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®Non-orthogonal wavelets on the sphere:

- Motivation: Covariance Modelling
- Definition: Frames

- Application: Wavelet J
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Wavelets on the Sphere - Motivation
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Wavelets on the Sphere - Motivation
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Wavelets on the Sphere - Motivation

® The variation of vertical correlation with location and
with horizontal spatial scale are both important features,
and both should be included in the covariance model.

® However, we are severely limited by the enormous size
of the covariance matrix (~107x107).

® Essentially, the covariance matrix must be block-
diagonal, with block size NLEVSxNLEVS, and with many
identical blocks.

® Currently, we specify one block per wavenumber, n.

variation with scale is modelled, variation with location is not.

® Alternatively, we could specify one block per gridpoint.

variation with location is modelled, variation with scale is not.

® Wavelets provide a way to do both (and still keep things
sparse).
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Wavelets on the Sphere - Frames

® It is possible to define orthogonal wavelets on the
sphere by first gridding the sphere.

® Gottelmann (1997, citeseer.ist.psu.edu/227230.html)
defined spherical wavelets using splines on a quasi-
uniform latitude-longitude grid.

® Schroder and Sweldens (1995, ACM SIGGRAPH, 161-172)
defined them for a triangulation of the sphere.

® However, these approaches necessarily have special
points (poles or vertices). They do not retain rotational
symmetry for finite truncations of the wavelet expansion.

® If we wish to retain rotational symmetry, we must give up
on orthogonality.

® |l.e. we must consider frames.
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Wavelets on the Sphere - Frames

® Definitions

- A family of functions, {y;; jeJ} in a Hilbert space is called a
frame if there exist A>0 and B<w such that for all f in the space:

AT <X[(r v, <BIT

- The condition is sufficient to ensure the existence of a dual
frame, { ¥ ;; je J} with the property:

1 . 1 -

Zz<f ’ l//j>Wj = f = Zz<f ’ l//j>l//j
jeJ jed

- A particularly interesting case occurs when A=B. This is called a
tight frame. Tight frames are self-dual:

f:iz<fo Wj>l)”j

jeJ
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Wavelets on the Sphere - Frames

® Tight frames share many of the properties of orthogonal
bases. (An orthogonal basis is a tight frame with H%HZ =1
and A=1).

® Tight frames define a “transform”, since we may write:

fziz<fa l//j>l7yj

jeJ

as: Cj:<f9'»”j> ) f=izcj%

jeJ

® c.f. Fourier series:

oY

fm _ < f , ezmmt/(b—a)> _ %j' f(t) e—27n'mt/(b—a) ds
—-a”

f(t)= Z ]}mezmmt/(b—a)

m=—a0
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Wavelets on the Sphere - Frames

® Example: The Mercedes-Benz Frame

- Daubechies, 1992: “Ten Lectures on Wavelets”

A \Vl: (O ’ 1)
vy= (-(N3)2, -1/2) / \ ys=((\3)/2, -1/2)
® Tight frame: 2 (fow,) =fyz+—\/2§fx—;fy + ?fx—%fy =%\f\2

2 3
® Hence, for any f: §Z<f>%”j>% =/

j=1
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Wavelets on the Sphere - Frames

® Example: The discrete spherical transform.
® Consider functions f(m,n) where 0<n<N, -n<m<n.

® Let i/, (m,n) be the (m,n)t" spherical harmonic,
evaluated at the jt" gridpoint of the Gaussian grid, and
multiplied by sqrt(Gaussian integration weight):

5&]' (ma n) Ry W(¢j)Ym,n (lj9¢j)
® Then: <f”,lﬁj>=Zf(m,n)\/W(¢j)Ym,n(/1j>¢j)=\/Wj(¢j)f(’1j’¢j)

fman) =3 (£, )07, (m.m) = 2w, (8) f(4,.8)Y,,,(2,.4)

® NB: This is a tight frame, not an orthogonal transform.
There are more gridpoints than spectral coefficients.
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Wavelets on the Sphere - Generalized
Frames

® The concept of a frame can be generalized to the case
where the number of basis functions, ¥, is uncountable.

