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1. Introduction

a. The Lorenz-95 system

We will explore different data assimilation schemes using a low-dimensional dynamical
system introduced by Edward Lorenz in 1995. The system is given by

dl‘i

dt
where ¢ = 1,2...40, and cyclic boundary conditions are used zo = x4, T_1 = T39, T4 =
x1. The magnitude of the forcing is set to F' = 8. For this forcing the system is chaotic, i.e.
it has positive Lyapunov exponents. Lorenz (1995) concluded that similar error growth
characteristics to operational NWP systems are obtained if a time unit in the 1.95-system
is associated with 5 days. This scaling will be used here, too. Solutions of the system are
obtained by numerical integration with a fourth-order Runge-Kutta scheme using a 3-hour
time-step (At = 0.025). For the chosen forcing, the system has 13 positive Lyapunov
exponents, the largest corresponds to a doubling time of 2.1 days. The dynamics is
the same for each variable as eqn. (1) is invariant under the transformation i — i +
1. Variables fluctuate about the mean in a non-periodic manner with a climatological
standard deviation of o.i, = sigma_clim = 3.6. A perturbation of the initial condition
will grow with time and its leading edge propagates “eastward” (to higher indices) at
a speed of about 25 degrees/day — this corresponds to a shift of 14 indices in a (non-
dimensional) time unit. See Lorenz (1995) and Lorenz and Emanuel (1998) for a more
detailed discussion of the system.
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b. How to start the programmes

All programmes used in this tutorial have been coded in scilab. This is free software
available from http://scilabsoft.inria.fr and is quite similar to the commercial soft-
ware package matlab in many respects. Operations like matrix transponse and multipli-
cations can be coded easily and elegantly.

In order to run a scilab programme you have to

1. create a directory for temporary data: mkdir $SCRATCH/L95data
2. start scilab: cd Tutorial; scilab
3. integrate the system by typing exec(’nonlin.sci’,-1) in the scilab window.

4. now, any of the other programmes can be run (195demo.sci, di.sci, oi.sci,
kf.sci)



c. Illustration of Lorenz-95 dynamics

Explore the chaotic dynamics of the Lorenz-95 system (195demo.sci).
Issues to look at:

o “westward” (towards lower indices) phase velocity of “highs” and “lows”
(Hovmueller plot of solution)

e “eastward” (that is to higher indices) propagation of perturbations (Hovmueller
plot of ensemble spread and plumes at different locations). Use localized
perturbations.

e growth of errors with forecast range (error growth curve and plumes).

2. Data assimilation experiments

The model has been run for many time steps (nonlin.sci) to obtain a simulated truth
($SCRATCH/L95data/traj040.truth.025rk4.r8). Observations are constructed by tak-
ing the values from the truth run and adding noise (normal distribution with zero mean
and specified standard deviation).

Two different observation networks are considered:

e Observation network 1 has an observation at every site 1-40.

e Observation network 2 has gaps of two unobserved sites every 5 sites. Thus,
there are observations at sites 3, 4, 5, 8,9, 10, ... 38, 39, 40; this amounts to
3 x 40/5 = 24 observations in total.

The observation error standard deviation is o, = 0.150¢;, in both networks.
Three data assimilation schemes can be run which are all of the form

x* =x"+ K(Hx" —y), (2)

where the gain matrix K is given by

scheme gain matrix

direct insertion H'

optimum interpolation BHT(R + HBH™)™!
Kalman filter P/H"(R+HP/H")!

The covariance matrix B for the optimum interpolation scheme is obtained from fore-
cast minus truth differences and exploits the symmetry of the dynamics and observational
network (Files B6h1.r8 and B6h2.r8 for networks 1 and 2, respectively). The covari-
ance matrix is “tuned” for a 6-hourly observation frequency and observation errors with
0o = 0.150}im.



