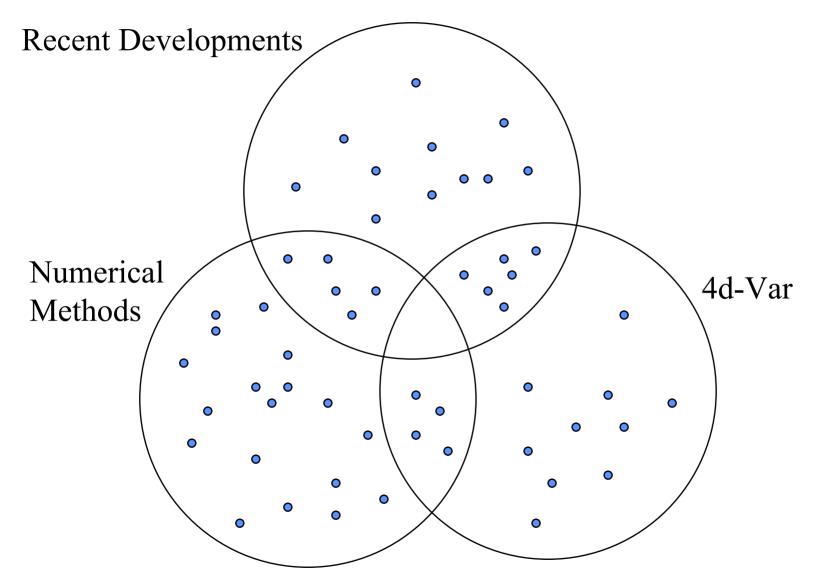
Recent Developments in Numerical Methods for 4d-Var

Mike Fisher



Outline

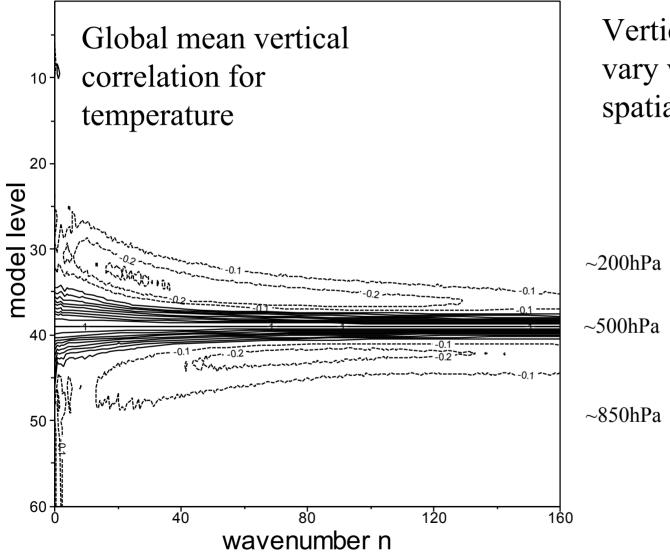
Non-orthogonal wavelets on the sphere:

- Motivation: Covariance Modelling

- Definition: Frames

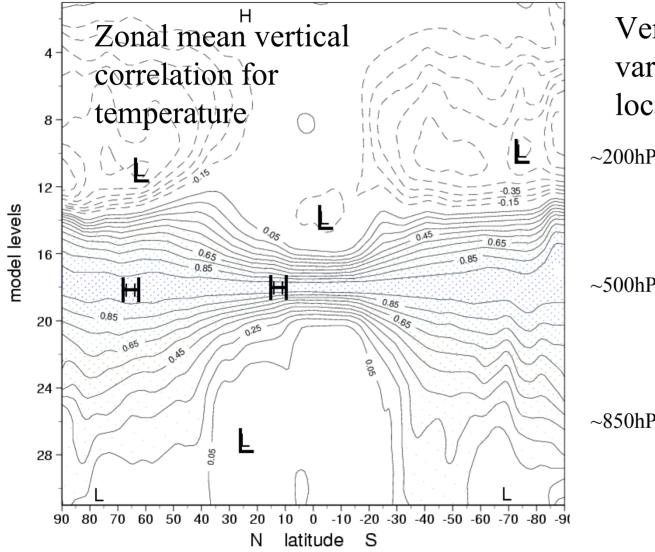
- Application: Wavelet J_b

Wavelets on the Sphere - Motivation



Vertical Correlations vary with horizontal spatial scale

Wavelets on the Sphere - Motivation



Vertical Correlations vary with horizontal location.

~200hPa

~500hPa

~850hPa

Wavelets on the Sphere – Motivation

- The variation of vertical correlation with location and with horizontal spatial scale are both important features, and both should be included in the covariance model.
- However, we are severely limited by the enormous size of the covariance matrix (~10⁷×10⁷).
- Essentially, the covariance matrix must be blockdiagonal, with block size NLEVS×NLEVS, and with many identical blocks.
- Currently, we specify one block per wavenumber, n.
 - variation with scale is modelled, variation with location is not.
- Alternatively, we could specify one block per gridpoint.
 - variation with location is modelled, variation with scale is not.
- Wavelets provide a way to do both (and still keep things sparse).

- It is possible to define orthogonal wavelets on the sphere by first gridding the sphere.
- Göttelmann (1997, citeseer.ist.psu.edu/227230.html) defined spherical wavelets using splines on a quasiuniform latitude-longitude grid.
- Schröder and Sweldens (1995, ACM SIGGRAPH, 161-172) defined them for a triangulation of the sphere.
- However, these approaches necessarily have special points (poles or vertices). They do not retain rotational symmetry for finite truncations of the wavelet expansion.
- If we wish to retain rotational symmetry, we must give up on orthogonality.
- I.e. we must consider <u>frames</u>.

