&  Prospects for assimilating
Cloudy radiances from AIRS
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c Cloudy AIRS radiances and NWP

o L, =h,, (Temp, Surf, Gas, Cloud, ..)

o Removal

STATISTICS FOR RADIANCES FRCM AQUA / AIRS - 168
NUMBER OF CBSERVATIONS PER GRID SQUARE ()
DATA PERICD = 2004053118 - 2004061912, HOUR =  ALL
EXP = 0001
Min: 1 Max: 140 Mean: 53577
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ﬂ, Cloudy AIRS radiances and NWP (2-

o L, =h, (Temp, Surf, Gas, i)

o Removal

o Partial assimilation
o L, = h,! (Temp, Surf, Gas) + h, 2 (Temp, Gas) . g,, (Cloud)
o g, ( ) from spatial analysis of observation (e.g. N*),

spectral signature + add. information
(e.g. CO2-slicing, sink variable in Var, ...)
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c Cloudy AIRS radiances and NWP (3-

L, = h, (Temp, Surf, Gas, N

o Removal

o Partial assimilation
oL, = hv1 (Temp, Surf, Gas) + hv2 (Temp, Gas) . g,, ( )
o g, ( ) from spatial analysis of observation (e.g. N*),
spectral signature + add. information
(e.g. CO2-slicing, sink variable in Var, ...)
o Full Assimilation

o Prognostic approach

g cloudy AIRS radiances
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o Diagnostic approach



c Cloudy AIRS radiances and NWP (4_

o Full Assimilation
o Diag: Optimise cloud variables directly (e.g. using g, ( ))
o Estimation of error statistics for NWP cloud variables
o Infinite: nudging (e.g. GEO)
o 3/4D-Var: on-going work (e.g. Greenwald et al. 2004)

o Prog: Optimise standard NWP variables, based on hypothesis:
= {(Temp, Gas) + ¢

o Filter
o Temp and Gas variables have longer spatial and temporal

time scales than C ones
o How do we build {?
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c Observation operator (1/4)

o L, =h, (Temp, Surf, Gas, Cloud)

= R; 0 @ (Temp, Surf, Gas) + ¢

v

o O : Diagnostic cloud scheme

o Subgrid-scale convection
(Tiedtke 1989, Lopez and Moreau 2004)
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c Convection scheme -

o Example of validation: 4-month climate runs (%)
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Tiedtke (1989)
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ﬁ‘ gy Observation operator (2/4) -

o #

= h,, (Temp, Surf, Gas, Cloud)
= R; 0 @ (Temp, Surf, Gas) + ¢

v

o O : Diagnostic cloud scheme

o Subgrid-scale convection
(Tiedtke 1989, Lopez and Moreau 2004)
o Large-scale (Tompkins and Janiskova 2004)
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w"' Large-scale cloud scheme

o Example of validation: Total column water (liquid+ice)
averaged over 19 forecasts at the 12-hour forecast range.
First two weeks of March 2003, L60T159 resolution.

Prognostic Diagnostic
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lafitucea
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]
ﬁ‘ gy Observation operator (3/4) -

o L, =h, (Temp, Surf, Gas, )

= R; 0 @ (Temp, Surf, Gas) + ¢

v

o O : Diagnostic cloud scheme
o Subgrid-scale convection

(Tiedtke 1989, Lopez and Moreau 2004)
o Large-scale (Tompkins and Janiskova 2004)

o R;: Radiation model
o Cloud extension of RTTOV (Eyre 1991; Chevallier et al.
2001, 2002; Saunders et al. 2002)
o IR: Multilayer cloud overlap assumption (Raisanen 1998)
o MW: scattering (Moreau et al 2003)
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& Forecasted imagery: WV

o 42-hour forecast vs. observed

Saturday 25 October 2003 12UTC ECMWF Forecast t+42 VT :Monday 27 October 2003 05UTC

Satellite Image, Water va pour Satellite Image Monday 27 October 2003 0500UTC
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& Forecasted imagery: IR

o 42-hour forecast vs. observed

Satumday 25 Octobser 2003 12LTC ECMWF Forecast t+42 WT:Monday 27 October 2003 08UTC

