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1 Introduction

This paper describes the implementation of a method for adaptive estimation and correction of radiance biases in
the ECMWF variational data assimilation system. Biases are partly caused by problems with the measurements
themselves, but are also affected by errors in the radiative transfer calculations that are used to simulate radiance
observations from the model state. These errors are different for each sensor and each channel, and tend to
depend on the state of the instrument (e.g., scan position, poor calibration) as well as on local properties of
the geophysical parameters being sensed (McNallyet al., 2000). Over the years, sufficiently effective schemes
have been developed for screening the data and estimating their biases, so that the quality-controlled and bias-
corrected radiance data can be usefully assimilated in an NWP system. At the same time, the number and
variety of available sensors and the quantity of measurements they produce have increased to the point that the
processing and management of the data now presents a tremendous challenge.

The radiance bias correction scheme currently in use at the ECMWF is largely manually operated. First, the
bias for a given channel is modeled by an expression that depends on a relatively small number of parameters.
The parameters for all sensors on a particular satellite are estimated from time series of radiance departures
(observed-minus-background residuals) and stored on file. The files with bias parameters are then ingested by
the data assimilation system as needed, and the data are corrected accordingly in real time. The need to period-
ically re-estimate the bias parameters is primarily determined on the basis of monitoring; if the bias correction
for a given channel is still effective then the mean departures for that channel should remain small. Changes in
the bias can occur with the aging of an instrument, or when the radiative transfer operator is modified. Addi-
tionally, changes in the error characteristics may depend in a complex manner on changes in the configuration
of the data assimilation system. The introduction of a new data type (or the removal of an old one), adjustments
to the model physics, or a change in surface characteristics—any of these events may affect the biases in some
of the sensors.

There are obvious practical advantages to having an adaptive bias correction scheme that can automatically
sense a change in the bias for a given channel and will then respond accordingly. Such a scheme was in fact
implemented by Derber and Wu (1998) in the context of their global variational analysis system, and it has been
operational at NCEP for many years. Conceptually it is straightforward to estimate bias parameters (or any other
parameters, for that matter) along with the model state in a variational framework. The implementation in an
existing data assimilation system requires: (1) formulation of a parameterized bias model for the observations;
(2) the tangent linear and adjoint of this bias model; (3) an algorithm for cycling the bias parameter estimates;
and (4) an effective preconditioner for the joint (state/parameter) minimization problem.
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2 Methodology

2.1 Current scheme for radiance bias correction

The current scheme for radiance bias correction in use at the ECMWF is described in Harris and Kelly 2001.
Bias corrections are pre-computed for all available sensors and applied to the brightness temperature observa-
tions prior to their assimilation. The scheme is based on a separation of the biases into scan-angle dependent
and state dependent components. It is assumed that the datay in a given channel are related to the true model
statex at the observed time and location by

y = h(x)+bscan+bair(x)+ ẽo, < ẽo >= 0 (1)

whereh(x) represents the radiative transfer for the channel in question. In the current version of the system
(Cy26r3), the scan biasbscan is a function of latitude as well as scan position. The air-mass dependent biasbair

is expressed as a linear combination of a set of state-dependent predictorspi(x), i = 1, . . . ,N:

bair(x) = bair(x,b ) = b0 +
N

∑
i=1

bi pi(x) (2)

with scalar coefficientsbi , i = 0, . . . ,N. The selection of predictorspi(x), i = 1, . . . ,N is flexible and depends on
the instrument and channel. Available predictors and their use in Cy26r3 are listed in Tables1 and2.

Table 1: Bias predictors implemented in Cy26r3

p0: 1 (constant)
p1: 1000-300hPa thickness
p2: 200-50hPa thickness
p3: skin temperature
p4: total column water
p5: 10-1hPa thickness
p6: 50-5hPa thickness
p7: surface wind speed

If the backgroundxb contains no systematic errors, then (1) implies

< y−h(xb) >= bscan+bair(xb) (3)

A carefully selected sample of background departures for a given sensor and channel set is used to estimate
the biases, in a two-step procedure. First, scan bias coefficients are computed by separating the scan-position
dependent component of the mean departures in latitude bands. Second, after removing the scan bias from the
departures, the predictor coefficientsbi , i = 0, . . . ,N for the state-dependent component of the bias are obtained
by linear regression. See Harris and Kelly (2001) for further details.

