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Prospects for assimilating
Cloudy radiances from AIRS

Frédéric Chevallier
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And …
Satellite section

P. Bauer
E. Moreau
J.-N. Thépaut
P. Watts
…

Physical aspects section
M. Janiskova
P. Lopez
J.-J. Morcrette
A. Tompkins
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Cloudy AIRS radiances and NWP (1/4)

Lν = hν (Temp, Surf, Gas, Cloud, …)

Removal

14.33 micron
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Cloudy AIRS radiances and NWP (2/4)

Lν = hν (Temp, Surf, Gas, Cloud, …)

Removal

Partial assimilation 

Lν = hν
1 (Temp, Surf, Gas) + hν

2 (Temp, Gas) . gν (Cloud)

gν (Cloud) from spatial analysis of observation (e.g. N*), 
spectral signature + add. information 
(e.g. CO2-slicing, sink variable in Var, … )
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Cloudy AIRS radiances and NWP (3/4)

Lν = hν (Temp, Surf, Gas, Cloud, …)

Removal

Partial assimilation 

Lν = hν
1 (Temp, Surf, Gas) + hν

2 (Temp, Gas) . gν (Cloud)

gν (Cloud) from spatial analysis of observation (e.g. N*), 
spectral signature + add. information 
(e.g. CO2-slicing, sink variable in Var, … )

Full Assimilation

Prognostic approach

Diagnostic approach
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Cloudy AIRS radiances and NWP (4/4)

Full Assimilation

Diag: Optimise cloud variables directly (e.g. using gν (Cloud) )

o Estimation of error statistics for NWP cloud variables
o Infinite: nudging (e.g. GEO)
o 3/4D-Var: on-going work (e.g. Greenwald et al. 2004)

Prog: Optimise standard NWP variables, based on hypothesis:

Cloud = f(Temp, Gas) + ε

o Filter
o Temp and Gas variables have longer spatial and temporal 

time scales than C ones
o How do we build f?
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Observation operator (1/4)

Lν = hν (Temp, Surf, Gas, Cloud)
= RT o Φ (Temp, Surf, Gas) + ε

Φ : Diagnostic cloud scheme
Subgrid-scale convection 

(Tiedtke 1989, Lopez and Moreau 2004)
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Convection scheme

Example of validation: 4-month climate runs (%)

Lopez and Moreau (2004)

Tiedtke (1989)
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Observation operator (2/4)

Lν = hν (Temp, Surf, Gas, Cloud)
= RT o Φ (Temp, Surf, Gas) + ε

Φ : Diagnostic cloud scheme
Subgrid-scale convection 

(Tiedtke 1989, Lopez and Moreau 2004)
Large-scale (Tompkins and Janiskova 2004)
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Large-scale cloud scheme

Example of validation: Total column water (liquid+ice) 
averaged over 19 forecasts at the 12-hour forecast range. 
First two weeks of March 2003, L60T159 resolution.

Prognostic Diagnostic

Tiedtke 1993 Tompkins and Janiskova (2004)
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Observation operator (3/4)

Lν = hν (Temp, Surf, Gas, Cloud)
= RT o Φ (Temp, Surf, Gas) + ε

Φ : Diagnostic cloud scheme
Subgrid-scale convection 

(Tiedtke 1989, Lopez and Moreau 2004)
Large-scale (Tompkins and Janiskova 2004)

RT: Radiation model
Cloud extension of RTTOV (Eyre 1991; Chevallier et al. 
2001, 2002; Saunders et al. 2002)
IR: Multilayer cloud overlap assumption (Raisanen 1998)
MW: scattering (Moreau et al 2003)
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Forecasted imagery: WV

42-hour forecast vs. observed

Different grey scales



As
sim

ila
tin

g 
clo

ud
y 

AI
RS

 ra
di

an
ce

s
F.

Ch
ev

al
lie

r, 
Ju

ne
 2

00
4

Forecasted imagery: IR

42-hour forecast vs. observed

Different grey scales
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Observation operator (4/4)

Lν = hν (Temp, Surf, Gas, Cloud)
= RT o Φ (Temp, Surf, Gas)

Φ : Diagnostic cloud scheme
Subgrid-scale convection 

(Tiedtke 1989, Lopez and Moreau 2004)
Large-scale (Tompkins and Janiskova 2004)

RT: Radiation model
Cloud extension of RTTOV (Eyre 1991; Chevallier et al. 
2001, 2002; Saunders et al. 2002)
IR: Multilayer cloud overlap assumption (Raisanen 1998)
MW: scattering (Moreau et al 2003)

Full AD and TL codes of Φ and RT have been developed for 
use in a variational context
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Observation operator: AIRS

Lν = hν (Temp, Surf, Gas, Cloud)
= RT o Φ (Temp, Surf, Gas)

