lssmidata is set to ‘false’ and licenmc is set to ‘true’ in sstana where the namelist

for the analyses is created. The actual CI and SST fields on the regular 0.5º grid are retrieved from the MARS ar-

chive (fetchmars). The CI product on polar stereographic projection, which was used before May 2001, is stored

in buffr format and can be obtained through the fetchobs script.

The SST and CI analyses software is implemented as a branch of the more comprehensive surface and screen-level

analysis (SSA) package. The other branches currently include two-meter temperature and relative humidity anal-

ysis, and also snow water equivalent analysis. The main program ssa.F90 calls control_ssa.F90. Within

control_ssa.F90 variables are initialized (through setcomssa.F90), the namelist is read, and the ODB and the anal-

yses are initialized (through inisst.F90). Major components of the initialization are the interpolation of the regular

latitude / longitude fields to the reduced Gaussian model grid and the conversion from the resulting field to a one-

t S( ) 0.0575S– 0.0017S3 2⁄ 0.0002S2–+=

l min 450 max 2.25 ∇T⁄ 100,( ),( )=
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dimensional array. The key components for this process are coordinates.F90, reg_to_gg.F90, reg2gg.F90, get-

fields.F90 and field_to_array.F90.

The actual CI analysis is then performed in ice_analysis.F90. In case the polar stereographic product is used, the

buffr file is processed in getsatbuff.F90 and the interpolation to the reduced Gaussian grid is done in

ice_cressman.F90. The first guess CI field is updated through the NCEP interpolated product and the quality

checks given in 13.2.3 are applied. Output statistics are prepared and printed in the corresponding log file (sst.1).

The SST analysis is done within sst_analysis.F90. The first guess field is updated through the interpolated NCEP

field. Correction based on the actual CI analysis are applied as outlined in 13.3.2. The log file for the output is sst.1.

The calling tree for the CI / SST analyses is given below.

• CONTROL_SSA

• SETCOMSSA

• INISST

• COORDINATES

• REG_TO_GG

• REG2GG

• GETFIELDS

• FIELD2ARRAY

• ICE_ANALYSIS

• GETSATBUFF

• ICE_CRESSMAN

• LATBAND

• CALC_DISTANCE

• CORWHD

• SST_ANALYSIS

• FDB_OUTPUT

• PRINT_SUMMARYsea-ice

• PLOTDATA
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Part II: DATA ASSIMILATION

CHAPTER 14   Data Flow

Table of contents

14.1 Notation

14.2 Data assimilation cycling

14.3 Overview of 4D-Var data flow

14.4 Input GRIB fields

14.4.1 reftrajshml

14.4.2 reftrajggml

14.4.3 reftrajsfc

14.4.4 errgrib

14.4.5 SSTDATA${starttime}

14.4.6 SGS${starttime} 

14.4.7 CD${starttime}

14.4.8 UWAVE${starttime}

14.4.9 WIND${starttime} 

14.5 Input observation data

14.6 Input data files

14.6.1 Invariant data files

14.6.2 Date-dependent data files

14.7 Output GRIB fields

14.7.1 Output type ‘an’ model level spectral fields

14.7.2 Output type ‘an’ model level Gaussian grid-point fields

14.7.3 Output type‘an’ surface Gaussian grid-point fields 

14.7.4 Output type ‘an’ wave model fields

14.7.5 Output error fields

14.8 Output observation data

14.9 Sea surface temperature analysis

14.9.1 Input GRIB fields on model grid

14.9.2 Input NCEP fields

14.9.3 Input data files
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14.9.4 Output GRIB fields on model grid

14.10 2 metre temperature analysis

14.10.1 Input GRIB fields on model grid

14.10.2 Input observation data

14.10.3 Output GRIB field on model grid

14.11 2 metre relative humidity analysis

14.11.1 Input GRIB fields on model grid

14.11.2 Input observation data

14.11.3 Output GRIB field on model grid

14.12 Snow analysis

14.12.1 Input GRIB fields on model grid

14.12.2 Input data files

14.12.3 Input observation data

14.12.4 Output GRIB field on model grid

14.13 Soil moisture analysis

14.13.1 Input GRIB fields on model grid

14.13.2 Output GRIB fields on model grid

14.13.3 Invariant climatological fields

14.1  NOTATION

The following environment variables, which are used in the same way in the data assimilation scripts, are referred

to in this chapter.