® The sum in the frame condition becomes an integral:

“de< 8|/

Al < (s v

® Most of the properties carry over from the discrete case.
® In particular, for a tight frame, we have:

1
= vy ds

- See Kaiser, 1994 “A Friendly Guide to Wavelets”
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Wavelets on the Sphere - Generalized
Frames

® We will consider a specific, semi-discrete case.
® The basis functions, v, ,, are labelled by 3 indices:

- j (discrete) indicates “scale”
- 1 (continuous) is longitude

- @ (continuous) is latitude

® We define:

V. /W(ﬂ" ¢') = ‘{"j(r(ﬂ,’,¢',1,¢))

} Wher‘zﬁr(”, ¢', A, ¢) is the great-circle distance between (/1’, ¢')
and .
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Wavelets on the Sphere - Generalized
Frames

® The inner product is:
<f, Wj,l,¢> — J‘f(ﬂ/’, ¢')Wj,/1,¢ (ﬂ/, ¢’) COS(¢,)dﬂ’d¢’
Q
® Let us write:

£ =(f,.)

® Then, substituting fory/, , , (A, 0") we see that the
inner product corresponds to a convolution on the
sphere:

f(4,0)= I S, )Y (r(4,¢',4,0)) cos(¢')dA'dg’

Le. f,=/Q®Y,
ATy ECMIWF c



Wavelets on the Sphere - Generalized
Frames

® We seek a tight frame. The condition is:
S w,s)| cos(@rdadg = 4|1
J

® That is:

> [|f,(2.0)[ cos(¢)dadg = 4| £

R 7 SV )

® Evaluating the norms in terms of spherical harmonic
coefficients, we have:

> || = 43

Jj.m,n
ATy ECMWF c
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Wavelets on the Sphere - Generalized
Frames

2
2 =4
j,m,n m,n

® But, rememberthat f, =/ ®Y ,where ¥, isa
function of great-circle distance.

2

f(m,n)

fj(m,n)

® Hence: fj(m,n) = f“(m,n)\f’j(n)

- where Y ](n) are Legendre transform coefficients.

® The condition for a tight frame is thus:

Z ZzAz f(m,n)

j,m,n

2

f(m,n)¥ ,(n)
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Wavelets on the Sphere - Generalized
Frames

2

f(m,n)

> f(m,n)¥ (n)

,j,m,n

Z:AZ

@ le.
2

N

f(m,n) f(m,n)

2:AZ

m,n

=> ¥ (n)=4

oz,

® For convenience, we will scale the basis functions
appropriately, so that A=1:

152
Z‘Pj(n):l Vn
J
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Wavelets on the Sphere - Generalized
Frames

® If we have a tight frame, we have the transform property:

S22 S V)W) cOS(H)AA DY

Q

=3 [ £, (X. )Y (.4, 4.8)) cos(¢)dA'dg’

J Q

® But, the right hand side is just another convolution.
® Hence, the “transform pair” is just:

f,=¥ ®f
f:Z\Pj@)fj
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Wavelets on the Sphere - Generalized
Frames

f;=¥;97, f:ZLPj@fj

® The first equation defines f]
® We can easily verify the second equation:

S8, =S 0]
=2 W) (m,n)
= f(m,n)
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Wavelets on the Sphere - Summary

® A set of functions of great-circle distance, { V' (r);
j=0,1,2,...} whose Legendre transform coefficients

satisfy: .
> ¥i(n)=1 Vn
J

define a tight generalized frame.

® The functions define a “transform pair”:

f,=Y ®f
f:Z‘PJ.@fj
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Wavelets on the Sphere - Example

® The condition: Z‘i’i(n) =1 Vn
J

suggests we define the functions \ifi.(n) to be B-splines.