Definitions

- A family of functions, $\{\psi_j; j \in J\}$ in a Hilbert space is called a <u>frame</u> if there exist A>0 and B< ∞ such that for all f in the space:

$$A \|f\|^2 \le \sum_{j \in J} \left| \left\langle f, \psi_j \right\rangle \right|^2 \le B \|f\|^2$$

- The condition is sufficient to ensure the existence of a <u>dual</u> frame, $\{ \tilde{\psi}_j; j \in J \}$ with the property:

$$\frac{1}{A} \sum_{j \in J} \langle f, \psi_j \rangle \tilde{\psi}_j = f = \frac{1}{A} \sum_{j \in J} \langle f, \tilde{\psi}_j \rangle \psi_j$$

- A particularly interesting case occurs when A=B. This is called a <u>tight frame</u>. Tight frames are self-dual:

$$f = \frac{1}{A} \sum_{j \in J} \langle f, \psi_j \rangle \psi_j$$

- Tight frames share many of the properties of orthogonal bases. (An orthogonal basis is a tight frame with $\|\psi_j\|^2 = 1$ and A=1).
- Tight frames define a "transform", since we may write:

$$f = \frac{1}{A} \sum_{j \in J} \langle f, \psi_j \rangle \psi_j$$

as:

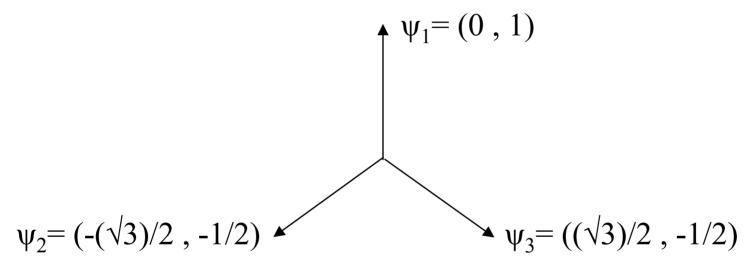
$$c_{j} = \langle f, \psi_{j} \rangle$$
 , $f = \frac{1}{A} \sum_{j \in J} c_{j} \psi_{j}$

c.f. Fourier series:

$$\hat{f}_m = \left\langle f, e^{2\pi i m t/(b-a)} \right\rangle = \frac{1}{b-a} \int_a^b f(t) e^{-2\pi i m t/(b-a)} dt$$

$$f(t) = \sum_{m=-\infty}^{\infty} \hat{f}_m e^{2\pi i m t/(b-a)}$$

- Example: The Mercedes-Benz Frame
 - Daubechies, 1992: "Ten Lectures on Wavelets"



- Tight frame: $\sum_{j=1}^{3} \left| \left\langle f, \psi_{j} \right\rangle \right|^{2} = \left| f_{y} \right|^{2} + \left| -\frac{\sqrt{3}}{2} f_{x} \frac{1}{2} f_{y} \right|^{2} + \left| \frac{\sqrt{3}}{2} f_{x} \frac{1}{2} f_{y} \right|^{2} = \frac{3}{2} \left| f \right|^{2}$
- Hence, for any f: $\frac{2}{3}\sum_{j=1}^{3}\langle f, \psi_j \rangle \psi_j = f$

- Example: The discrete spherical transform.
- Consider functions $\hat{f}(m,n)$ where $0 \le n \le N$, $-n \le m \le n$.
- Let $\hat{\psi}_j(m,n)$ be the (m,n)th spherical harmonic, evaluated at the jth gridpoint of the Gaussian grid, and multiplied by sqrt(Gaussian integration weight):

$$\hat{\psi}_j(m,n) = \sqrt{w(\phi_j)} Y_{m,n}(\lambda_j,\phi_j)$$

• Then: $\langle \hat{f}, \hat{\psi}_j \rangle = \sum_{m,n} \hat{f}(m,n) \sqrt{w(\phi_j)} Y_{m,n}(\lambda_j, \phi_j) = \sqrt{w_j(\phi_j)} f(\lambda_j, \phi_j)$

$$\hat{f}(m,n) = \sum_{j} \left\langle f, \hat{\psi}_{j} \right\rangle \hat{\psi}_{j}(m,n) = \sum_{j} w_{j}(\phi_{j}) f(\lambda_{j}, \phi_{j}) Y_{m,n}(\lambda_{j}, \phi_{j})$$

NB: This is a tight frame, not an orthogonal transform.
 There are more gridpoints than spectral coefficients.

- The concept of a frame can be generalized to the case where the number of basis functions, Ψ_j is uncountable.
- The sum in the frame condition becomes an integral:

$$A \|f\|^2 \le \int_D |\langle f, \psi_x \rangle|^2 dx \le B \|f\|^2$$

- Most of the properties carry over from the discrete case.
- In particular, for a tight frame, we have:

$$f = \frac{1}{A} \int_{D} \langle f, \psi_{x} \rangle \psi_{x} \, \mathrm{d}x$$

- See Kaiser, 1994 "A Friendly Guide to Wavelets"

- We will consider a specific, semi-discrete case.
- The basis functions, $\psi_{i,\lambda,\phi}$ are labelled by 3 indices:
 - j (discrete) indicates "scale"
 - λ (continuous) is longitude
 - ϕ (continuous) is latitude

We define:

$$\psi_{j,\lambda,\phi}(\lambda',\phi') = \Psi_j(r(\lambda',\phi',\lambda,\phi))$$

- where $r(\lambda',\phi',\lambda,\phi)$ is the great-circle distance between (λ',ϕ') and (λ,ϕ) .