TABLE 14.1    DEFINITION OF ENVIRONMENT VARIABLES

Variable Meaning Default value

${DATA} Data directory for invariant files

${GTYPE} Gaussian grid type l_2 (ie linear reduced 
Gaussian grid)

${IFS_CYCLE} IFS cycle name CY28R1

${LEVELS} Number of vertical model levels 60

${MM} Month

${RESOL} Spectral truncation 511

${starttime} Start of 4D-Var window as yyyymmddhh

${WDIR} Work directory (1 for each cycle)
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In this chapter, the notation illustrated in Fig. 14.1  is used in diagrams to distinguish between computation steps

and data sets.

Figure  14.1   Notation

14.2  DATA ASSIMILATION CYCLING

Figure  14.2   Data assimilation cycling with 12 hour 4D-Var
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Fig. 14.2  gives an overview of the data flow through the data assimilation system. It shows the operational con-

figuration, with two cycles per day of 12-hour 4D-Var. The 0000 UTC assimilation uses observations from the time

window 1501 - 0300 UTC. Its first guess is the three-hour forecast from the previous day’s 1200 UTC analysis.  It

generates two sets of analysed fields, at 1800 and 0000 UTC. A separate surface analysis is run every six hours.

The final analysis is a combination of the fields from 4D-Var and from the surface analysis.

The 1200 UTC analysis uses observations from the time window 0301 - 1500 UTC. Its first guess is the three hour

forecast from the 0000 UTC analysis. It generates analysed fields at 0600 and 1200 UTC, and these are combined

with the appropriate surface analysis fields to give the full analyses. Ten day forecasts are run from the analyses at

0000 and 1200 UTC.

14.3  OVERVIEW OF 4D-VAR DATA FLOW

Figure 14.3 gives an overview of the data input to and output from 4D-Var. There are three types of input data:

(i) GRIB fields from the Fields Data Base (FDB). GRIB is a World Meteorological Organisation

(WMO) standard format for the representation of General Regularly-distributed Information in

Binary. The GRIB code is described at http://www.ecmwf.int/products/data/software/
grib.html. The background fields and forecast errors are read from the Fields Data Base.

(ii) observations from the Observation Data Base (ODB)

(iii) other data files

Output data from 4D-Var is in two forms:

(i) GRIB fields in the Fields Data Base, eg analysis fields, error fields

(ii) updates to the ODB, including departures of observations from the background and the analysis and

quality control information

Figure  14.3   4D-Var data flow
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14.4  INPUT GRIB FIELDS

The following files in the work directory, $WDIR, contain GRIB format fields which have been extracted from the

Fields Data Base. Fields of type ‘fc’ are taken from the forecast from the previous cycle’s analysis, and are valid

at the start of the 4D-Var window. Fields of type ‘an’ are taken from the previous analysis. The spectral orography

is taken from the climatology file of the appropriate resolution, to ensure that the orography is not changed by en-

coding into and decoding from GRIB. Fields of type ‘ef’, forecast error, were output from the previous cycle’s 4D-

Var analysis. 

Files which are neded as input to the coupled wave model also have the stream defined. If stream=DA, then the

fields were output from the atmospheric model, and the GRIB codes are defined in (ECMWF local table 2, Version

128). If stream=WAVE, then the fields were output from the wave model and the GRIB codes are defined in (EC-

MWF local table 2, Version 140).

