Simulating infrared limb radiances from MIPAS in the ECMWF system

Niels Bormann

Sean Healy, Marco Matricardi, Frédéric Chevallier

European Centre for Medium-range Weather Forecasts (ECMWF)

Outline

- Introduction: MIPAS
- RTMIPAS: Fast radiative transfer model for MIPAS
- 1DVAR simulations
- Outlook and outstanding issues

Outline

- Introduction: MIPAS

- RTMIPAS: Fast radiative transfer model for MIPAS
- 1DVAR simulations
- Outlook and outstanding issues

MIPAS characteristics

MIPAS: Michelson Interferometer for Passive Atmospheric

C

MIPAS noise characteristics

 \mathbf{C}

Simulated MIPAS spectrum at tangent height 21 km

MIPAS products

- Profiles routinely available from ESA's near-realtime processing:
 - Temperature
 - H₂O, O₃, HNO₃, CH₄, N₂O, NO₂
- Ozone profiles have been assimilated operationally at ECMWF from 7 October 2003 to 26 March 2004.
- Due to mechanical problems with the instrument, MIPAS (and the data processing) is currently being reconfigured and no near-realtime products are available.

Outline

- Introduction
- **RTMIPAS:** Fast radiative transfer model for MIPAS
- 1DVAR simulations
- Outlook and outstanding issues

RTTOV/RTMIPAS methodology

RTMIPAS is a new fast radiative transfer model for MIPAS data, following RTTOV methodology.

Main characteristics:

- Atmosphere on 81 fixed pressure levels.
- Parameterisation of convolved level-to-space transmittances through regression models for effective layer optical depths.
- Regressions derived from results of line-by-line computations for a suitable set of training profiles.
- Regressions for all MIPAS pseudo-channels below 2000 cm⁻¹ (43,205 channels).
- Humidity and ozone variable, other gases fixed.

RTMIPAS methodology: What are the main differences to RTTOV?

Height [km]

- Limb geometry:
 - Raytracing required.

- Layers crossed (up to) twice -> twice as many regressions.

- <u>Predictors</u>: Revised set of predictors, based on scaling with layer path lengths instead of Sec(zenith angle).
- Field of View:

Account for FOV in the vertical through cubic fit through 34 pencil beam radiances.

RTMIPAS methodology: **Predictors for fast layer optical depths**

Based on predictor set for nadir models, but with some changes for limb view – more details on request!