Satelite Image, First infrared band Satellite Image Monday 27 October 2003 0600UTC

cloudy AIRS radiances
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ﬁ' Observation operator (4/4) -

o L, =h, (Temp, Surf, Gas, )
= R; o @ (Temp, Surf, Gas)

o @ : Diagnostic cloud scheme
o Subgrid-scale convection
(Tiedtke 1989, Lopez and Moreau 2004)
o Large-scale (Tompkins and Janiskova 2004)

o R;i Radiation model
o Cloud extension of RTTOV (Eyre 1991; Chevallier et al.
2001, 2002; Saunders et al. 2002)
o IR: Multilayer cloud overlap assumption (Raisanen 1998)
o MW: scattering (Moreau et al 2003)

ing cloudy AIRS radiances
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o Full AD and TL codes of ® and R; have been developed for
use in a variational context




c Observation operator: AIRS _

o L, =h, (Temp, Surf, Gas, Cloud)

v
=Ry 0 @ (Temp, Surf, Gas)
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o Over the NWP space/time scales, cloud processes are prone
to non-linearity

o Current 3/4D-Var systems are based on linearity and
Gaussianity hypotheses

o Handling strong non-linearity may be very costly (e.g. Monte
Carlo)

o Strong non-linearity makes the error statistics non-Gaussian
o High-order moments of the error pdf should be taken
info account...
o .. but are difficult to estimate

o Are we sentenced to nudging?
o Is there any useful cloud observation that is not
affected by strong non-linearities?
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&> Linearity of H: method (1/2) -

o We want to investigate the linearity of the observation
operator (h,, = Ry o @) for the 324 nrt AIRS channels

o Linearity is studied with respect to T and q perturbations
about the size of analysis increments (from ECMWF
background error matrix)

Model data are taken at cloud location based on Meteosat
WV mask

O

o At each model grid point we compute the correlation
between linear increments (H,.5x) and non-linear increments
(h,, (x+8x) - h,(x) ) using Monte-Carlo perturbations 5x

ting cloudy AIRS radiances
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&S Linearity of H:

30 November 2002
12 UTC
Meteosat WV cloud mask

vallier, June 2004
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&S Linearity of H : results (1/2) -

o Correlation between linear increments (H,,.5x) and non-linear
increments (h,, (x+8x) - h,(x) ). Hemispheric data.
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&> Linearity of H : results (2/2) -

o Near-linear channels @ 45, 6.3 and 14.3 micron

o Results marginally improved if g standard deviations are
devided by 2

o Results hardly changed if correlations are performed on
radiances rather than on brightness temperatures

o Tough check
o Uses Meteosat WV cloud mask
o Near-linear channels may be found for lower-peaking
channels in the absence of high clouds
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&S 1D-Var: method (1/2)

o Selection of 35 near-linear tropospheric AIRS channels,
exempt of solar effects

cloudy AIRS radiances
- June 2004
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&S 1D-Var: method (2/2) -

o Real AIRS observations during Nov 2002 and Feb 2003 over
Europe

o Cloud detection from the McNally and Watts (2003) scheme
o Observations rejected if clouds in less than 22/35 channels

o Bayesian linear retfrieval of T and g
o T and q error statistics from ECMWF oper. (Holm et al.
2002)
o Observation errors std. = [model - obs] std.
o Observation error correlations = 0.8

o Bias-correction based on departure mean bias on
30/11/2002

ing cloudy AIRS radiances
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o Validation against 00 and 12 UTC radiosondes
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1D-Var: AIRS results (1/2) -

1D-Var vs. European radiosondes, Nov 2002 and Feb 2003

If T<243K use Vaisala RS90 only
o ~ 250 matches in upper troposphere
o ~ 2300 matches in lower troposphere
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¥>)
S
S
kS
S
)
X
N
3
3

r, June 2004

1D-Var: AIRS results (2/2) -

o Degree of freedom for signal (e.g. Rodgers 2000):
o ~02forT
o ~10 forg

o Average self-sensitivity for observation (e.g. Cardinali et al.
2003):
o ~6%at 6.3 micron
o ~ 1% at 14.3 micron



&S 1D-Var+4D-Var: TMI results ]-
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Better track (up to 48h)
and MSLP minimum forecast
with the linear assimilation of 22GHz BT's
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S summary (1/2) -

o Forthcoming operational assimilation of hydrometeors in the
ECMWF 4D-Var
o Focus on g (and T) information

o Restriction to near-linear satellite channels
o 'Only’ technical changes in operational 4D-Var
o Reduced computational burden
o Better/easier handling of errors (biases, std. dev.) in
Bayesian framework
o Small increments

g cloudy AIRS radiances
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o
A 4

cloudy AIRS radiances
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Summary (2/2)

o MW: 22 GHz (water cloud+rain)

o In good shape

o Re-organization of 4D-Var observation operator

o Plans for extension to IR: 4.5, 6.3 and 14.3 micron
o AIRS (ice clouds)
o ... or sink variable (T. McNally's talk)?
0 .. or both?
o 6.3 micron from geostationary satellites (ice clouds)



c 1D-Var: Meteosat results (1-

o Observations = cloudy Meteosat WV

o 1D-Var vs. European radiosondes, Nov 2002 and Feb 2003
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Pressure Level (hPa)

1D-Var: Meteosat results (2-
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