14.4.1  reftrajshml

14.4.2  reftrajggml

l

TABLE 14.2    BACKGROUND, SPHERICAL HARMONICS, MODEL LEVELS

Code Name Description Units Levels Type

129 Z Orography (geopotential) m2 s-2 1 climate

133 Q Specific humidity kg kg-1 1-$LEVELS fc

130 T Temperature K 1-$LEVELS fc

138 VO Vorticity s-1 1-$LEVELS fc

152 LNSP Logarithm of surface pressure 1 fc

155 D Divergence s-1 1-$LEVELS fc

203 O3 Ozone mass mixing ratio kg kg-1 1-$LEVELS fc

TABLE 14.3    BACKGROUND, GAUSSIAN GRID, MODEL LEVELS

Code Name Description Units Levels Type

133 Q Specific humidity kg kg-1 1-$LEVELS fc

203 O3 Ozone mass mixing ratio kg kg-1 1-$LEVELS fc

246 CLWC Cloud liquid water content kg kg-1 1-$LEVELS fc

247 CIWC Cloud ice water content kg kg-1 1-$LEVELS fc

248 CC Cloud cover (0-1) 1-$LEVELS fc
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14.4.3  reftrajsfc

TABLE 14.4    SURFACE FIELDS, GAUSSIAN GRID, BACKGROUND (VARIABLE FIELDS) AND ANALYSIS (INVARIANT 
FIELDS)

Code Name Description Units Type

031 CI Sea-ice cover (0-1) fc

032 ASN Snow albedo (0-1) fc

033 RSN Snow density kg m-3 fc

034 SST Sea surface temperature K fc

035 ISTL1 Ice surface temperature, layer 1 K fc

036 ISTL2 Ice surface temperature, layer 2 K fc

037 ISTL3 Ice surface temperature, layer 3 K fc

038 ISTL4 Ice surface temperature, layer 4 K fc

039 SWVL1 Volumetric soil water, layer 1 m3 m-3 fc

040 SWVL2 Volumetric soil water, layer 2 m3 m-3 fc

041 SWVL3 Volumetric soil water, layer 3 m3 m-3 fc

042 SWVL4 Volumetric soil water, layer 4 m3 m-3 fc

139 STL1 Soil temperature level 1 K fc

141 SD Snow depth m of water
equivalent

fc

148 CHNK Charnock parameter fc

170 STL2 Soil temperature level 2 K fc

183 STL3 Soil temperature level 3 K fc

198 SRC Skin reservoir content m of water fc

235 SKT Skin temperature K fc

236 STL4 Soil temperature level 4 K fc

238 TSN Temperature of snow layer K fc

027 CVL Low vegetation cover (0-1) an

028 CVH High vegetation cover (0-1) an

029 TVL Type of low vegetation Table index an

030 TVH Type of high vegetation Table index an

160 SDOR Standard deviation of orography an

161 ISOR Anisotrophy of sub-gridscale orography an

162 ANOR Angle of sub-gridscale orography rad an

163 SLOR Slope of sub-gridscale orography an

172 LSM Land-sea mask (0,1) an

173 SR Surface roughness m an

174 ALB Albedo (0-1) an

234 LSRH Logarithm of surface roughness an
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14.4.4  errgrib

14.4.5  SSTDATA${starttime}

14.4.6  SGS${starttime} 

14.4.7  CD${starttime}

TABLE 14.5    BACKGROUND ERRORS, MODEL LEVELS, GAUSSIAN GRID

Code Name Description Units Levels Type

130 T Temperature K 1-$LEVELS ef

131 U u velocity m s-1 1-$LEVELS ef

132 V v velocity m s-1 1-$LEVELS ef

133 Q Specific humidity kg kg-1 1-$LEVELS ef

138 VO Vorticity s-1 1-$LEVELS ef

152 LNSP Logarithm of surface pressure 1 ef

156 GH Geopotential height m 1-$LEVELS ef

157 R Relative humidity % 1-$LEVELS ef

194 BTMP Brightness temperature K channels 1-54 ef

203 O3 Ozone mass mixing ratio kg kg-1 1-$LEVELS ef

TABLE 14.6    BACKGROUND, SURFACE, GAUSSIAN GRID, INPUT FOR WAVE MODEL

Code Name Description Units Type Stream

031 CI Sea-ice cover (0-1) fc DA

TABLE 14.7    BACKGROUND, SURFACE, REGULAR LATITUDE/LONGITUDE GRID, INPUT FOR WAVE MODEL

Code Name Description Units Type Stream

251 2DFD 2D wave spectra m2 s radian-1 fc WAVE

TABLE 14.8    BACKGROUND, SURFACE, REGULAR LATITUDE/LONGITUDE GRID, INPUT FOR WAVE MODEL

Code Name Description Units Type Stream

233 CDWW Coefficient of drag with waves fc WAVE
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14.4.8  UWAVE${starttime}