Predictor	Fixed gases	Water vapour	Ozone	Water vapour
number		(line)		(continuum)
1	Δŝ	$\Delta \tilde{s} \tilde{W}_r$	$\Delta \widetilde{s} \widetilde{O}_r$	$\Delta \tilde{s} \tilde{W}_r^{cq} / \tilde{T}_r^{cq}$
2	$\Delta \hat{s}^2$	$\Delta \tilde{s} \tilde{W}_r \tilde{T}_r$	$\Delta \tilde{s} \tilde{O}_r \tilde{T}_r$	$\Delta ilde{s} ilde{W}^{ ext{cq}}_r / (ilde{T}^{ ext{cq}}_r)^2$
3	$\Delta \tilde{s} \tilde{T}_r$	$\Delta \tilde{s} \tilde{W}_r \tilde{T}_r^2$	$\Delta \tilde{s} \tilde{O}_r \tilde{T}_r^2$	$\Delta ilde{s} (ilde{W}^{ ext{co}}_{r})^{2} / ilde{T}^{ ext{co}}_{r}$
4	$\Delta \tilde{s} \tilde{T}_r^2$	$\Delta ilde{s} ilde{W}_r / \sqrt{ ilde{W}_w}$	$\Delta \tilde{s} \tilde{O}_r / \sqrt{\tilde{O}_w}$	$\Delta ilde{s} (ilde{W}_r^{\scriptscriptstyle ext{\tiny CG}})^2 / (ilde{T}_r^{\scriptscriptstyle ext{\tiny CG}})^4$
5	$\Delta \tilde{s} \tilde{T}_r^3$	$\Delta \tilde{s} \tilde{W}_r \sqrt{\tilde{W}_w}$	$\Delta \widetilde{s} \widetilde{O}_r \sqrt{\widetilde{O}_w}$	
6	$\Delta \tilde{s} \tilde{T}_r^4$	$\sqrt{\Delta ilde{s} \ ilde{W}_r}$	$\sqrt{\Delta \widetilde{s} \ \widetilde{O}_r}$	
7	$\Delta \tilde{s}^{rac{3}{2}}\sqrt{\tilde{T}_r}$	$\sqrt{\Delta ilde{s} \ ilde{W}_r} \ ilde{T}_r$	$\sqrt{\Delta \widetilde{s} \ \widetilde{O}_r} \ \widetilde{T}_r$	
8	Ϋ́,	$\sqrt{\Delta \widetilde{s} \ \widetilde{W}_r}/\sqrt{\widetilde{W}_w}$	$(\Delta \tilde{s} \tilde{O}_r)^{1.5} / \sqrt{\tilde{O}_w}$	
9	$ ilde{T}_r^2$	$\sqrt{\Delta ilde{s} \ ilde{W}_r} \ \sqrt{ ilde{W}_{tw}}$	$\sqrt{ ilde{O}_{tw}}$	
10	$ ilde{T}_w$	$(\Delta \widetilde{s} \ \widetilde{W}_r)^2$	$ ilde{O}_{\ell w}^2$	
11	$ ilde{T}_{w}^{2}$	$\sqrt{ ilde W_w}$	$\sqrt{ ilde{O}_w}$	
12		$ ilde{W}^2_{ u}$	\widetilde{O}_w^2	
13			$\Delta \tilde{s} \tilde{T}_r^3$	

RTMIPAS development

Transmittance data used for training:

- Line-by-line model: Reference Forward Model (RFM, Uni. Oxford)
- Calculations for:
 - 46 diverse profiles, sampled from ERA-40 data, optimising the variability above 550 hPa (Chevallier et al. 2002).
 - 34 pencil beams with tangent points at selected pressure levels.
- Separate database for water vapour continuum model (using CKD2.4).

Validation based on comparison with RFM results for:

- 46 training profiles
- 53 independent profiles, also sampled from ERA-40 data.

Validation: RTMIPAS-RFM radiances, standard deviation to noise ratio Means of 40 channels, training profile set

Validation: RTMIPAS-RFM radiances, standard deviation to noise ratio Maxima of 40 channels, training profile set

Validation: RTMIPAS-RFM radiances, histogram of standard deviation to noise ratio for selected pencil beams

(training profile set)

Standard deviation to noise ratio

Validation: RTMIPAS-RFM radiances, bias to noise ratio Minima of 40 channels, training profile set

Validation: RTMIPAS-RFM radiances, bias to noise ratio Means of 40 channels, training profile set

Validation: RTMIPAS-RFM radiances, bias to noise ratio Maxima of 40 channels, training profile set

Validation: RTMIPAS-RFM radiances, histogram of bias to noise ratio for selected pencil beams

Bias to noise ratio

Validation: RTMIPAS-RFM transmittances, histogram of maximum RMS difference for selected pencil beams (training profile set)

C

Validation: RTMIPAS-RFM radiances, standard deviation to noise ratio Means of 40 channels, independent profile set Wavelength [micron] 14.5 12 6.7 5.3 13 11 10 9.5 g 8.5 7.5 7 6.3 6 5.7 5.5 5 0.03 Standard deviation to noise ratio, means of 40 channels 0.1 Tangent pressure [hPa] 0.3 1 3 10 30 100 300 925 1375 1450 2000 700 775 850 1525 1000 1075 1150 1225 1300 1600 1675 1750 1825 1900 Wavenumber [cm⁻¹] 0.2 1.6 2.0 2.2 0.0 0.4 0.6 0.8 1.0 1.2 1.4 1.8

Validation: RTMIPAS-RFM radiances, standard deviation to noise ratio Maxima of 40 channels, independent profile set