At the end of this estimation procedure, bias coefficients for each sensor are stored on file. The data assimi-
lation system can then access the coefficients in order to compute bias corrections for the latest observations,
using updated state information for evaluating the air-mass dependent component of the bias. The brightness
temperatures are corrected accordingly, just prior to assimilation.

The success of this method depends strongly upon a careful selection of the data sample. Data locations used
for bias estimation are restricted to the vicinity of radiosonde sites where the background is likely to be most
accurate. Furthermore, an attempt is made to remove the effect of residual cloud/rain contamination in the
departures, so that those effects will not influence the bias estimates. Thus, the data selection and quality
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control for the bias estimation can be very different from the data selection and quality control used in the
analysis. When we later introduce the new variational bias correction scheme, we shall see that all data used
in the analysis will influence the bias estimates, so that is no longer possible to restrict and/or weight the data
differently for the bias estimation.

Table 2: Usage of bias predictors in Cy26r3, by sensor type

HIRS NOAA-16, NOAA-17 p0, p1, p2, p3, p4
AMSU-A NOAA-15, NOAA-16, NOAA-20 p0, p1, p2, p3, p4
AMSU-B NOAA-16, NOAA-17 p0, p1, p2, p3, p4
SSM/I DMSP-13, DMSP-14, DMSP-15 p0, p3, p4, p7
GEOS METEOSAT-5, METEOSAT-7, GOES-9, GOES-10, GOES-12p0, p1, p2, p4
AIRS NOAA-20 p0

2.2 Standard variational analysis

All analysis methods rely on a precise description of the relationship among the available data and the unknown
model state. Information from past data is incorporated in a background estimate, which is usually a short-term
forecast issued from the previous analysis. Current data consist of a heterogeneous set of quality-controlled
meteorological observations. The standard statistical description of these data and their errors is

y = h(x)+eo, < eo > = 0, < eoeT
o > = R (4)

xb = x+eb, < eb > = 0, < ebeT
b > = B, < ebeT

o >= 0 (5)

wherex is the unknown model state,xb the background estimate, andy the observations. The functionh(x) is
the observation operator, which is supposed to describe the deterministic relationship between the observations
and the state of the system. The observation and background error covariancesRandB are assumed known.

In a variational analysis, the model state is estimated by minimizing

J(x) =
1
2
(xb−x)TB−1(xb−x)+

1
2

[y−h(x)]T R−1 [y−h(x)] (6)

with respect tox. The minimizing solutionx = xa is the best linear unbiased estimate (BLUE) when the statis-
tical assumptions in (4–5) are valid. The usefullness of this estimate depends on whether the error distributions
can be adequately described by their first two moments.

2.3 Observation bias parameters

In practice many observations contain non-negligible systematic errors, so that the standard assumptions (4) do
not apply; i.e.,

< eo >=< y−h(x) >6= 0 (7)

The quantity< eo > is often referred to as ’observation bias’ because< ·> has traditionally been calculated as
a time average. This terminology can be misleading when systematic non-zero departures are caused by errors
in the implementation of the observation operatorh(x) (e.g. inaccurate weighting functions for the radiative
transfer), which depend on the true statex and possibly on other unknown parameters as well.

In any case, suppose the systematic observation errors can be described in terms of a limited set of parameters
b . We can then modify the observation operatorh(x) such that

< ẽo >=< y−h(x,b ) >= 0 (8)
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for some (unknown) parameter vectorb . In practice this means that we incorporate some degrees of freedom in
the observation operator that will be adjusted in order to reduce the bias. For example, a modified observation
operator could be defined using a linear predictor model such as that given by (2),

h(x,b ) = h(x)+
N

∑
i=0

bi pi(x) (9)

In more meaningul, physically-derived error models, the modified operator refers to uncertain parameters or
coefficients that are known to have a significant impact on the systematic errors in (1). For example, Watts
(2004) has introduced a bias correction scheme for AIRS data which is based on a modification of the transmit-
tance coefficients in the RTTOV model (Saunderset al., 1999). This scheme involves, for each AIRS channel,
two global parameters that can be adjusted to reduce the systematic errors in the RTTOV calculations.