® For example, linear B-splines are triangle functions:

n-N,,
NN N, <ns<N,
J J-1
\fli(n):ij\r]l ]j\f;l N,<n<N,,,
i j+l
0 otherwise
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Wavelets on the Sphere - Example
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Wavelets on the Sphere - Example

ECMWF  Analysis VT:Wednesday 1 September 2004 12UTC 850hPa specific humidity
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Wavelets on the Sphere - Example

ECMWF  Analysis VT:Wednesday 1 September 2004 12UTC 850hPa specific humidity
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Spherical Wavelets - Example

® T511 Model Orography:




Spherical Wavelets - Example

ECMWF Analysis V T\Wednesday 1S eptember 2004 12UTC Model Level 1 geopotential height ECMWF Analysis VT:Wednesday 1 S eptember 2004 12UTC Model Level 1 geopolential height ECMWNVF Analysis / T:\Wednesday 1 September 2004 12UTC Mode! Level 1 geopotential height

Convolve
with ‘I’j:

f] ] : f ECMWF Analysis V T-Wednesday 1 S epterber 2004 12UTC Model Level 1 geopotental height ECMWF Andlysis VTWednesday 1 S eptermbar 2004 12UTC Model Level 1 geopotental height ECMNF Analysis V TWecnesday 1 Seplember 2004 12UTC Model Level 1 geopotential height
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Spherical Wavelets - Example

ECMWF Analysis V T\Wednesday 1S eptember 2004 12UTC Model Level 1 geopotential height ECMWF Analysis VT:Wednesday 1 S eptember 2004 12UTC Model Level 1 geopolential height ECMWNVF Analysis / T:\Wednesday 1 September 2004 12UTC Mode! Level 1 geopotential height

Convolve
again...

W ] ® f] ECMWF Anclysis V TWechesday 1 Seplomber 2004 12UTC Moo Lovel 1 geopotenial height ECMIF Anclysis V TWechesday 1 Seplomber 2004 12UTC Node Lovel 1 geopotental hight ECMIVF Anclysis ' T:Wednesday 1 Sepiember 2004 12UTC Model Lovel 1 geopotental height

ECMWF Analysis V T:Wednesday 1S eptember 2004 12UTC Model Level 1 geopotential height ECMWVF Analysis V' T\Wednesday 1 September 2004 12UTC Model Level 1 geopotential height

ECMWF Analysis V TWednesday 1S eptember 2004 12UTC Model Level 1 geopotential height




Spherical Wavelets - Example

® ... and add, to retrieve the original field: /= quj ® f,

0l
7
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Spherical Wavelets - Other Approaches

® The wavelets we have derived are similar to those of
Freeden and Windheuser (1996, Adv. Comp. Math. 51-94.
- They are a special case of the very broad range of spherical

wavelet decompositions described by Freeden et al. (1998,
“Constructive Approximation on the Sphere, OUP).

® A different approach, using group theory, is taken by
Antoine and Vandergheynst (1999, Appl. and Comput.
Harm. Anal. 262-291).

- They define spherical wavelets as coherent states of the product
group of rotations on the sphere, and dilations on the polar-
stereographic tangent plane.

® Mhaskar et al. (2000, Adv. Comput. Math.) describe
polynomial wavelet frames on the sphere.

- and cite 11 papers, each defining a different approach to the
construction of wavelets on the sphere.
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Wavelet J,

® So, how does all this help us formulate a covariance
model?

® First, let’s review the main idea behind the current J,..