The inner product is:

$$\langle f, \psi_{j,\lambda,\phi} \rangle = \int_{\Omega} f(\lambda', \phi') \psi_{j,\lambda,\phi}(\lambda', \phi') \cos(\phi') d\lambda' d\phi'$$

Let us write:

$$f_j(\lambda, \phi) = \langle f, \psi_{j,\lambda,\phi} \rangle$$

• Then, substituting for $\psi_{j,\lambda,\phi}(\lambda',\phi')$ we see that the inner product corresponds to a convolution on the sphere:

$$f_{j}(\lambda, \phi) = \int_{\Omega} f(\lambda', \phi') \Psi_{j}(r(\lambda', \phi', \lambda, \phi)) \cos(\phi') d\lambda' d\phi'$$

I.e.
$$f_i = f \otimes \Psi_i$$

• We seek a tight frame. The condition is:

$$\sum_{j} \int_{\Omega} \left| \left\langle f, \psi_{j,\lambda,\phi} \right\rangle \right|^{2} \cos(\phi) d\lambda d\phi = A \|f\|^{2}$$

• That is: $\sum_{j} \int |f_{j}(\lambda, \phi)|^{2} \cos(\phi) d\lambda d\phi = A ||f||^{2}$

• I.e.
$$\sum_{j} \|f_{j}\|^{2} = A \|f\|^{2}$$

 Evaluating the norms in terms of spherical harmonic coefficients, we have:

$$\sum_{j,m,n} \left| \hat{f}_j(m,n) \right|^2 = A \sum_{m,n} \left| \hat{f}(m,n) \right|^2$$

Slide 15

$$\sum_{j,m,n} \left| \hat{f}_j(m,n) \right|^2 = A \sum_{m,n} \left| \hat{f}(m,n) \right|^2$$

• But, remember that $f_j = f \otimes \Psi_j$, where Ψ_j is a function of great-circle distance.

- Hence: $\hat{f}_j(m,n) = \hat{f}(m,n)\hat{\Psi}_j(n)$
 - where $\hat{\Psi}_{j}(n)$ are Legendre transform coefficients.
- The condition for a tight frame is thus:

$$\sum_{j,m,n} \left| \hat{f}(m,n) \hat{\Psi}_j(n) \right|^2 = A \sum_{m,n} \left| \hat{f}(m,n) \right|^2$$

$$\sum_{j,m,n} \left| \hat{f}(m,n) \hat{\Psi}_j(n) \right|^2 = A \sum_{m,n} \left| \hat{f}(m,n) \right|^2$$

I.e.

$$\sum_{m,n} \left(\sum_{j} \hat{\Psi}_{j}^{2}(n) \right) \left| \hat{f}(m,n) \right|^{2} = A \sum_{m,n} \left| \hat{f}(m,n) \right|^{2}$$

$$\Rightarrow \sum_{j} \hat{\Psi}_{j}^{2}(n) = A$$

For convenience, we will scale the basis functions appropriately, so that A=1:

$$\sum_{j} \hat{\Psi}_{j}^{2}(n) = 1 \quad \forall n$$

• If we have a tight frame, we have the transform property:

$$f = \sum_{j} \int_{\Omega} \langle f, \psi_{j,\lambda,\phi} \rangle \psi_{j,\lambda,\phi} \cos(\phi') d\lambda' d\phi'$$
$$= \sum_{j} \int_{\Omega} f_{j}(\lambda',\phi') \Psi_{j}(r(\lambda',\phi',\lambda,\phi)) \cos(\phi') d\lambda' d\phi'$$

- But, the right hand side is just another convolution.
- Hence, the "transform pair" is just:

$$f_{j} = \Psi_{j} \otimes f$$

$$f = \sum_{i} \Psi_{j} \otimes f_{j}$$

$$f_j = \Psi_j \otimes f$$
, $f = \sum_j \Psi_j \otimes f_j$

- ullet The first equation defines f_i .
- We can easily verify the second equation:

$$\left(\widehat{\sum_{j} \Psi_{j} \otimes f_{j}}\right)(m,n) = \sum_{j} \hat{\Psi}_{j}(n) \hat{f}_{j}(m,n)$$

$$= \sum_{j} \hat{\Psi}_{j}^{2}(n) f(m,n)$$

$$= \hat{f}(m,n)$$

Wavelets on the Sphere - Summary

• A set of functions of great-circle distance, $\{\Psi_j(r); j=0,1,2,...\}$ whose Legendre transform coefficients satisfy:

 $\sum_{j} \hat{\Psi}_{j}^{2}(n) = 1 \quad \forall n$ define a tight generalized frame.

The functions define a "transform pair":