If the parametersb vary slowly in time and space, then it should be possible to obtain statistically meaningful
estimates using appropriate techniques, even though the ’observation bias’ itself is flow-dependent. In the case
of the linear predictor model, for example, it is tacitly assumed that the predictor coefficientsb are globally
valid and approximately constant in time. This makes it possible to estimate them from timeseries of localized
departures, and it also justifies the use of those estimates for predicting and extrapolating appropriate bias
corrections for future data.

2.4 Modified variational analysis

The error parameters of a modified observation operator can be estimated along with the model state using
state augmentation techniques. This is a standard approach that can be implemented in sequential estimation
schemes as well as in a variational framework. State augmentation has been widely used in many applications
to estimate parameters related to, for example, uncertainties in model forcing, the boundary conditions, diffu-
sion coefficients, and other model components. At the ECMWF, state augmentation is used operationally to
estimate the surface temperature at radiance data locations (Simmons 2000), and experimentally to estimate
CO2 concentration using AIRS data (Engelenet al. 2004). Developments are currently underway to add model
error parameters to the control vector (Trémolet 2003).

For the purpose of radiance bias estimation, we define the augmented control vector

zT =
[
xT bT]

(10)

Assume we have some prior estimatebb of the parameters, obtained, for example, from a previous analysis
cycle. The standard assumptions in terms of the augmented control vectorz and the modified observation
operator̃h are

y = h̃(z)+ ẽo, < ẽo > = 0, < ẽoẽT
o > = R (11)

zb = z+ ẽb, < ẽb > = 0, < ẽbẽT
b > = Z, < ẽbẽT

o >= 0 (12)

with
zT
b =

[
xT

b b
T
b

]
(13)

Therefore the BLUE of the modified control vectorz is obtained by minimizing

J(z) =
1
2
(zb−z)TZ−1(zb−z)+

1
2

[
y− h̃(z)

]T
R−1[

y− h̃(z)
]

(14)

Inclusion of the bias parameters in the control vector means that they are jointly estimated with the model state,
based on the same set of observationsy. It is therefore not possible in this approach to maintain a separate,
more restrictive, data selection for the estimation of bias parameters.
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2.5 Adjoint of the bias model

The first implementation of adaptive bias correction in the ECMWF variational was designed to co-exist with
the current operational bias correction scheme. For the moment, the scan bias correction is still handled outside
the variational analysis. The adaptive bias parameters are therefore the predictor coefficients for the air-mass
dependent component of the bias, so that the modified observation operator is given by (9).

In the incremental formulation of the variational analysis, nonlinear observation operators are linearized about
the latest outer-loop estimate ¯x of x. Similarly, for the modified operator we use

h(x,b )≈ h(x̄,b ) = h(x̄)+
N

∑
i=0

bi pi(x̄) (15)

The modification toh(x) is therefore additive and linear in the bias parameters, and its adjoint with respect to
these additional control parameters is trivial to implement.

2.6 Cycling the bias parameters

The first term in (14) expresses the joint background constraint for the state vectorx and bias parametersb . As
usualxb is a short-term forecast, and forbb we take the parameter estimates obtained in the previous analysis
cycle.

In general the parameter estimation errors will be correlated with the state estimation errors, because they
depend on the same data. We know of no practical way to account for this statistical dependence, and therefore
take

Z =
[
Bx 0
0 B

b

]
(16)

whereBx denotes the usual (state) background error covariance, andB
b

the parameter background error covari-
ance. Written in terms ofx andb , (14) then becomes

J(x,b ) =
1
2
(xb−x)TB−1

x (xb−x)+
1
2
(bb−b )TB−1

b (bb−b )+
1
2

[
y− h̃(x,b )

]T
R−1[

y− h̃(x,b )
]

(17)

The second term represents the background constraint on the bias parameters. It controls the adaptivity of the
estimates: a strong constraint means that the parameter updates in each cycle are small, while a weak constraint
(or no constraint at all) implies that the parameter estimates respond quickly to the latest observations.

