Assimilation of advanced sounders at NCEP

John C. Derber, Russ Treadon, and Paul VanDelst NOAA/NWS/NCEP/EMC

Improved satellite data assimilation

- Goals
 - Extract more information from observations
 - Prepare for the new data sources
 - Improve NWP guidance
- Unified approach with assimilation and data
 - Assimilation techniques
 - Radiative transfer
 - Data handling and quality control

Assimilation Techniques

- Situation dependent background error covariances
- Additional analysis variables (cloud water/ice, ozone, CO2, SST, LST, snow, etc.)
- Improve balance constraints between analysis variables (moist variables)
- Include time variability (simple 4DVAR)
- Improve use of conventional (especially surface data) and radar data
- Improve forecast models

Isotropic Error Correlation in Valley Plotted Over Utah Topography

obs influence extends into mountains indiscriminately

Anisotropic Error Correlation in Valley Plotted Over Utah Topography

obs influence restricted to areas of similar elevation

Anisotropic Error Correlation on Slope Plotted Over Utah Topography

obs influence restricted to areas of similar elevation

Radiative transfer

- Enhance modular RT system through JCSDA (VanDelst, Yang)
- Inclusion of cloud water and precipitation effects in microwave and IR (Bennartz, Weng, Gasiewski, Liou)
- Improved microwave (Okamoto, Yan and Weng) and IR (VanDelst) oceanic surface emissivity

Number Used in 2x2deg for 1-month AMSU- A4&A5 NOAA15

Current

New

28 June 2004

ECMWF workshop on Assimilation of high spectral resolution sounders NCEP

Preparation for instruments

- Data flow and format
- Data volume
- Instrument characteristics
- Availability after launch
- Stability of operations
- Quality control
- Monitoring and evaluation

Primary New Satellites

- SSM/IS
- AQUA/TERRA
- WindSat
- NPP
- COSMIC
- METOP
- NPOESS
- GOES-R

- Conical microwave
- High resolution IR
- Microwave polarimetry
- GPS radio-occultation
- High resolution imagers
- Ozone (OMPS, etc.)

AIRS assimilation

- Using current operational SSI analysis system
- Updates to radiative transfer
 - Updated microwave and IR LBL calculations
 - VanDelst's high spectral resolution ocean surface emissivity (similar to V. Sherlock)

AIRS quality control/data selection

- Equal area data selection based on:
 - Likelihood of passing QC
 - Center of box
 - Smallest time difference
- Weighting of instruments within data box
 - AIRS heavily weighted relative to HIRS
 - AMSU-A instruments equally weighted
- IR QC based on estimating cloud top and percentage from ΔT_b

28 June 2004

AIRS data

- 254 out of 281 channels used
 - 73-86 removed (channels peak too high)
 - 1937-2109 removed (non-LTE)
 - 2357 removed (large obs-background diff.)
- Shortwave channels during day
 - (wavenumber > 2000) down weighted
 - (wavenumber > 2400) removed

AIRS observational errors

AQUA impact studies

- Test period 10 Mar − 5 Apr 2004
- Uses data operational at time of experiment
- Mass storage problems on our machine, so some incomplete evaluation
- Experiments
 - Current operational
 - Current + AIRS
 - Current + AQUA AMSU
 - Current + AIRS + AQUA AMSU (underway)

AIRS Comments

- Results with both AIRS and AQUA AMSU similar so far
- AIRS data used when radiances clear (above and between clouds) 38 % of thinned data used
- To date little impact of AIRS data
- Adds 7-8 minutes to analysis wall time
- Impact studies continuing

Final Comments

- Improvements in assimilation results dependent on all components of assimilation system
 - Development of next generation GSI analysis system with situation dependent background errors
 - Improvements to RT, forecast models, bias correction, quality control and data selection procedures
 - Incorporation of many new microwave, IR, GPS based sensors (including high spectral resolution IR sensors)
- Use of data must also satisfy operational constraints concerning timeliness and computational cost.

Final Comments

- To date, high spectral resolution IR radiances have not shown significant impact on our system
- Many additional experiments could be performed:
 - Superchannels
 - Principle components
 - Cloud cleared radiances
 - Higher spatial resolution
 - Different channel selection
- Where does this fit is priorities?