$$f_{j} = \Psi_{j} \otimes f$$

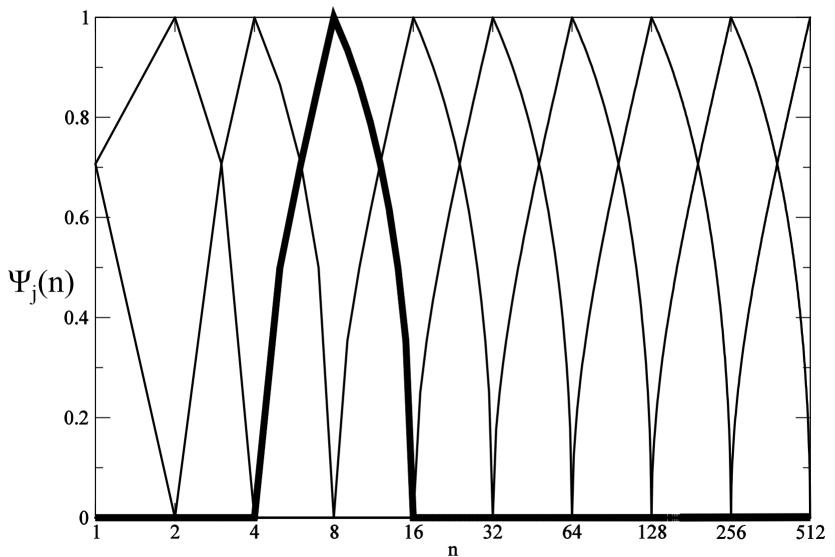
$$f = \sum_{i} \Psi_{j} \otimes f_{j}$$

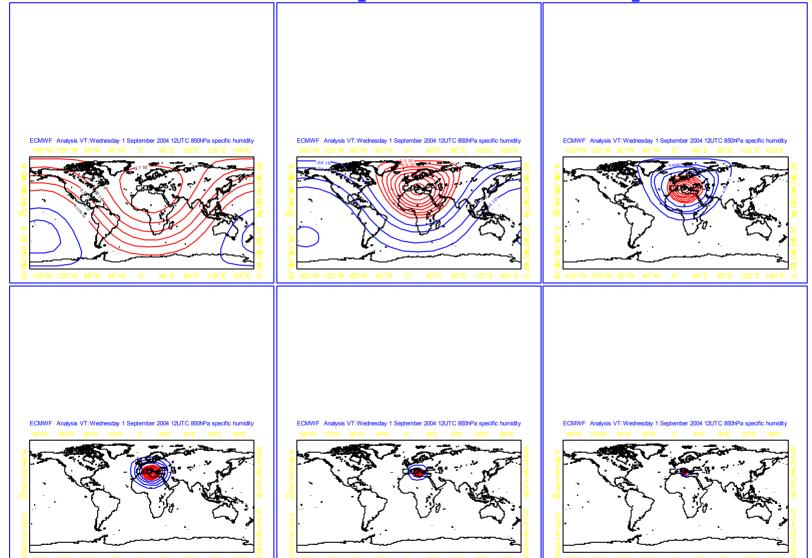
• The condition: $\sum_{j} \hat{\Psi}_{j}^{2}(n) = 1 \quad \forall n$

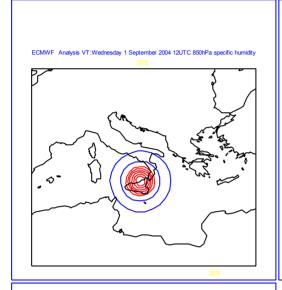
suggests we define the functions $\hat{\Psi}_{j}^{2}(n)$ to be B-splines.

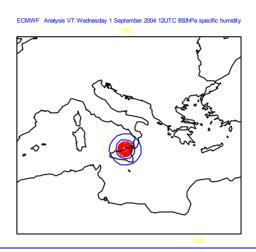
• For example, linear B-splines are triangle functions:

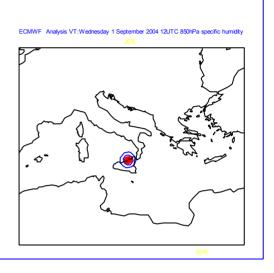
$$\hat{\Psi}_{j}^{2}(n) = \begin{cases} \frac{n - N_{j-1}}{N_{j} - N_{j-1}} & N_{j-1} < n \le N_{j} \\ \frac{n - N_{j+1}}{N_{j} - N_{j+1}} & N_{j} < n < N_{j+1} \\ 0 & \text{otherwise} \end{cases}$$