We takeB
b

diagonal:

B
b

= diag(s2
b1

, . . . ,s2
bn

) (18)

with
s2
b j

= s2
o j

/Nj , j = 1, . . . ,n (19)

Hereb j denotes thej th bias parameter,so j
is the error standard deviation of the observations associated with

b j , andNj is a positive integer.

Equation (19) gives the error variance of an estimate of the mean ofNj independent noisy observations whose
individual error variances ares2

o j
. Thus, the interpretation of (19) is that the background estimate for the

parameterb j is assigned the same weight asNj current observations. For example, takingNj = 10,000 for all
parameters, the system will adapt quickly to changes in the bias for a clean channel generating thousands of
radiances per analysis cycle. On the other hand, it will respond slowly to a cloudy channel that generates only
a few hundreds of data per cycle. This is appropriate for the estimation of global parameters, which should not
be determined solely on the basis of a few localized patches of data.
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When theNj are sufficiently large (say,Nj � 100) the effect of neglecting off-diagonal elements of the pa-
rameter background error covariance matrix should be insignificant. This is becauseO(Nj) observations are
used to estimate just a few bias parameters; the estimation errors will be small even when the estimation is sub-
optimal. The situation is, of course, very different for the state estimation, which can be extremely sensitive to
the specification of the background error covariances, especially in data-sparse areas.

2.7 Preconditioning the joint minimization problem

For general background on minimization algorithms for variational data assimilation, with particular emphasis
on preconditioning methods, see Fisher (1998).

Preconditioning in the current ECMWF system is partly accomplished by a carefully constructed transformation
from the physical model state variables to an abstract control space. The idea is to define this transformation in
such a way that the shape of the cost function in control space is nice enough (i.e., similar in all directions) that
the minimization algorithm can rapidly converge to the solution, with uniform error reduction in all directions.
For a quadratic cost function, the shape at the minimum is completely described by the Hessian, which is

¶ 2J
¶x2

∣∣∣∣
x=xa

= B−1
x +HT

x R−1Hx, Hx =
¶h
¶x

∣∣∣∣
x=xa

(20)

The ideal change of variable would therefore be the symmetric square root of the Hessian, since this would
result in a perfectly isotropic cost function in control space.

The first term on the right-hand side of (20) represents the information contained in the background, while the
second term represents the additional information provided by the observations. The second term is, of course,
unknown at the outset of the minimization, and difficult to evaluate in general. The change of variable used for
preconditioning is therefore normally defined in terms of just the background covariance operator:

cx = B−1/2(xb−x) (21)

Usually this works quite well, because the information in the background tends to dominate the information in
the observations. For the state estimation problem, therefore, the inverse background error covariance is not too
far removed from the Hessian. When occasional convergence problems do occur, they are often associated with
the use of densely spaced and/or highly accurate observations. Such a case of poor convergence was analyzed
and explained in detail by Anderssonet al. (2000).

For the parameter estimation problem, on the other hand, observational information tends to dominate be-
cause the number of data per unknown is typically very large. The standard change of variable based on the
background contribution alone is therefore not an effective preconditioner. The Hessian with respect to the
parameter vector is

¶ 2J
¶b 2

∣∣∣∣
b=ba

= B−1
b +HT

b R−1H
b
, H

b
=

¶h
¶b

∣∣∣∣
b=ba

(22)

The change of variable for the parameter vector should incorporate an estimate of the second term in this
expression, which represents the observational contribution to the available information about the parameters.

For the linear predictor model (9), the derivatives with respect to the parameters are simply the values of the
predictors at the observation locations. The observational contribution to the Hessian depends primarily on the
number of observations (the number of rows ofH

b
), on the observation error variances (the diagonal ofR), and

on the second moments of the predictors (the elements ofHT
b H

b
). We will construct a change of variable for

the bias parameters based on a simple approximation of this term for each single group of observations.

