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Motivation

� Geophysical turbulence embodies phenomena uncommon in
engineering applications, such as breaking of internal inertia-gravity
waves (viz. localization) and spans an enormous range of scales;
e.g., ���

���
	���
����
, for the Earth atmosphere.
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� With mesh adaptivity for simulating complex geophysical flows
in mind, we have developed a generalized mathematical framework
for the implementation of deformable coordinates in a generic Eule-
rian/ semi-Lagrangian format of nonoscillatory-forward-in-time (NFT)
schemes.

� There is more involved than a mere application of well-known
mathematical theories. The apparatus of the Riemannian Geometry
must be applied judiciously, in order to arrive at an effective numer-
ical model.



3

3 Strategies for Prognostic Simulation

Geophysical turbulence is intermittent in nature. This dictates three
viable simulation strategies:

� direct numerical simulation (DNS), with all relevant scales of
motion resolved;

� large-eddy simulation (LES), with all relevant subgrid scales pa-
rameterized;

� implicit large-eddy simulation (ILES) — also known as very-
large-eddy simulation (VLES), monotonically-integrated large-
eddy-simulation (MILES), or implicit turbulence modeling —
with a bohemian attitude toward subgrid scales.
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� ILES a “do-nothing” approach that relies on nonoscillatory
(physically-motivated) numerics that “adapts” itself to the flow in
the course of a simulation � in progress and controversial, yet
effective and relatively simple; i.e., practical.
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Figure 1: The idealized Held-Suarez climate problem; instantaneous solution after
3 years of simulation (left), and zonally averaged 3-year means (right).
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RE: ILES Justification
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Figure 2: Left: LES/ILES of convective PBL, after Margolin et al. 1999.
Right: DNS/ILES of decaying turbulence, after Sm. & Prusa 2002.
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Figure 3: ILES of decaying turbulence, after Domaradzki et al. 2003.
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� LES with physically-motivated SGS models � theoretically
not universal enough, and practically much more complicated than
ILES, but effective for shear-driven boundary layer flows.

Figure 4: LES of PBL past a rapidly evolving sand dune

Simulations of boundary layer flows past sand dunes — ��� ��� 	������
� �	��
 domain covered with ��
 	 ��� 	 ��� � ��� 	 	��

— depend on
explicit SGS model (here TKE), because the saltation physics that
controls dune evolution depends crucially on the boundary stress.
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� DNS � TRUE, although limited to low Reynolds number
flows, a useful complement of laboratory experiments.

Figure 5: Baines & Hughes experiment (1996, JPO) vs. DNS

Simulations of the rotating tank experiment — � 	 ��� ��� 	����
	
; the	�� 	���� ��� � � � ��� � 	�� 


domain covered with ��
 	 ��� 	 ��� : 0.01,0.005,
0.0025 m — show convergence and produce simulation that agrees
well with the laboratory result, enabling a model-based analysis of
the physics of western boundary current separation.
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Anelastic Model: Analytic Formulation

Prusa & Sm., JCP 2003; Wedi & Sm., JCP 2004

� diffeomorphic mapping (RE “ With mesh adaptivity for simulat-
ing complex geophysical flows in mind ....”)

� ��� ��� ��� �
	�� �
������������������	�����������������	��������������������
	�	 �
(1)

(t,x,y,z) does not have to be Cartesian!

� Anelastic system of Lipps & Hemler (J. Atmos. Sci., 1982)
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Finite-Difference Approximations

Sm.. & Prusa, in Turbulent Flow Computation, Kluver, 2002

� Each prognostic equation can be written as either Lagrangian
evolution equation or Eulerian conservation law:'��' � 	 � � � ! #��

� � / � � � ! # � # � � 	 ! # � �
(6)

� G $ (
or
2 -

, and � the associated rhs, � � � 	 � � � � 
 � � � � � � � � � � � � .

� Either form is approximated to
��� � ��
 � ��
 
��

� ���	�
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 � � � / ���
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� / ���
��� � �
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 9 (7)

where
� ���	�
 is the solution sought at the grid point

� � ���	� � � 
 � , � �
denotes a two-time-level either advective semi-Lagrangian or flux-
form Eulerian NFT transport operator (Sm. & Pudykiewicz, JAS,
1992; Sm. & Margolin, MWR 1993).

� (7) represents an algebraic system implicit for all
� �

com-
ments on formulating elliptic problem for

+
.
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Anelastic Model: Analytic Formulation; Extensions

� VORTICITY

� # ( & 	 $ # &�� ( � $ # ( � & � � D 	 � D ( & > 1 & & )* B ( ��� 1 & & $ &� 
 B 9 (8)

in any system
$ # & 	 1 ( & $ # ( , so in the physical space
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	* �
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 B � * � % B � G � � � % B � 	 )* DB � D � (9)

Note the connection with the solenoidal velocity in (5)!