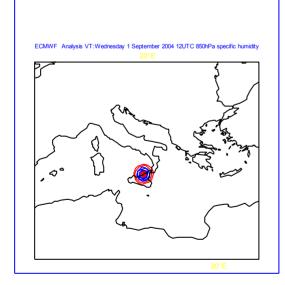






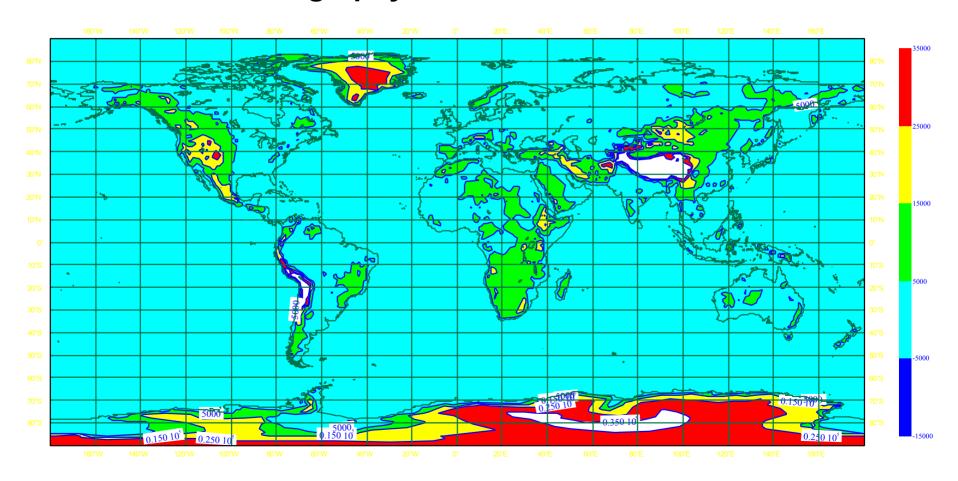






Spherical Wavelets – Example

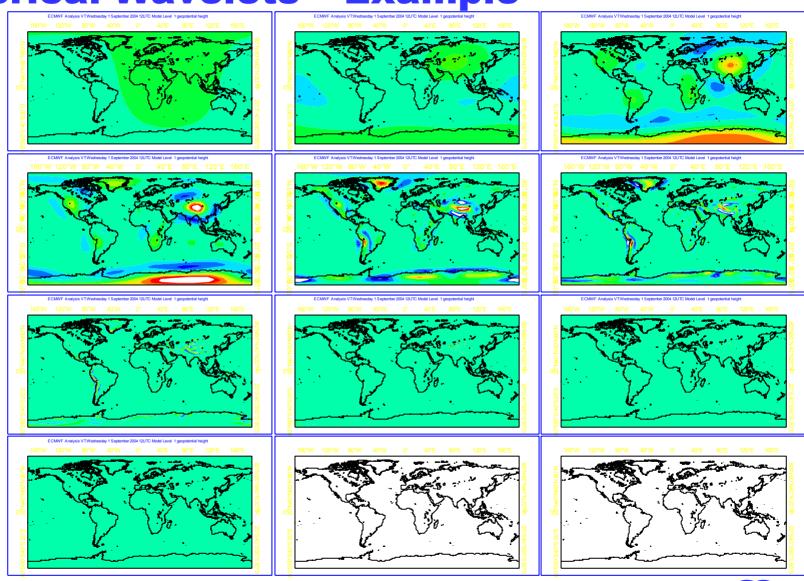
T511 Model Orography:



Spherical Wavelets – Example

Convolve with Ψ_j :

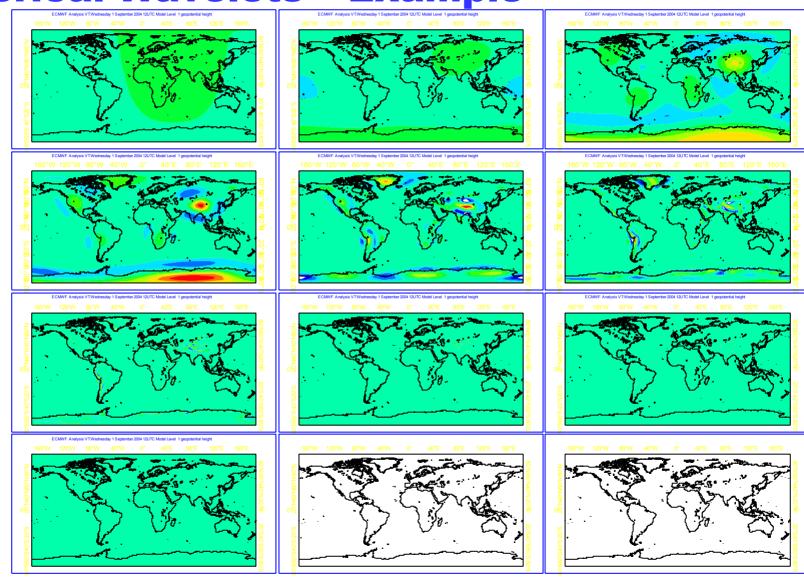
$$f_j = \Psi_j \otimes f$$



Spherical Wavelets - Example

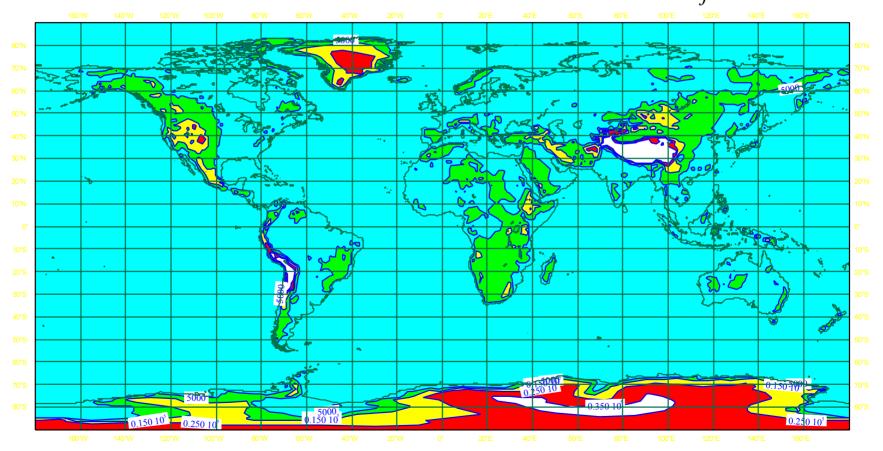
Convolve again...

 $\Psi_{\scriptscriptstyle j} \otimes f_{\scriptscriptstyle j}$



Spherical Wavelets – Example

ullet ... and add, to retrieve the original field: $f = \sum_{i} \Psi_{j} \otimes f_{j}$



Spherical Wavelets - Other Approaches

- The wavelets we have derived are similar to those of Freeden and Windheuser (1996, Adv. Comp. Math. 51-94.
 - They are a special case of the very broad range of spherical wavelet decompositions described by Freeden et al. (1998, "Constructive Approximation on the Sphere, OUP).
- A different approach, using group theory, is taken by Antoine and Vandergheynst (1999, Appl. and Comput. Harm. Anal. 262-291).
 - They define spherical wavelets as coherent states of the product group of rotations on the sphere, and dilations on the polar-stereographic tangent plane.
- Mhaskar et al. (2000, Adv. Comput. Math.) describe polynomial wavelet frames on the sphere.
 - and cite 11 papers, each defining a different approach to the construction of wavelets on the sphere.