14.4.9  WIND${starttime} 

14.5  INPUT OBSERVATION DATA

Observations are read into 4D-Var from the Observation Data Base (ODB). The observation processing is de-

scribed in more detail in the ODB documentation (file:///home/rd/mps/public/ugodb.pdf).

14.6  INPUT DATA FILES

Input data files can be split into two categories, invariant and date-dependent. For the invariant files, a single copy

is used for the lifetime of the experiment or the operational suite. The file is copied or linked into the experiment’s

${DATA} directory at start-up time in task datalinks.

Some files, such as blacklists and bias files, are date-dependent. In the operational suite, the blacklist can be

changed at short notice if, for example, a satellite channel fails or a new data source arrives which has to be pas-

sively monitored to assess its quality before it can be used actively. Date-dependent files are copied to the

${WDIR} directory in task vardata at the beginning of each data assimilation cycle.

14.6.1  Invariant data files

(i) ${DATA}/an/cmod.table.ieee - scatterometer coefficients

(ii) ${DATA}/an/external_bl_mon_monit.b - external blacklist file

(iii) ${DATA}/an/neuroflux_l${LEVELS} - extended linearized longwave radiation

(iv) ${DATA}/an/radjacobian_l${LEVELS} - extended linearized longwave radiation

(v) ${DATA}/an/rs_bias_T_table1 - radiosonde temperature bias correction coefficients

(vi) ${DATA}/an/rs_bias_T_table2 - radiosonde temperature bias correction coefficients

(vii) ${DATA}/an/rs_bias_T_table3 - radiosonde temperature bias correction coefficients

(viii) ${DATA}/an/stabal96.bal - background error balance parameters

(ix) ${DATA}/an/stabal96.cv - background error correlations

(x) ${DATA}/climate/${RESOL}${GTYPE}/O3CHEM${MM} - monthly ozone chemistry climate

files

TABLE 14.9    BACKGROUND, SURFACE, REGULAR LATITUDE/LONGITUDE GRID, INPUT FOR WAVE MODEL

Code Name Description Units Type Stream

245 WIND 10 metre wind speed m s-1 fc WAVE

TABLE 14.10    BACKGROUND, SURFACE, GAUSSIAN GRID, INPUT FOR WAVE MODEL

Code Name Description Units Type Stream

165 10U 10 metre U wind component m s-1 fc DA

166 10V 10 metre U wind component m s-1 fc DA
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(xi) ${DATA}/ifs/namelist_${IFS_CYCLE} - an empty copy of all the IFS namelists

(xii) ${DATA}/ifs/rtable${GTYPE}${RESOL} - namelist NAMRGRI, defining the number of points

on each row of the Gaussian grid

(xiii) ${DATA}/ifs/vtable_L${LEVELS} - namelist NAMVV1, defining the hybrid vertical coordinate

level coefficients

(xiv) ${DATA}/sat/rt_coef_airs_newpred_ieee - AIRS radiative transfer coefficient file

(xv) ${DATA}/sat/rt_coef_atovs_newpred_ieee - ATOVS radiative transfer coefficient file

(xvi) ${DATA}/sat/rt_coef_goesimg_newpred - GOES radiative transfer coefficient file

(xvii) ${DATA}/sat/rt_coef_meteosat_newpred - METEOSAT  radiative transfer coefficient file