Validation: RTMIPAS-RFM radiances, standard deviation to noise ratio Maxima of 40 channels, training profile set

RTMIPAS summary

- A regression-based approach to transmittance modelling has been successfully adapted to MIPAS limb radiances.
- Validation against RFM shows that RTMIPAS is capable of reproducing line-by-line radiances to an accuracy below the noise level of the MIPAS instrument for most channels and pencil beams.
- Validation for transmittances indicates an accuracy comparable to that of fast models for nadir geometry.
- There is a relatively small increase in the RTMIPAS-RFM differences when calculated for 53 independent profiles rather than the 46 profiles used for training.
- Tangent linear and adjoint routines have been developed for variational data assimilation.
- More details: Bormann, Matricardi, and Healy 2004, ECMWF Tech. Memo. 436 (available as pdf via ECMWF library pages).

Outline

- Introduction
- RTMIPAS: Fast radiative transfer model for MIPAS
- 1DVAR simulations
- Outlook and outstanding issues

1DVAR with RTMIPAS:

Some preliminary, idealised Monte-Carlo experiments with simulated data...

Control variable:

Temperature, humidity, and ozone on 81 RTMIPAS pressure levels • Observations:

MIPAS radiances from 129 channels at (up to) 17 nominal tangent heights in normal scanning mode (1348 observations)

• Background error from ECMWF system (with adjustments for humidity and ozone in the stratosphere).

- Observation error from in-flight MIPAS noise measurements.
- True atmosphere: Mid-latitude daytime
- True observations: Simulated from true atmosphere
- Background data and simulated observations obtained by adding Gaussian noise according to error covariances.

• Perform 500 realisations.

1DVAR with RTMIPAS:

Some preliminary, idealised Monte-Carlo experiments with simulated data...

Pressure [hPa]

1DVAR with RTMIPAS: Some preliminary, idealised Monte-Carlo experiments with simulated data...

• The simulations give an idea of the information in the selected observations on top of the ECMWF background under very idealised conditions:

- The observation + forward model error is equal to the instrument error.
- Background errors are as specified.
- All observations are clear-sky.
- Pointing information from the satellite is perfectly known.
- Height of the lowest level is perfectly known.

Outline

- Introduction
- RTMIPAS: Fast radiative transfer model for MIPAS
- 1DVAR simulations
- Outlook and outstanding issues

Outstanding issues: Channel/tangent height selection

Need to select suitable subset of channels/tangent heights that maximise some measure of Information Content (→ Anu Dudhia's talk on Tuesday).

Microwindow concept: "rectangle" in wavenumber/tangent height domain.

Two concepts possible:

Use 200 (or so) "best" single-channel microwindows.
 Theoretically optimal in terms of Information Content.

Or

- 10 (or so) "best" 1-3 cm⁻¹ microwindows.

May be beneficial for spotting systematic errors, correcting continuumlike biases.

Correlated observation errors.

Normalised weighting functions for 9 km tangent (vertical)

£

Normalised weighting functions for 9 km tangent (along path) Wavelength [micron]

- Interface is technically challenging in multiprocessor environment: probably based on passing a series of profiles to the obs operator.
- Tomographic retrievals (based on an entire orbit of MIPAS data) show benefits in terms of retrieval error and horizontal resolution compared to single scan/single profile retrieval.
- Developments in combination with work on assimilating GPS radiooccultation bending angle measurements.
- Benefits for other candidates of limb data that could be assimilated in the future:
 - HIRDLS, MLS (Aura)
 - GPS radio-occultation (CHAMP, METOP, COSMIC, ...)

Outstanding issues: Miscellaneous

Pointing information for assimilation:

Satellite pointing information considered not accurate enough. Possible solutions:

- Use tangent pressure from level 2 products.
- Perform tangent pressure retrieval in pre-assimilation step.
- Perform tangent pressure retrieval in main assimilation.

Background errors/biases in stratosphere:

- New humidity control variable (normalised relative humidity).
- Revised J_B for ozone?
- Combination AIRS stratospheric channels + MIPAS may allow better characterisation of model biases in the stratosphere.