Suppose that we have designatedK distinct groups of data (i.e., single channels) for bias correction. Consider
a single groupk, containingm observations with error standard deviationso. Suppose that the bias model for
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that group is based onN predictors, and let theN×N matrix C denote an estimate of the globally averaged
covariances of those predictors. Then let

Lk =
[
(Bk

b )−1 +
m
s2

o
C

]1/2

(23)

whereBk
b is theN×N matrix of background error covariances associated with theN bias parameters for group

k. This expression is easy to compute prior to the minimization. We then define the change of variable for the
bias parameters by

c
b

= L(bb−b ) (24)

where the operatorL is block-diagonal with blocksLk,k = 1, . . . ,K defined by (23).

Extensive experimentation has shown that this change of variable for the parameter vector, when combined
with the standard change of variable for the state vector, provides an effective preconditioner for the joint
parameter/state minimization problem. The conjugate-gradient algorithm used for the minimization typically
requires the same number of iterations with or without bias parameters. There is no measurable increase in the
cost of each iteration, since the number of bias parameters is relatively small and the computational overhead
is therefore insignificant.

2.8 Bias correction of passive data

In some cases it is necessary to estimate biases for data that are not normally used in the analysis except for
quality control. For example, the ECMWF cloud-detection scheme for HIRS and AIRS data involves checks
on channels that are otherwise excluded from the analysis (McNally and Watts 2003). These channels must
be bias-corrected for the cloud detection scheme to be effective. Now that the bias correction is done jointly
with the state estimation in the variational analysis, it is unavoidable that channels needed for quality control
be included in the analysis.

Bias correction of otherwise passive data can be achieved by artificially inflating the observation error standard
deviations for those data. We will clarify this point with a simple scalar error analysis. Suppose that the number
of observations in a particular group of data ism, and that the observation error standard deviation assigned to
that group is such that

sxb
� so�m (25)

wheresxb
is the background error standard deviation, which we assume to be roughlyO(1). For a linear

analysis the error standard deviationsxa satisfies

1
s2

xa

≈ 1
s2

xb

+
1
s2

o
−→ sxa ≈ sxb

(26)

so that the impact on the state estimates at any particular location is negligible. On the other hand, for the
parameter estimation we have

1
s2
ba

≈ 1
s2
bb

+
m
s2

o
(27)

which, when combined with (19) gives

s
ba
≈ so√

N+m
� 1 (28)

which means that the impact on the parameter estimates is large. It is therefore possible to inflate the observation
error standard deviation for a group of data in such a way that the impact of the data on the state estimates is
negligible, but the bias parameters estimates are accurate all the same.
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3 Results

We now present results of an assimilation with variational bias correction applied to all available brightness
temperature data. All comparisons are made against the ECMWF 4D-Var assimilation system (Cy26r3) which
became operational on March 9, 2004. The sensors available to the system are listed in Table2. The experimen-
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Figure 1: NOAA-16 AMSUA brightness temperature departure statistics