- So, how does all this help us formulate a covariance model?
- First, let's review the main idea behind the current J_b.
- 3d/4d-Var determine the analysis by minimizing a cost function:

$$J = (\mathbf{x} - \mathbf{x}_b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (\mathbf{d} - \mathbf{H}(\mathbf{x} - \mathbf{x}_b))^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{d} - \mathbf{H}(\mathbf{x} - \mathbf{x}_b))$$

 Usually, we do not minimize directly in terms of x, but formulate the problem as:

$$J = \chi^{\mathrm{T}} \chi + (\mathbf{d} - \mathbf{H} \mathbf{L} \chi)^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{d} - \mathbf{H} \mathbf{L} \chi)$$
$$\mathbf{x} = \mathbf{x}_b + \mathbf{L} \chi$$

NB: L defines the background covariance matrix: B=LL^T.

- L defines the background covariance matrix: B=LL^T.
- To keep things simple, consider a 2d, univariate model.
- The current ECMWF covariance model boils down to:

$$L = \Sigma D$$

- Σ is diagonal in grid space, and corresponds to multiplying each gridpoint by a standard deviation.
 - It accounts for the spatial variation of background error.
- D is diagonal in spectral space, and corresponds to multiplying each wavenumber, n, by a standard deviation, which is a function of n, only.
 - It accounts for the variation of background error with scale.

$$L = \Sigma D$$

- The current covariance model separates the spatial and spectral variation of background error.
- In particular, D corresponds to a convolution.
- D defines the horizontal correlation of background error for the covariance model.
- Because D is a convolution, the horizontal correlations are the same everywhere.
- This is a major shortcoming of the covariance model.

- To define a covariance model using wavelets, note first that there is no requirement for L to be square.
- A rectangular matrix L still defines a valid covariance model, B=LL^T.
- We define the control variable as:

$$\mathbf{\chi} = \begin{pmatrix} \mathbf{\chi}_1 \\ \mathbf{\chi}_2 \\ \vdots \end{pmatrix}$$

where the χ_j correspond to different scales.

The change of variable matrix is defined by:

$$\mathbf{x} - \mathbf{x}_b = \mathbf{L} \mathbf{\chi} = \sum_j \hat{\Psi}_j \otimes \mathbf{\Sigma}_j \mathbf{\chi}_j$$

$$\mathbf{x} - \mathbf{x}_b = \mathbf{L} \mathbf{\chi} = \sum_{j} \hat{\Psi}_{j} \otimes \mathbf{\Sigma}_{j} \mathbf{\chi}_{j}$$

- The matrices Σ_j are diagonal in grid space, and account for the spatial variation of background error <u>for each scale</u>.
- Let us write the convolution with $\hat{\Psi}_j$ explicitly as a matrix operator $\hat{\mathbf{S}}^{-1}\hat{\Psi}_j\mathbf{S}$, where \mathbf{S} is the spherical transform, and $\hat{\Psi}_j$ is diagonal.
- Using the symmetry of $\hat{\Psi}_j$, and Σ_j , and the orthogonality of S, we can write the covariance matrix implied by L as:

$$\mathbf{B} = \mathbf{L}\mathbf{L}^{\mathrm{T}} = \sum_{j} \mathbf{S}^{-1} \mathbf{\Psi}_{j} \mathbf{S} \mathbf{\Sigma}_{j}^{2} \mathbf{S}^{-1} \mathbf{\Psi}_{j} \mathbf{S}$$

 We will illustrate the covariance structures generated by wavelet Jb by applying this matrix to delta functions.

$$\mathbf{B} = \mathbf{L}\mathbf{L}^{\mathrm{T}} = \sum_{j} \mathbf{S}^{-1} \mathbf{\Psi}_{j} \mathbf{S} \mathbf{\Sigma}_{j}^{2} \mathbf{S}^{-1} \mathbf{\Psi}_{j} \mathbf{S}$$

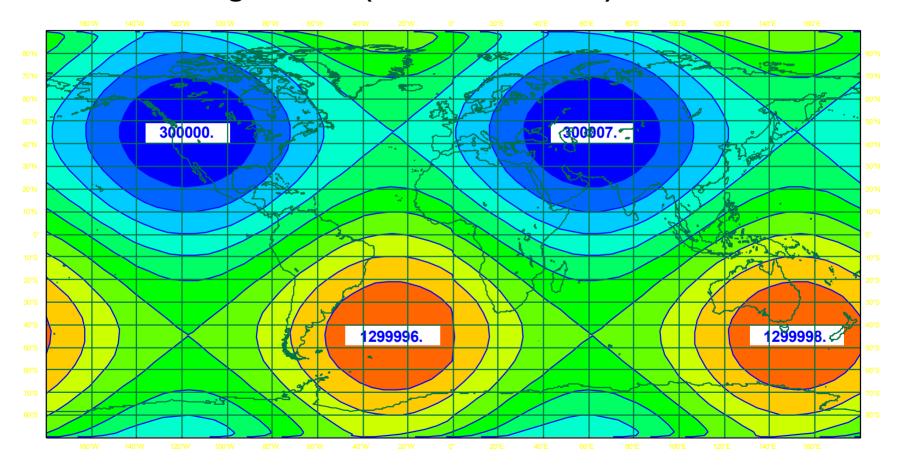
- Consider the case where there is no spatial variation in the standard deviations: $\Sigma_{_i} = \sigma_{_i} I$.
- Then, $\Psi_j \mathbf{S} \mathbf{\Sigma}_j^2 \mathbf{S}^{-1} \Psi_j$ is diagonal, with elements $\sigma_j^2 \hat{\Psi}_j^2(n)$.
- But, $\sum_{j} \hat{\Psi}_{j}^{2}(n) = 1$, so $\sum_{j} \sigma_{j}^{2} \hat{\Psi}_{j}^{2}(n)$ is a weighted average of σ_{j} 's
- If we choose $\hat{\Psi}_j^2(n)$ to be B-splines, then the variation of variance with n is an interpolation between the prescribed σ_j 's .