14.6.2  Date-dependent data files

(i) ${WDIR}/bl_data_sel - data selection blacklist

(ii) ${WDIR}/monthly_bl_mon_monit.b - monthly monitoring blacklist

(iii) ${WDIR}/vardir/bcor_airs.dat - AIRS bias correction

(iv) ${WDIR}/vardir/bcor_goes.dat - GOES bias correction

(v) ${WDIR}/vardir/bcor_meto.dat - METEOSAT bias correction

(vi) ${WDIR}/vardir/bcor_noaa.dat - ATOVS bias correction

(vii) ${WDIR}/vardir/bcor_s

(viii) smi.dat - SSM/I bias correction

14.7  OUTPUT GRIB FIELDS

Figure  14.4   Type ‘an’ and type ‘4v’ fields written from 4D-Var to the Fields Data Base
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Fields of type ‘4v’ (4D-Var analysis), ‘an’ (analysis), ‘ea’ (analysis errors) and ‘ef’ (forecast errors) are written in

GRIB code to the Fields Data Base from 4D-Var. Fig. 14.4  illustrates the difference between type ‘4v’ and type

‘an’ analysis fields. For type ‘4v’ fields, the analysis increment from the final minimization is interpolated back to

high resolution and added to the penultimate high resolution trajectory at its starting point. Analysis fields output

from the final high resolution non-linear trajectory are of type ‘4v’, with a base time at the start of the trajectory

and a step corresponding to the number of hours into the trajectory. So, for example, for the 1200 UTC 12 hour

4D-Var for date yyyymmdd, with an observation window from 0300 to 1500 UTC, the 4D-Var analysis at 1200

UTC is stored in the Fields Data Base and MARS with parameters:

date=yyyymmdd, hour=03, step=9, type=4v

For type ‘an’ fields, the increment from the final minimization is added to the penultimate high resolution trajectory

at the actual analysis time. Fields from the surface analysis are combined with fields from 4D-Var to give the full

analysis. For the 1200 UTC 12 hour 4D-Var for date yyyymmdd, with an observation window from 0300 to 1500

UTC, the type ‘an’ analysis at 1200 UTC is stored in the Fields Data Base and MARS with parameters:

date=yyyymmdd, hour=12, step=0, type=an

Output analysis fields, of type ‘4v’ and ‘an’, can be generated on model levels, pressure levels and isentropic sur-

faces. Namelist NAMFPC controls the content of the post-processing, and there is a wide selection of fields that

can be produced. The IFS determines internally whether fields should be generated in spectral or grid-point form.

Described below is only the list of fields that are needed as input for the next forecast in order to cycle the data

assimilation forward in time. The forecast starts from fields of type ‘an’. Some of the surface fields are generated

by the surface analysis jobs, which run at the same time as 4D-Var. It is important that these fields are excluded

from the type ‘an’ post-processing of 4D-Var, so that they cannot overwrite the surface analysis fields.

14.7.1  Output type ‘an’ model level spectral fields

14.7.2  Output type ‘an’ model level Gaussian grid-point fields

TABLE 14.11    OUTPUT TYPE ‘AN’ MODEL LEVEL SPECTRAL FIELDS

Code Name Description Units Levels

130 T Temperature K 1-$LEVELS

138 VO Vorticity s-1 1-$LEVELS

152 LNSP Logarithm of surface pressure 1

155 D Divergence s-1 1-$LEVELS

TABLE 14.12    OUTPUT TYPE ‘AN’ MODEL LEVEL GAUSSIAN GRID-POINT FIELDS

Code Name Description Units Levels

133 Q Specific humidity kg kg-1 1-$LEVELS

203 O3 Ozone mass mixing ratio kg kg-1 1-$LEVELS

246 CLW
C

Cloud liquid water con-
tent

kg kg-1 1-$LEVELS
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14.7.3  Output type‘an’ surface Gaussian grid-point fields

14.7.4  Output type ‘an’ wave model fields

The output wave model fields are on a regular latitude/longitude grid.  They are identified by stream ‘WAVE’ and

are encoded with GRIB codes defined in ECMWF local table 2, Version 140.