104



DEE, D. P.: VARIATIONAL BIAS CORRECTION OF RADIANCE DATA IN THE ECMWF SYSTEM

tal system is identical to the operational system, except that the air-mass component of the bias for all sensors
and all channels is made adaptive. Scan bias correction is still performed prior to the assimilation, based on
the precomputed scan bias files used in operations. A number of additional channels are assimilated in the ex-
periment with inflated observation errors, as explained in the previous section (HIRS channels 1,2,3,8,9,10,13,
AMSU-A channel 4, AMSU-B channel 2, and a number of AIRS channels).
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Figure 2: NOAA-16 HIRS brightness temperature departure statistics
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Figure1 shows departure statistics for NOAA-16 AMSU-A brightness temperatures, computed over April 2004
for the Northern Hemisphere (top panels), Tropics (center panels), and Southern Hemisphere (bottom panels).
Biases are shown on the right, standard deviations on the left; solid curves are background departure statistics,
dashed curves are analysis departure statistics; black for the experiment (eid0), red for the reference (Cy26r3).
The vertical axes indicate channel numbers; data counts are printed along the vertical axes in the center.
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Figure 3: Radiosonde temperature departure statistics
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The first thing to note is that the biases in the analysis departures have all but disappeared in the experiment.
This shows that the inclusion of bias parameters in the variational analysis effectively reduces the mean depar-
tures for each channel, as expected. For most of the channels, the mean background departures are significantly
reduced as well. This implies that the new bias correction scheme actually improves the analyses, in the sense
that the ensuing short-term forecasts provide a better fit to future data. The most notable exception is channel
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Figure 4: Aircraft temperature departure statistics
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14, for which the background departures deteriorate quite a bit. This high-stratospheric channel is known to
be much less biased than the background itself, and for this reason is not subject to any air-mass dependent
bias correction in the operational system. The variational bias correction scheme cannot distinguish between
model biases and data biases, and will therefore attribute any model bias component of the mean background
departures to the observations. As a result, the data may be corrected in the wrong direction, and this can
reinforce the model biases in the stratosphere. The obvious fix in this case is to disallow the bias correction on
this channel, as is currently done in operations. Note also the slight deterioration in the Tropics for the mean
background departures in channels 10 and 11, which peak in the lower stratosphere. Standard deviations of the
departures are virtually unchanged in most channels, but slightly improved in the main tropospheric channels.
Finally, the data counts for most channels show that the quality control allows significantly more data into the
system, which is probably due to the overall reduction in background departures. The increase in AMSU-A
channel 5 data in the Southern Hemisphere, for example, is about 11%, which is quite large.
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Figure 5: 500 hPa geopotential height anomaly correlations, verified against operational analyses

Figure2 shows departure statistics for NOAA-16 HIRS. All HIRS channels are assimilated, since the cloud
detection scheme requires bias-corrected departures from all channels. For this reason channels 1,2,3,8,9,10,13
are used passively, i.e. with inflated observation errors, in order to keep their bias estimates up-to-date. De-
parture statistics for the passive channels are not particularly interesting, since they do not affect the analysis
directly except through the cloud detection. Departure statistics for the active channels (i.e., those for which
there are red curves) are generally slightly improved. The changes in data usage in the active channels are
probably mostly due to the cloud detection, which is sensitive to the bias correction. We note a global decrease
of about 1.2% in the use of the water vapor channels 11 and 12.

The fit to conventional observations provides an independent measure of the impact of the variational bias
correction on the quality of the analysis. Figures3 and 4 show, respectively, the fit to radiosonde and aircraft
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Figure 6: 100 hPa geopotential height anomaly correlations, verified against operational analyses

temperature measurements. From the mean analysis departures we can see that, roughly, the analysis at most
levels is on average about 0.2K warmer in the Southern Hemisphere and Tropics, and about 0.1K warmer in the
Northern Hemisphere. In the troposphere, biases with respect to aircraft observations are significantly reduced
at all levels, and this is true for analyses as well as backgrounds. Temperature biases with respect to radiosondes
in the troposphere are not uniformly smaller, although the reductions in biases at higher levels is impressive.

We next discuss the impact of the variational bias correction scheme on the medium-range forecast. Figure5
shows mean anomaly correlations of the 500hPa height forecasts verified against operational analyses, averaged
over 61 forecasts initialized at 12Z during the period 8 April – 7 June 2004. Red solid curves correspond to
the experiment (eid0); blue dashed curves to the control (Cy26r3). We note a very slight deterioration in
skill in the Southern Hemisphere (upper right panel), but a small improvement in the Northern Hemisphere
(upper left). The scores for Europe (lower left) and North America (lower right) are significantly improved.
At 100hPa (Fig.6) the scores are slightly better in the Southern Hemisphere as well. These results, when
considered together with the improved fit to temperature observations, suggest that the utilization of land-based
conventional data has improved. This could be an interesting positive effect of the better spatial and temporal
consistency among the different data sources enforced by the variational bias correction of satellite radiances.