- Suppose we want approximately Gaussian structure functions, with length scale that is a smoothly-varying function of latitude and longitude.
- Weaver+Courtier (2000) give the following expression for the modal variances corresponding to convolution with a quasi-Gaussian function with lengthscale L:

$$b^{2}(n;L) = \frac{\exp\left[-\left(L^{2}n(n+1)\right)/2a^{2}\right]}{\sum_{n} (2n+1)\exp\left[-\left(L^{2}n(n+1)\right)/2a^{2}\right]}$$

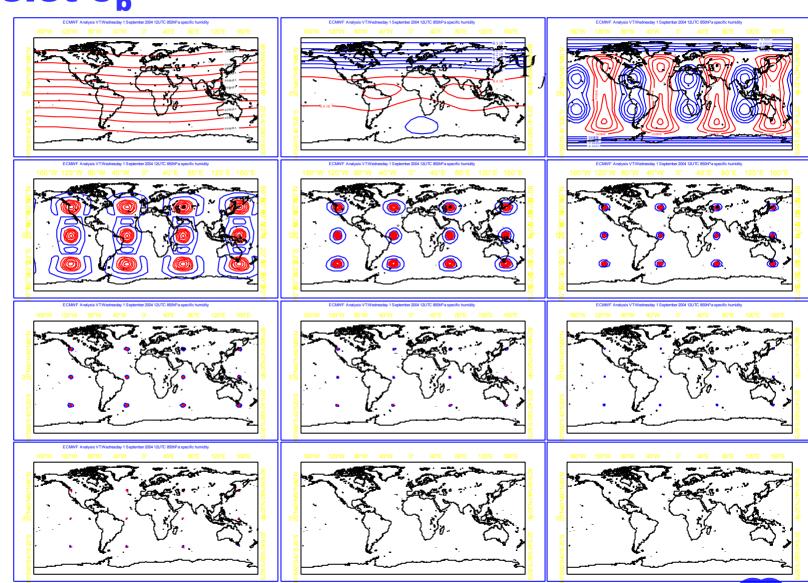
• We simply set: $\sigma_j = (N_{\max} + 1)b(N_j; L)$ but allow L (and hence σ_j) to vary with latitude and longitude.

Desired Length scale (300km – 1300km):