247 CIW
C

Cloud ice water content kg kg-1 1-$LEVELS

248 CC Cloud cover (0-1) 1-$LEVELS

TABLE 14.13    OUTPUT TYPE ‘AN’ SURFACE GAUSSIAN GRID-POINT FIELDS

Code Name Description Units

027 CVL Low vegetation cover (0-1)

028 CVH High vegetation cover (0-1)

029 TVL Type of low vegetation Table index

030 TVH Type of high vegetation Table index

032 ASN Snow albedo (0-1)

035 ISTL1 Ice surface temperature, layer 1 K

036 ISTL2 Ice surface temperature, layer 2 K

037 ISTL3 Ice surface temperature, layer 3 K

038 ISTL4 Ice surface temperature, layer 4 K

042 SWVL4 Volumetric soil water, layer 4 m3 m-3

129 Z Orography (geopotential) m2 s-2

148 CHNK Charnock parameter

160 SDOR Standard deviation of orography

161 ISOR Anisotrophy of sub-gridscale orography

162 ANOR Angle of sub-gridscale orography rad

163 SLOR Slope of sub-gridscale orography

165 10U 10 metre U wind component m s-1

166 10V 10 metre V wind component m s-1

172 LSM Land-sea mask (0,1)

173 SR Surface roughness m

174 ALB Albedo (0-1)

198 SRC Skin reservoir content m of water

234 LSRH Logarithm of surface roughness

235 SKT Skin temperature K

236 STL4 Soil temperature level 4 K

TABLE 14.12    OUTPUT TYPE ‘AN’ MODEL LEVEL GAUSSIAN GRID-POINT FIELDS
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14.7.5  Output error fields

The forecast errors output from one cycle are used as the background errors input to the next cycle, and their content

is described in Section x.4.4 above. The analysis errors contain similar fields, but are of type ‘ea’. The analysis

errors are used to calculate the perturbations for the Ensemble Prediction System.

14.8  OUTPUT OBSERVATION DATA

Departures of observations from the background and the analysis, and quality information are written to the Ob-

servation Data Base (ODB). The observation processing is described in more detail in Part I.

14.9  SEA SURFACE TEMPERATURE ANALYSIS

The sea surface temperature analysis is done every 6 hours. 

14.9.1  Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast from

the previous 4D-Var analysis time. The persistence analysis, of type ‘an’, is taken from the previous sea surface

temperature analysis time, 6 hours earlier (which is not necessarily a 4D-Var analysis time). In the table below, ‘T’

is used to denote the analysis time, and ‘T-6’ is used to denote the persistence analysis time.

14.9.2  Input NCEP fields

The sea surface temperature analysis and sea ice analysis from NCEP (National Center for Environmental Predic-

tion, Washington) are input on a  degree regular latitude / longitude grid. These fields are extracted from

MARS with parameters:

expver=1, origin=kwbc

TABLE 14.14    OUTPUT TYPE ‘AN’ WAVE MODEL FIELDS

Code Name Description Units

251 2DFD 2D wave spectra m2 s radian-1

233 CDWW Coefficient of drag with waves

245 WIND 10 metre wind speed m s-1

TABLE 14.15    INPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type Time

031 CI Sea-ice cover (0-1) fc T

034 SST Sea surface temperature K fc T

034 SST Sea surface temperature K an T-6

0.5 0.5×
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14.9.3  Input data files

(i) $DATA/sst/lsfil - land/sea mask for NCEP data, 0.5x0.5 degree regular latitude/longitude grid,

720x360 points

(ii) $DATA/sst/sst_clim - surface air temperature monthly climatology, reduced to mean-sea level

(0.5x0.5 degree regular latitude/longitude grid, 720x361 points)

(iii) ${DATA}/climate/${RESOL}${GTYPE}/lsmoro - land/sea mask and orography on model

Gaussian grid

(iv) ${DATA}/climate/${RESOL}${GTYPE}/clake - lake mask 

14.9.4  Output GRIB fields on model grid

The following fields are written to the Fields Data Base:

14.10  2 METRE TEMPERATURE ANALYSIS

The 2 metre temperature analysis is done every 6 hours.

14.10.1  Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast from

the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the previous 4D-Var analysis.

14.10.2  Input observation data

Observations are read from the Observation Data Base.

14.10.3  Output GRIB field on model grid

The analysed 2 metre temperature field is written to the Fields Data Base.