We briefly turn to the impact of the variational bias correction scheme on forecast errors in the Tropics, verified
against radiosonde observations. Figure7 shows a small improvement in the vector wind forecast errors at
200hPa (left panels) and at 850hPa (right panels), for all lead times up to six days. Top panels display the
root-mean-square errors, middle panels show the mean errors, and bottom panels the error standard deviations.
Figure8 shows a deterioration in the 200hPa temperature forecasts with respect to radiosonde observations,
especially in the mean. This may be an effect of model errors at that level, which the variational bias cor-
rection wrongly attributes to the observations. Temperature forecast errors at 850hPa, on the other hand, are
significantly improved.
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Figure 7: Tropical vector wind forecast errors at 200 hPA and 850 hPa, verified against radiosonde obser-
vations. Individual panels show root-mean-square, mean, and standard deviation of the forecast errors as a
function of lead time.

4 Conclusions

We have described the implementation of an adaptive bias correction scheme for satellite radiances at the
ECMWF. The scheme requires that the bias in any given channel be expressed in terms of a small number
of unknown, global parameters. These bias parameters are then updated jointly and simultaneously with the
model state during the variational analysis. The adaptivity of the bias estimates can be controlled by adjusting
the background constraints for the bias parameters.

A major advantage of the adaptive scheme is that it has the potential to greatly simplify the manual bias tuning
procedures currently in use at the ECMWF. In addition, the estimation of the bias parameters jointly with
the model state has the theoretical advantage that the bias estimates are fully consistent with all observational
information available to the analysis. On the other hand, it is no longer possible to impose a separate (more
restrictive) data selection for bias estimation, as is done in the current scheme.

Results obtained with variational bias correction applied to all radiance data in an operational configuration of
the ECMWF data assimilation system are mostly positive. Departure statistics for used radiance data confirm
that mean analysis departures were greatly reduced compared to the control. More significantly, mean back-
ground departures were reduced as well for most channels on most sensors, and, as a result, the system was able
to ingest a larger volume of data. The adaptive bias correction led to a much better fit to radiosonde temperature
observations in the stratosphere and to aircraft temperatures throughout the troposphere. Anomaly correlations
of 500 hPa height forecasts verified against operational analyses improved significantly over North America and
Europe, suggesting a better use of observations over land. As a result, Northern Hemisphere scores improved
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Figure 8: Tropical temperature forecast errors at 200 hPA and 850 hPa, verified against radiosonde obser-
vations. Individual panels show root-mean-square, mean, and standard deviation of the forecast errors as a
function of lead time.

slightly overall, but a very small deterioration in forecast skill was noticeable in the Southern Hemisphere.
In the Tropics, wind forecasts (verified against radiosonde observations) improved slightly at 850 hPa and at
200 hPa, while temperature forecasts were better at 850 hPa but worse at 200 hPa.

We noted in some cases (e.g., in the top AMSU channels) that mean background departures increased as a
result of the adaptive bias correction. This may have been due to the presence of systematic model errors
that the variational scheme falsely attributes to observation bias. Unless systematic model errors are explicitly
accounted for in the data assimilation scheme, there is no general way to avoid this problem. After all, the
variational analysis must be told which parameters to adjust in order to minimize the departures. The 4D-Var
system at the ECMWF is being extended to allow the inclusion of model error terms in the analysis (Trémolet
2003), and experiments are currently underway to test this feature. In principle, the future system will support
simultaneous adjustments of initial conditions, observation bias parameters, and model error forcing. It remains
to be seen whether it is possible to design the constraints on all those additional degrees of freedom in such a
way that the different sources of error can be adequately separated and meaningful state estimates can still be
obtained.

Our first implementation of the variational bias correction scheme relied on the same linear predictor models
currently used for radiance bias correction at at ECMWF. There are some known problems with the configura-
tion of these models, and future investigations will consider more carefully the optimal selection of predictors
for each sensor and channel. We would prefer to replace the predictor-based models by more meaningful,
physically-derived error models (e.g. Watts 2004) as they become available. We also plan to include scan bias
parameters in the scheme, to further reduce the need for manual tuning.
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