The evolution of the covariance matrix in the Kalman filter is described by an alter-
nating sequence of forecast steps and analysis updates (see also Mike Fisher’s lecture on
Kalman filters). The covariance update can be written as

B —1
(Py)" = (P]) +HIR;H, 3)

where the index j denotes operators at time ¢;. The covariance forecast from time ¢; to
the next assimilation cycle at ¢;4, is given by
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where M denotes the propagator of the tangent-linear model from time ¢; to time ¢;;; =
t; + At. The matrix Q represents a model error covariance term that increases the

covariances (see issues under Kalman filter below).

a. Direct insertion — issues

e How sensitive is the forecast to the actual realization of the observational error?
Start with a sample of 10 forecasts and try different seeds for the random number
generator. (You can use the cursor-up-key to scroll through the history of

commands in scilab).

e How many forecasts are required to estimate the rms error with an accuracy of
10% or 1%?

e Investigate how errors depend on the temporal frequency of observations.

b.  Optimum interpolation — issues

e Start with the identity matrix as estimate for B by setting *file from which B
is read’ to none. Compare errors with direct insertion.

e “Tune” the background error variances using a scaled identity matrix for B. This
can be done by keeping *file from which B is read’ to none and setting
’sigma b(DA-estimate)/ sigma b’) to the desired value of oy.

e Now, rerun using a good estimate of B by setting *file from which B is read’
to B6h1.r8 or B6h2.r8 for observing network 1 and 2, respectively.

e Investigate the importance of having a good estimate of the correlations by

— using the correct B but removing all (or some) of the off-diagonal elements.
Set ’localize bg-err covariances’ to y and set distance for
cut-off’ to the distance at which the correlation is truncated to zero (1
corresponds to a diagonal B).



— using a wrong correlation model and the correct variances by using the files
C6h1.r8 for observation network 1 and C6h2.r8 for observation network 2
under ’file from which B is read’.

e Investigate how the variance estimate affects the quality of the analysis and
forecasts. Use again the correct B and scale the matrix using a factor between 0.5
and 2 (under ’sigma b(DA-estimate)/ sigma b’).

e Investigate the sensitivity to the estimate of observation error. Scale the
DA-estimate of o, between 0.5 and 2 (under ’sigma_o(DA-estimate)/ sigma o’).

e Change the time interval between observations / assimilation cycles to 3 hours or
12 hours but keep the B tuned for 6-hourly data ( B6hl.r8 or B6h2.r8). Can you
scale B to improve the scheme? Do you need to increase or decrease the variances
for a longer /shorter time interval?

c. FExtended Kalman Filter — issues

e Run the KF with default settings. How many cycles are required to spin up the
system and obtain a good estimate of P/?

e Examine the sensitivity to the specification of the model error term o,? Can you
cause the filter to diverge? Try to find an optimal o,.

Why is the performance best for nonzero model error term despite the fact that a
perfect forecast model is used?

e Try multiplicative variance inflation by setting ’sigma b(DA-estimate)/
sigma_b’ to a value larger than 1 and o, = 0. Can you find an optimal inflation
factor?

e Explore the relevance of background error correlations in the KF by truncating
P/. Set *localize bg-err covariances’ to y and set ’distance for
cut-off’ to the distance at which the correlation is truncated to zero (1
corresponds to a diagonal PY).

d. Intercomparison — issues

e Compare analysis errors and forecast errors for optimum interpolation with
diagonal and full B and the KF with diagonal and full P/.

e Do this for both observing networks. Does the relative performance (using the
standard optimum interpolation with full B as reference) of the different schemes
depend on the observing network?



3. Outlook

Are you already addicted to playing with Lorenz-957 There are more aspects that did not
fit in a short tutorial. You may want to modify the code yourself. Potentially interesting
issues are

e model error

e more complicated observing networks, e.g. temporally varying observation
coverage (see lecture on observation targeting)

e biased observations and bias estimation
e observational quality control

e variational data assimilation (tangent-linear and adjoint have already been coded,
see kf .sci)

e comparison of different techniques for covariance estimation

ensemble data assimilation algorithms

The installation of scilab should be straightforward on most hardware platforms. I
welcome feedback on the tutorial and the scilab-code in general and bugs in particular —
I buy you a pint of beer for each bug that you report back to me.
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