TABLE 14.16    OUTPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type

031 CI Sea-ice cover (0-1) an

034 SST Sea surface temperature K an

TABLE 14.17    INPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type

129 Z Orography m2 s-2 an

172 LSM Land/sea mask (0-1) an

139 STL1 Soil temperature level 1 K fc

167 2T 2 metre temperature K fc

168 2D 2 metre dewpoint temperature K fc
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14.11  2 METRE RELATIVE HUMIDITY ANALYSIS

The 2 metre relative humidity analysis is done every 6 hours. Although the analysed field is 2 metre relative hu-

midity, the final output product is 2 metre dewpoint temperature. The 2 metre relative humidity analysis cannot

start until the 2 metre temperature analysis has completed, since the output from the 2 metre temperature analysis

is needed in the computation of the 2 metre dewpoint temperature.

14.11.1  Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast from

the previous 4D-Var analysis time. The invariant fields, of type ‘an’, are taken from the previous 4D-Var analysis.

14.11.2  Input observation data

Observations are read from the Observation Data Base.

14.11.3  Output GRIB field on model grid

The derived 2 metre dewpoint temperature field is written to the Fields Data Base.

14.12  SNOW ANALYSIS

The snow analysis is done every 6 hours. It cannot start until the 2 metre temperature analysis has completed, since

the 2 metre temperature analysis field is one of the inputs to the snow analysis.

TABLE 14.18    OUTPUT GRIB FIELD ON MODEL GRID

Code Name Description Units Type

167 2T 2 metre temperature K an

TABLE 14.19    INPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type

129 Z Orography m2 s-2 an

172 LSM Land/sea mask (0-1) an

139 STL1 Soil temperature level 1 K fc

167 2T 2 metre temperature K fc

168 2D 2 metre dewpoint temperature K fc

TABLE 14.20    OUTPUT GRIB FIELD ON MODEL GRID

Code Name Description Units Type

168 2D 2 metre dewpoint  temperature K an
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14.12.1  Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast from

the previous 4D-Var analysis time. The invariant fields of type ‘an’, orography and land/sea mask, are taken from

the previous 4D-Var analysis. This is denoted T4V in the table below. The persistence snow depth analysis, of type

‘an’, is taken from the previous snow analysis time, 6 hours earlier (which is not necessarily a 4D-Var analysis

time). In the table below, ‘T’ is used to denote the snow analysis time, and ‘T-6’ is used to denote the persistence

snow analysis time.

14.12.2  Input data files
(i) ${DATA}/climate/${RESOL}${GTYPE}/snow -snow depth climatology (m of water equivalent)

on model Gaussian grid

(ii) ${DATA}/climate/${RESOL}${GTYPE}/cicecap - on model Gaussian grid

(iii) $WDIR/imssnow - NESDIS snow cover field (0,1) on polar stereographic grid of approximately 25

km resolution. The data is in BUFR format, with triplets of latitude / longitude / snow cover. The

NESDIS snow cover field is only used once per day, for the 06Z snow analysis.

14.12.3  Input observation data

Observations are read from the Observation Data Base.

14.12.4  Output GRIB field on model grid

The following fields are written to the Fields Data Base:

14.13  SOIL MOISTURE ANALYSIS

The soil moisture analysis is done every 6 hours. It cannot start until the sea surface temperature analysis, the snow

analysis and 4D-Var have completed.

TABLE 14.21    INPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type Time

129 Z Orography m2 s-2 an T4V

172 LSM Land/sea mask (0-1) an T4V

033 RSN Snow density kg m-3 fc T

141 SD Snow depth m of water equivalent fc T

141 SD Snow depth m of water equivalent an T-6

167 2T 2 metre temperature K an T

TABLE 14.22    OUTPUT GRIB FIELD ON MODEL GRID

Code Name Description Units Type

033 RSN Snow density kg m-3 an

141 SD Snow depth m of water equivalent an
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14.13.1  Input GRIB fields on model grid

These are extracted from the Fields Data Base. The background fields, of type ‘fc’, are taken from the forecast from

the previous 4D-Var analysis time. The analysed fields, of type ‘an’, are output from the current 4D-Var analysis,

the sea surface temperature analysis, the 2 metre temperature analysis, the 2 metre relative humidity analysis or the

snow analysis.

