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Motivation

e Geophysical turbulence embodies phenomena uncommon in
engineering applications, such as breaking of internal inertia-gravity
waves (viz. localization) and spans an enormous range of scales;
e.g., & ~ O(10%Y), for the Earth atmosphere.
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¢ With mesh adaptivity for simulating complex geophysical flows
in mind, we have developed a generalized mathematical framework
for the implementation of deformable coordinates in a generic Eule-
rian/ semi-Lagrangian format of nonoscillatory-forward-in-time (NFT)
schemes.

e There is more involved than a mere application of well-known
mathematical theories. The apparatus of the Riemannian Geometry
must be applied judiciously, in order to arrive at an effective numer-
ical model.



3 Strategies for Prognostic Simulation

Geophysical turbulence is intermittent in nature. This dictates three
viable simulation strategies:

e direct numerical simulation (DNS), with all relevant scales of
motion resolved;

e large-eddy simulation (LES), with all relevant subgrid scales pa-
rameterized,;

e implicit large-eddy simulation (ILES) — also known as very-
large-eddy simulation (VLES), monotonically-integrated large-
eddy-simulation (MILES), or implicit turbulence modeling —
with a bohemian attitude toward subgrid scales.



e ILES a “do-nothing” approach that relies on nonoscillatory
(physically-motivated) numerics that “adapts” itself to the flow in
the course of a simulation < in progress and controversial, yet
effective and relatively simple; i.e., practical.
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Figure 1: The idealized Held-Suarez climate problem; instantaneous solution after
3 years of simulation (left), and zonally averaged 3-year means (right).



RE: ILES Justification
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Figure 2. Left: LES/IILES of convective PBL, after Margolin et al. 1999.
Right: DNS/ILES of decaying turbulence, after Sm. & Prusa 2002.
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Figure 3: ILES of decaying turbulence, after Domaradzki et al. 2003.
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e LES with physically-motivated SGS models < theoretically
not universal enough, and practically much more complicated than
ILES, but effective for shear-driven boundary layer flows.
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Figure4: LES of PBL past arapidly evolving sand dune

Simulations of boundary layer flows past sand dunes — 340 x 180 x
40 m*® domain covered with 6z = dy = 2m, dz = 1 m — depend on
explicit SGS model (here TKE), because the saltation physics that
controls dune evolution depends crucially on the boundary stress.
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e DNS < TRUE, although limited to low Reynolds number
flows, a useful complement of laboratory experiments.
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Figure 5: Baines & Hughes experiment (1996, JPO) vs. DNS

Simulations of the rotating tank experiment— 5 = 0.091f/ H; the
1.10x0.20x0.21 m® domain covered with dz = dy = 6z: 0.01,0.005,
0.0025 m — show convergence and produce simulation that agrees
well with the laboratory result, enabling a model-based analysis of
the physics of western boundary current separation.



Anelastic Model: Analytic Formulation

Prusa & Sm., JCP 2003; Wedi & Sm., JCP 2004

e diffeomorphic mapping (RE “ With mesh adaptivity for simulat-
ing complex geophysical flows in mind ....”)

(E7T7 y) E) = (t7 E(t7 x7 y)7 D(t7x7y)7 C(t7 x7 y7 Z) ) ) (1)

(t,x,y,z) does not have to be Cartesian!

e Anelastic system of Lipps & Hemler (J. Atmos. <ci., 1982)
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dvi or' 0
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do 00,
ai = T X
v = — —aaxt ¥ = Gl (5)

p* = pG ;d/dE = 0/0t + v (9/0x") ;. v = dTt/dE =%

éé? = \/ﬁ(afk/axj) & ds® = gy daPdst, g™ = o



Finite-Difference Approximations

Sm.. & Prusa, in Turbulent Flow Computation, Kluver, 2002

e Each prognostic equation can be written as either Lagrangian
evolution equation or Eulerian conservation law:

ayp Op*y
dt ot
¢ =1’ or ', and R the associated rhs, Ve := (0/0z, 0/0y, 0/0z)e .

R,

+V e (5"VY) = p'R. (6)

e Either form is approximated to O(6t?, z?)
Yt = LE(y™ + 0.5AtR") + 0.5At R (7)

where ¢! is the solution sought at the grid point ("', x;), LE
denotes a two-time-level either advective semi-Lagrangian or flux-
form Eulerian NFT transport operator (Sm. & Pudykiewicz, JAS,
1992; Sm. & Margolin, MWR 1993).

e (7) represents an algebraic system implicit forall¢y = com-
ments on formulating elliptic problem for 7.
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Anelastic Model: Analytic Formulation; Extensions

e VORTICITY

; ; 0/griv"*
D=0y — U = Wl = eg/ght GEI L (8)

ozP

in any system v*;, = g, v*/, so in the physical space v*; = | /g;;v7.