PROG -AIRS DIAG (hν) - PROG
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Non-linearity: so what?
Over the NWP space/time scales, cloud processes are prone 
to non-linearity

Current 3/4D-Var systems are based on linearity and 
Gaussianity hypotheses 

Handling strong non-linearity may be very costly (e.g. Monte 
Carlo)

Strong non-linearity makes the error statistics non-Gaussian
High-order moments of the error pdf should be taken 
into account…
… but are difficult to estimate

Are we sentenced to nudging?
Is there any useful cloud observation that is not 
affected by strong non-linearities?
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Linearity of H: method (1/2)
We want to investigate the linearity of the observation 
operator (hν = RT o Φ) for the 324 nrt AIRS channels

Linearity is studied with respect to T and q perturbations 
about the size of analysis increments (from ECMWF 
background error matrix)

Model data are taken at cloud location based on Meteosat
WV mask 

At each model grid point we compute the correlation 
between linear increments (Hν.δx) and non-linear increments 
(hν (x+δx) – hν(x) ) using Monte-Carlo perturbations δx
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Linearity of H: method (2/2)

30 November 2002 
12 UTC

Meteosat WV cloud mask

0 = NL 1 = L

Correlation (x,y)



As
sim

ila
tin

g 
clo

ud
y 

AI
RS

 ra
di

an
ce

s
F.

Ch
ev

al
lie

r, 
Ju

ne
 2

00
4

Linearity of H : results (1/2)

4.5 micron

Number 
of points

Correlation between linear increments (Hν.δx) and non-linear 
increments (hν (x+δx) – hν(x) ). Hemispheric data.

14.3 micron 6.3 micron
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Linearity of H : results (2/2)
Near-linear channels @ 4.5, 6.3 and 14.3 micron

Results marginally improved if q standard deviations are 
devided by 2

Results hardly changed if correlations are performed on 
radiances rather than on brightness temperatures

Tough check
Uses Meteosat WV cloud mask
Near-linear channels may be found for lower-peaking 
channels in the absence of high clouds
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1D-Var: method (1/2)
Selection of 35 near-linear tropospheric AIRS channels, 
exempt of solar effects
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1D-Var: method (2/2)
Real AIRS observations during Nov 2002 and Feb 2003 over 
Europe

Cloud detection from the McNally and Watts (2003) scheme

Observations rejected if clouds in less than 22/35 channels

Bayesian linear retrieval of T and q
T and q error statistics from ECMWF oper. (Holm et al. 
2002)
Observation errors std. = [model – obs] std.
Observation error correlations = 0.8
Bias-correction based on departure mean bias on 
30/11/2002

Validation against 00 and 12 UTC radiosondes
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1D-Var: AIRS results (1/2)
1D-Var vs. European radiosondes, Nov 2002 and Feb 2003

If T<243K use Vaisala RS90 only
~ 250 matches in upper troposphere 
~ 2300 matches in lower troposphere
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1D-Var: AIRS results (2/2)
Degree of freedom for signal (e.g. Rodgers 2000):

~ 0.2 for T
~ 1.0 for q

Average self-sensitivity for observation (e.g. Cardinali et al. 
2003):

~ 6% at  6.3 micron
~ 1% at 14.3 micron
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1D-Var+4D-Var: TMI results
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GERRY TRACK FORECAST (BASE: 2003021312)
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BT w 22GHz
BT
RR screening
Control
Observed 

OBS

Moreau et al. (2004)
Marecal and Mahfouf (2002)

FC track for cyclone
‘GERRY’

CTRL

Better track (up to 48h) 
and MSLP minimum forecast 

with the linear assimilation of 22GHz BT’s
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Summary (1/2)

Forthcoming operational assimilation of hydrometeors in the 
ECMWF 4D-Var

Focus on q (and T) information

Restriction to near-linear satellite channels 
‘Only’ technical changes in operational 4D-Var
Reduced computational burden
Better/easier handling of errors (biases, std. dev.) in 
Bayesian framework
Small increments
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Summary (2/2)

MW: 22 GHz (water cloud+rain)
In good shape
Re-organization of 4D-Var observation operator

Plans for extension to IR: 4.5, 6.3 and 14.3 micron
AIRS (ice clouds) 

o … or sink variable (T. McNally’s talk)?
o … or both?

6.3 micron from geostationary satellites (ice clouds)
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1D-Var: Meteosat results (1/2)
Observations = cloudy Meteosat WV

1D-Var vs. European radiosondes, Nov 2002 and Feb 2003



As
sim

ila
tin

g 
clo

ud
y 

AI
RS

 ra
di

an
ce

s
F.

Ch
ev

al
lie

r, 
Ju

ne
 2

00
4

Cloudy vs clear
Clear quadrants Cloudy quadrants

1D-Var: Meteosat results (2/2)

~ 200 matches in UT 
~ 1400 matches in LT

~ 250 matches in UT 
~ 1500 matches in LT
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