14.13.2  Output GRIB fields on model grid

The following fields are output from the soil moisture analysis and written to the Fields Data Base. Before being

written, the STL1 (soil temperature level 1) field is manipulated as follows:

(i) land values are unchanged

TABLE 14.23    INPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units Type Origin

039 SWVL1 Volumetric soil water, layer 1 m3 m-3 fc Forecast

040 SWVL2 Volumetric soil water, layer 2 m3 m-3 fc Forecast

041 SWVL3 Volumetric soil water, layer 3 m3 m-3 fc Forecast

133 Q Specific humidity on lowest model level kg kg-1 fc Forecast

139 STL1 Soil temperature, level 1 K fc Forecast

142 LSP Large scale precipitation m fc Forecast

143 CP Convective precipitation m fc Forecast

167 2T 2 metre temperature K fc Forecast

168 2D 2 metre dewpoint temperature K fc Forecast

170 STL2 Soil temperature, level 2 K fc Forecast

176 SSR Surface solar radiation W m-2 s fc Forecast

183 STL3 Soil temperature level 3 K fc Forecast

238 TSN Temperature of snow layer K fc Forecast

027 CVL Low vegetation cover (0-1) an 4D-Var 

028 CVH High vegetation cover (0-1) an 4D-Var

029 TVL Type of low vegetation Table index an 4D-Var

030 TVH Type of high vegetation Table index an 4D-Var

129 Z Orography m2 s-2 an 4D-Var

133 Q Specific humidity on lowest model level kg kg-1 an 4D-Var

141 SD Snow depth m of water equivalent an Snow analysis

165 10U 10 metre U wind component m s-1 an 4D-Var

166 10V 10 metre V wind component m s-1 an 4D-Var

167 2T 2 metre temperature K an 2 metre temp. anal.

168 2D 2 metre dewpoint temperature K an 2 metre rel. hum. anal.

172 LSM Land-sea mask (0,1) an 4D-Var

174 AL Albedo (0-1) an 4D-Var
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(ii) over sea,

where 

14.13.3  Invariant climatological fields

The final step of the soil moisture analysis task is to copy the invariant fields from the climatology files to the anal-

ysis, after first manipulating the GRIB headers to give values appropriate for the current data assimilation cycle.

In this way, it is ensured that invariant fields remain unchanged, without any loss of precision due to repeatedly

encoding and decoding GRIB fields.

TABLE 14.24    OUTPUT GRIB FIELDS ON MODEL GRID

Code Name Description Units

039 SWVL1 Volumetric soil water, layer 1 m3 m-3

040 SWVL2 Volumetric soil water, layer 2 m3 m-3

041 SWVL3 Volumetric soil water, layer 3 m3 m-3

139 STL1 Soil temperature, level 1 K

170 STL2 Soil temperature, level 2 K

183 STL3 Soil temperature, level 3 K

238 TSN Temperature of snow layer K

TABLE 14.25    INVARIANT CLIMATOLOGICAL FIELDS

Code Name Description Units

027 CVL Low vegetation cover (0-1)

028 CVH High vegetation cover (0-1)

029 TVL Type of low vegetation Table index

030 TVH Type of high vegetation Table index

129 Z Orography m2 s-2

160 SDOR Standard deviation of orography

161 ISOR Anisotrophy of sub-gridscale orography

162 ANOR Angle of sub-gridscale orography rad

163 SLOR Slope of sub-gridscale orography

172 LSM Land-sea mask (0,1)

STL1 SST 1 CI–( )× ISTLA CI×+=

SST analysed sea surface temperature=

CI analysed sea ice field, which varies between 0 (open water)=

and 1 (full ice cover)

ISTL1 background soil temperature level1=
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173 SR Surface roughness m

174 ALB Albedo (0-1)

234 LSRH Logarithm of surface roughness

TABLE 14.25    INVARIANT CLIMATOLOGICAL FIELDS
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