� SCALAR DIFFUSION
Defining Fickian flux � ( � 	 !��	� � ( in the physical space

� 
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� 
 ( ��� ! # 1 ( &

� �
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and, in particular,
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���
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in the entropy equation (4).
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� MOMENTUM DISSIPATION

From geometric principles in co-moving coordinates � -( & ' 
 - ( ' 
 - & � 	
� � � � : � � -�� ' @ - 
��

, via definition of the fundamental metric
� � -( & G

� � � � : � � -�� 1 -( &�� , then transforming to
� � � � �

, expanding the convected
derivative, and using Ricci’s lemma ( 1 ( &�� % G �

)
�

� # ( & G 	
� � $ # &�� ( / $ # ( � & � �

(12)

the symmetric complement of the rotation (viz.
���
� � # ( & in Eq. (8))

to the gradient of the covariant velocity — the objective form.

To compute � # ( & , (12) is (i) written for physical space, (ii) the co-
variant derivatives expanded, (iii) the covariant velocities rescaled
into the physical, and (iv) the derivatives rewritten in terms of trans-
formed space

�
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Then, defining the deviatoric stress in terms of the strain rate in the
physical space (
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the viscous term on the rhs of the momentum equation (3)
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� TENSOR IDENTITIES

� �
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Examples

� Flapping membranes (Wedi & Sm.., JCP, 2004)

Figure 6: Potential flow simulation past 3D undulating boundaries

Table 1: Vorticity errors in a potential flow simulation

field Max � � � Average Standard deviation� � � �
6.99 � 	 � � 
 -4.87 � 	 � � ��� 1.90 � 	 � � 
� � � 
 6.98 � 	 � � 
 -3.19 � 	 � � ��� 1.90 � 	 � � 
� � � 
 7.62 � 	 � � 
 2.20 � 	 � � ��� 1.71 � 	 � ���� � � � ��� % 2.94 � 	 � �	� -7.52 � 	 � � ��� 3.75 � 	 � � �
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� Mesoscale valley flows
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Examples of Useful Transformations

� Analytic approach

Figure 8: Continuous global mesh transformation, an example

� � ��� � 	 ��������� �
	 � ���
������� 	 ��� �
(18)

� � ��� � � � 	 �����E� � 	�� � �E� ��� � 	 	 � � � � 	�� � 	�� � ��	�� (19)
� ��� � � ���

and
� � � � � � ���

are normalized
�

and
�
. The auxiliary functions

� � � � 	 � � �!� �#" 	�� � � � � 	 � �$� � � � � 	��
(20)

� � � ��� � 	 � � ��% ��� 	 � ���
��% ��� 	��'&�� � 	(�)� � �
(21)
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&��+*E	 � � � �,� �.-/* 	 0 * " 	1�)* " with

�2% ��� �3� �4���
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, for
5 � � ��� �=7�	?>�� ��� �@8 	 ��� ��� �A�

, and
��7 ��� �B�C8 ���

denote the initial and final values of maximum stretch occurring at times
� 7 � �@8

,
respectively; for

5ED� � ��� ���
,
� ��� � F�GIH;*8�A�

;
� � ��	

in (19) allows zonal translation.
Figure 8 is at the time when

�2% �KJ
and
� � �KJ

in (18)-(21), with
H �K-

.
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� Discrete approach

The mesh evolution is postulated via ‘mesh-continuity” equation:� ���� � /
��� ���� 
 	 � �

(22)

where ��� 	 ��� � � � 
 � is the physical-grid-increment function of the
transformed coordinates, proportional to a finite difference represen-
tation of a grid stretching factor

� 
 � � 
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Remarks

� We admit any orthogonal and stationary (curvilinear, in particu-
lar) coordinate system for the physical domain. This is a significant
departure from earlier transformation methods, which are limited to
Cartesian descriptions of the physical space (and has required red-
erivation of all relevant physical forms).

� While in principle one can always transform from Cartesian co-
ordinates to any other topologically equivalent coordinates, in prac-
tice it is easier and more illuminating to use an established reference
system that points out the obvious physics, e.g., spherical coordi-
nates for global problems.

� By limiting
� � � � �

to orthogonal and stationary, we take advan-
tage of important simplifications (i.e., compact scale factors and re-
duced index range in many operators) that are unavailable, if the
problem were to be cast in an arbitrary curvilinear framework.

� We depart from most computational works in emphasizing a ten-
sorial description of the model. We find this helpful for (i) gener-
ating correct and meaningful computational forms in arbitrary coor-
dinates, and (ii) developing fundamental structure in the core of the
numerical model that aids preserving local as well as global conser-
vation properties.

� We find NFT numerical methods beneficial for computations on
dynamically deforming grids. For example, robust performance of
NFT methods allows to mimic moving nests with abruptly changing
grid resolution.