® 3d/4d-Var determine the analysis by minimizing a cost
function:

J=(x-x,) B"(x-x,)+(d-H(x-x,)) R"(d-H(x-x,))

® Usually, we do not minimize directly in terms of x, but
formulate the problem as:

J=y"y+(d-HLy) R™(d-HLy)

x =X, + Ly
® NB: L defines the background covariance matrix: B=LLT.
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Wavelet J,

® L defines the background covariance matrix: B=LL".
® To keep things simple, consider a 2d, univariate model.
® The current ECMWF covariance model boils down to:

L=2x2D

® 2 is diagonal in grid space, and corresponds to
multiplying each gridpoint by a standard deviation.

- It accounts for the spatial variation of background error.

® D is diagonal in spectral space, and corresponds to
multiplying each wavenumber, n, by a standard
deviation, which is a function of n, only.

- It accounts for the variation of background error with scale.
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Wavelet J,
L=22D

® The current covariance model separates the spatial and
spectral variation of background error.

® |In particular, D corresponds to a convolution.

® D defines the horizontal correlation of background error
for the covariance model.

® Because D is a convolution, the horizontal correlations
are the same everywhere.

® This is a major shortcoming of the covariance model.

AR——eey ECMWF
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Wavelet J,

® To define a covariance model using wavelets, note first
that there is no requirement for L to be square.

® A rectangular matrix L still defines a valid covariance
model, B=LLT.

® We define the control variable as:
()
1
L= X2
L * )
where the X, correspond to different scales.
® The change of variable matrix is defined by:

X—X, :Lx:Z‘{Jj@)ijj
J
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Wavelet J,
x—X, =Ly = Z‘f’} ®X A,

® The matrices 2, are dlagonal in grid space, and account
for the spatial varlatlon of background error for each
scale.

® Let us write the con\(olutlon with ‘P explicitly as a
matrix operator.S" ¥ .S | where S is’the spherical

transform, and ¥ ; is dlagonal

® Using the symmetry of ‘i’] , and 2;, and the orthogonality
of S, we can write the covarlance matrlx implied by L as:

B=LL =) SV SX’S"'¥ S

® We will illustrate the covariance structures generated by
wavelet Jb by applying this matrix to delta functions.
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Wavelet J,
T -1 2¢g-1
B=LL' =) S"¥ SX’S"¥ S
J

® Consider the case where there is no spatial variation in
the standard deviations: Zj = cyjI :

® Then, ¥ SZ°S'¥. is diagonal, with elements o-f‘ili(n).
® But, Zliji(”) =1 sozaf‘i’i(”) is a weighted average of o'
J J

® If we choose ‘iji(n) to be B-splines, then the variation of
variance with n is an interpolation between the
prescribed o 's .
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Wavelet J,

® Suppose we want approximately Gaussian structure
functions, with length scale that is a smoothly-varying
function of latitude and longitude.

® Weaver+Courtier (2000) give the following expression for
the modal variances corresponding to convolution with a
quasi-Gaussian function with lengthscale L:

exp [—(LG(n + 1)) / 2a2]

b™(n;L) = 2(2” +1) exp[—(LG(” +1))/2a2:|

® We simply set: 0, =(NV,, +1Db(N ;L)

but allow L ( and hence o)) to vary with latitude and
longitude.
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Wavelet J,

® Desired Length scale (300km — 1300km):

300000. 07.7

299996. 299998.

ECMWF <O



b

day 1 Seplember 2004 12UTC B50hPa specific humidity

Wavelet J
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Wavelet J,

ECMWF Analysis VT:Wednesday 1 September 2004 12UTC 850hPa vorticity

Scale with csj2
at each

gridpoint, and
for each scale.

ECMAF Analysis VT:\Wednesday 1 September 2004 12UTC 850hPa vortcity

ECMWF Analysis V T:\Wednesday 1 S eptember 2004 12UTC 850hPa vortcity
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Wavelet J,

ECMWF Analysis VT:Wednesday 1 September 2004 12UTC 850hPa vorticity

ECMAF Analysis VT:\Wednesday 1 September 2004 12UTC 850hPa vortcity

Convolve

again with

ECMWF Analysis V T:\Wednesday 1 S eptember 2004 12UTC 850hPa vortcity

¥, (n)




Wavelet J,

® Add together to give:Bx =) S™'¥ SZ’S™'¥ Sx
j




Wavelet J,
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Wavelet J,

® The agreement between the Gaussians we wanted, and
the functions we got is not perfect!