Vew=VeVXxv=0 =

éa%(Gwsp) =0, w?:= égwq . 9)

Note the connection with the solenoidal velocity in (5)!

e SCALAR DIFFUSION
Defining Fickian flux @, := pa¢ ; in the physical space = L(¢) =

D¢ 1 0 iy 00
Di 0t g P9 pr) (10)
and, in particular,
1 0 .. 00’
_ - x—jk YV
p* 0T (ap I 8:c’f) (1)

in the entropy equation (4).
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e MOMENTUM DISSIPATION

From geometric principles in co-moving coordinates e kda:’jdaf'k =
0.5D /Dt (ds'?), via definition of the fundamental metrlc = € =
0.5D/Dt' (g}), then transforming to (Z, %), expanding the convected
derivative, and using Ricci’s lemma (g, =0) =

. 1

€ ik = 5 (W*k’j —f-ﬁ*j,k) ; (12)

the symmetric complement of the rotation (viz. 0.5w*j; in Eq. (8))
to the gradient of the covariant velocity — the objective form.

To compute €*,;, (12) is (i) written for physical space, (ii) the co-
variant derivatives expanded, (iii) the covariant velocities rescaled
into the physical, and (iv) the derivatives rewritten in terms of trans-
formed space =

O/ Gk

. ) ’_g--vj m .
Jk:Q(ngkGi pa +x/9ij?a)_vgmm{j k}” |

T4

Then, defining the deviatoric stress in terms of the strain rate in the

physical space (p,7, := 2ue*] —I—)\v*m §) = Vi = = /TP Loy %) 1,
the viscous term on the rhs of the momentum equation (3)

.10 By +ik 9V <lm
- L ) - T il

= 2wgl g e+ kg™ v s vi=pfp, k= Mp.  (13)
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e TENSOR IDENTITIES
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o0z 0x4
5T = . 16
S 1 kv 9
G o0 (GoxT"\



13

Examples

e Flapping membranes (Wedi & Sm.., JCP, 2004)

Figure 6: Potential flow simulation past 3D undulating boundaries

Table 1: Vorticity errorsin a potential flow simulation
field Max |.|  Average Standard deviation

Atw!  6.99-1072 -4.87-10718 1.90-1073
Atw?  6.98-1072 -3.19-10717 1.90-1073
Atw?  7.62-1073 2.20-107'8 1.71-1074
AtV ew® 2.94.107° -7.52.10718 3.75-1077
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e Mesoscale valley flows
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Figure 7: Vertical velocity (outer left panel) and cloud water mixing ratio (inner

left panel) in the yz cross section at =z = 120 km and cloud-water mixing ratio at
bottom surface of the model (right panel).
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Examples of Useful Transformations

e Analytic approach
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Figure 8: Continuous global mesh transformation, an example

YEY)=S8,"'Y+(1-S5,HY", (18)
XO,X,Y)=F(Y) Xo&, X))+ Fi(Y)- X +T(1) . (19)

X €[0,1]andY € [—1,1] are normalized z and 5. The auxiliary functions
R(Y)=(1-Y%), R(Y)=1-FR({), (20)
Xo£,X) =[S, + (1= 57 - f(X)]- X, (21)

STt (ST =85 f(r), forr = (T—1)/(t—t;) €[0,1],and S; 71, S
denote the initial and fi nal values of maximum stretch occurring at times 4, ¢,
respectively; for 7 & [0,1], S™! = const.; T(Z) in (19) alows zonal translation.
Figure 8 isat thetimewhen S, = 3 and S, = 3 in (18)-(21), withn = 5.

assume f(s) = (10 — 15s + 6s2) - s2 with S,~', S,7! in the form S~1(7) =
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e Discrete approach

The mesh evolution is postulated via ‘mesh-continuity” equation:

00, N U,
ot 0T
where 6, = 0,(¢,T) iIs the physical-grid-increment function of the

transformed coordinates, proportional to a finite difference represen-
tation of a grid stretching factor 0z /0z.
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Figure 9: Traveling inertia-gravity wave packet, Prusa & Sm., JCP 2003; grid
stretching factor ¢,/ Az (solid line) and physical coordinate z(Z, 7).
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Remarks

e \We admit any orthogonal and stationary (curvilinear, in particu-
lar) coordinate system for the physical domain. This is a significant
departure from earlier transformation methods, which are limited to
Cartesian descriptions of the physical space (and has required red-
erivation of all relevant physical forms).

e While in principle one can always transform from Cartesian co-
ordinates to any other topologically equivalent coordinates, in prac-
tice it is easier and more illuminating to use an established reference
system that points out the obvious physics, e.g., spherical coordi-
nates for global problems.

e By limiting (¢, x) to orthogonal and stationary, we take advan-
tage of important simplifications (i.e., compact scale factors and re-
duced index range in many operators) that are unavailable, if the
problem were to be cast in an arbitrary curvilinear framework.

e \We depart from most computational works in emphasizing a ten-
sorial description of the model. We find this helpful for (i) gener-
ating correct and meaningful computational forms in arbitrary coor-
dinates, and (i) developing fundamental structure in the core of the
numerical model that aids preserving local as well as global conser-
vation properties.

e We find NFT numerical methods beneficial for computations on
dynamically deforming grids. For example, robust performance of
NFT methods allows to mimic moving nests with abruptly changing
grid resolution.