® But note:

- No attempt was made to tune the cut-off wavenumbers to
improve the accuracy with which the Gaussian structure
functions were modelled.

- The implied modal variances are effectively linearly interpolated
between those for wavenumbers 0,2,4,8,16,...

- For large lengthscale (1300km), there is little variance beyond
about n=10, so there are very few nodes in the interpolation.

- More spectral resolution at large scales may improve the
approximation.

- Higher order B-splines would also help.
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Wavelet J,
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Wavelet J,

® E-W cross-sections for a different choice of spectral
bands (0 1,3,6,10,16,25,39,60,91,138,208,313,471,511):

| T T | T | T /[\ T | T | T T | T | T /|\ T | T | T | T | T

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Gridpoints
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Wavelet J,

® We demonstrated Wavelet J, by producing structure
functions of a given analytic form.

® However, a significant advantage of Wavelet J,, over
other approaches to covariance modelling on the sphere
(digital filters, diffusion operators, etc.) is that we can
calculate the coefficients of the covariance model
directly from data.

® The covariance model is: X—X, = Z‘ijj ® ijj
J
® The transform property gives us: X = \f’ 0y (X —X )

® But X ; has covariance matrix =1, so (in 2d), )2 is simply
the matrix of gridpoint standard deviations of qJ @(X X )

® This is easily generated, given a sample of bg errors

ECMWF c



Wavelet J,

® Extension of Wavelet J, to 3 spatial dimensions is
straightforward.

® In 2 dimensions, we have: x—x, = Z‘i’] X ijj
J

where Zj iIs diagonal. The diagonal elements are
standard deviations.

® In 3 dimensions, Zj becomes block-diagonal, with
blocks of dimension NLEVSXNLEVS. The diagonal
blocks are symmetric square-roots of vertical covariance
matrices.

® This is not fully general, but is sufficient to capture the
variation of vertical correlation with horizontal scale, and
with location.
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Wavelet J,

® Example: Horizontal and vertical Vorticity Correlations.

horiz vorticity cors at model level 39 (~500hPa)

1.0 ’ T T T T I ' T T T ’ I T I
09 -\ North America
\\ — — - Equatorial Pacific
0.8 1 average vorticity cors average vorticity cors
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Wavelet J, - Memory and Cost

® At first sight, the memory requirements for Wavelet J,
appear high.

® However, if ‘i’j(n) =0forn> N, thenthe X, are
strictly band-limited, and may be represented on
Gaussian grids of appropriate resolution.

j+l

J2

then the memory requirement for the control vector is at
most p+2 full model grids, where p is the order of the B-

splines.

® Only p+1 full-resolution spherical transforms are
required.

ECMWF <O
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Wavelet J, - Memory and Cost

® Storage for the vertical covariance matrices is potentially
enormous. But, can be reduced to manageable levels by
reducing their spatial resolution (e.g. one matrix for
every 10 gridpoints).

® The main CPU requirement is in handling the increased-
length control vector.

® The bottom line is that Wavelet J,, adds about 5% to the
cost of a 4d-Var analysis.

® | think it’s worth it!



Summary

® Tight frames provide a useful mathematical construct.

® They share many of the desirable properties of
orthogonal bases, but allow considerable flexibility.

® Using tight frames, a flexible family of wavelets may be
defined on the sphere.

® Unlike grid-based wavelets, there is no pole problem.

® There is a lot of scope for tuning of the spectral and
spatial resolution. (This remains to be explored.)

® Wavelet J, is expected to be implemented operationally
in the ECMWEF 4d-Var system by the end of this year.
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