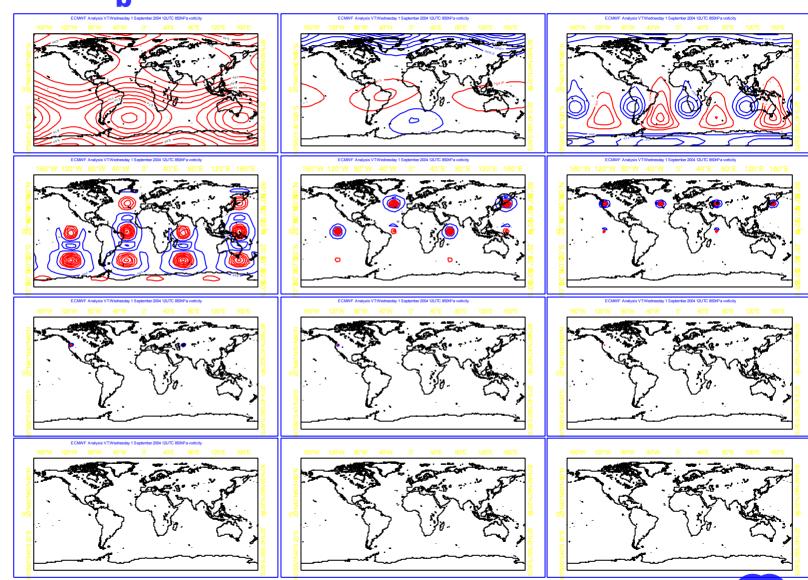


 $\Psi_{j} \otimes \mathbf{x}$

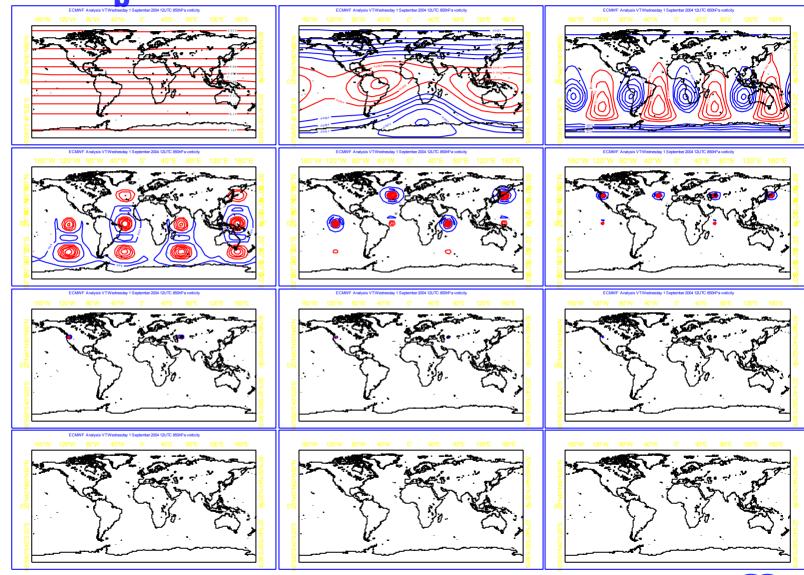
Where **x** is a set of delta functions



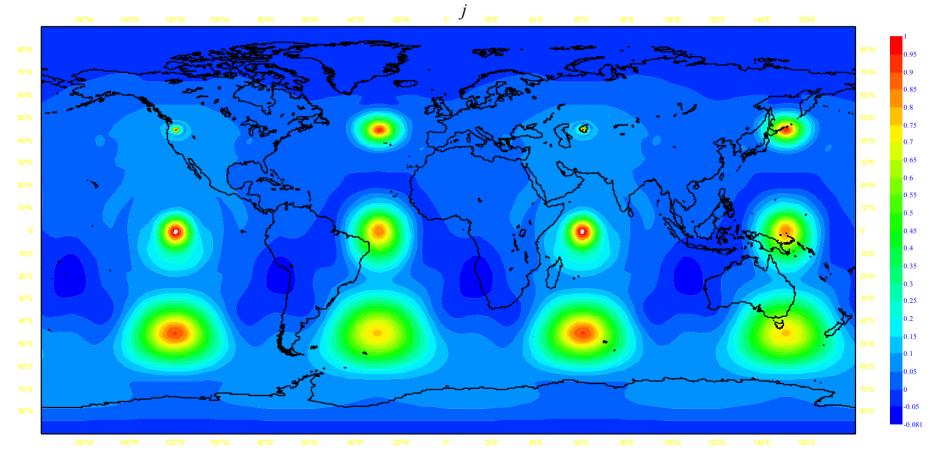
Scale with σ_j^2 at each gridpoint, and for each scale.



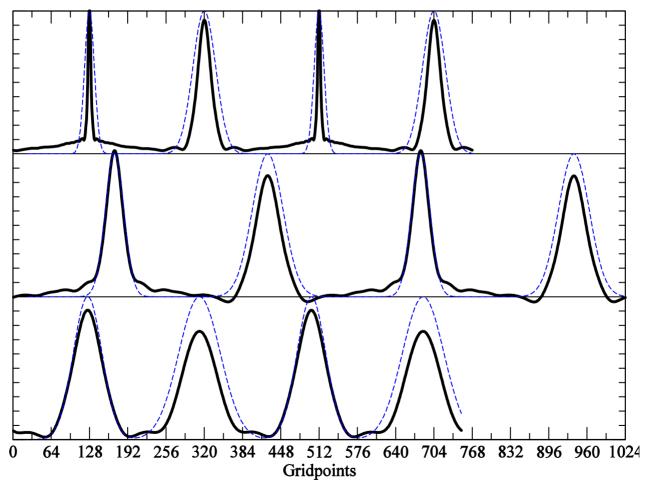
Convolve again with $\hat{\Psi}_j(n)$



• Add together to give: $\mathbf{B}\mathbf{x} = \sum \mathbf{S}^{-1} \mathbf{\Psi}_j \mathbf{S} \mathbf{\Sigma}_j^2 \mathbf{S}^{-1} \mathbf{\Psi}_j \mathbf{S} \mathbf{x}$



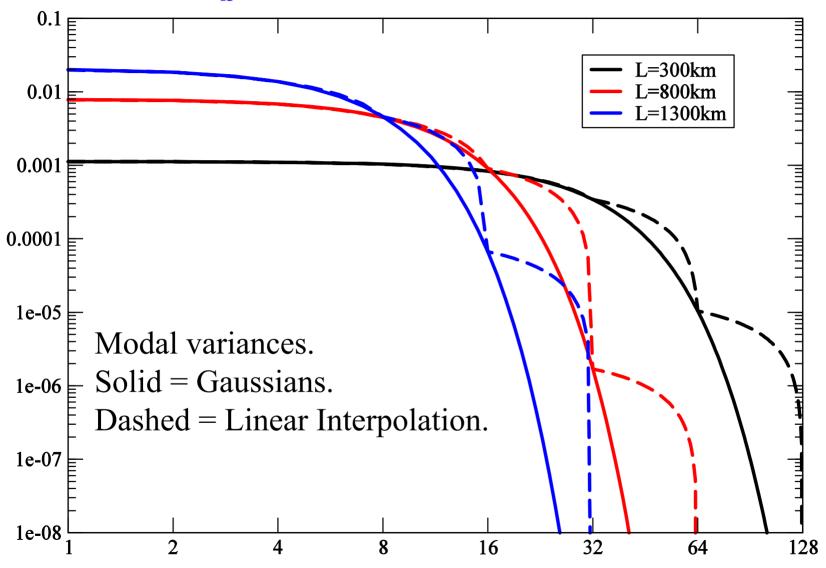
E-W cross-sections. and the Gaussians we wanted:



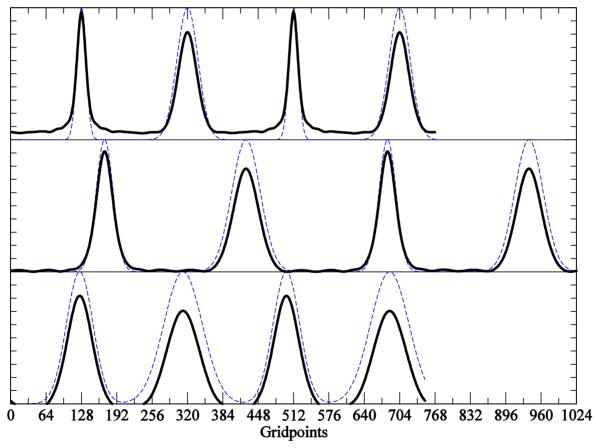
The agreement between the Gaussians we wanted, and the functions we got is not perfect!

But note:

- No attempt was made to tune the cut-off wavenumbers to improve the accuracy with which the Gaussian structure functions were modelled.
- The implied modal variances are effectively linearly interpolated between those for wavenumbers 0,2,4,8,16,...
- For large lengthscale (1300km), there is little variance beyond about n=10, so there are very few nodes in the interpolation.
- More spectral resolution at large scales may improve the approximation.
- Higher order B-splines would also help.



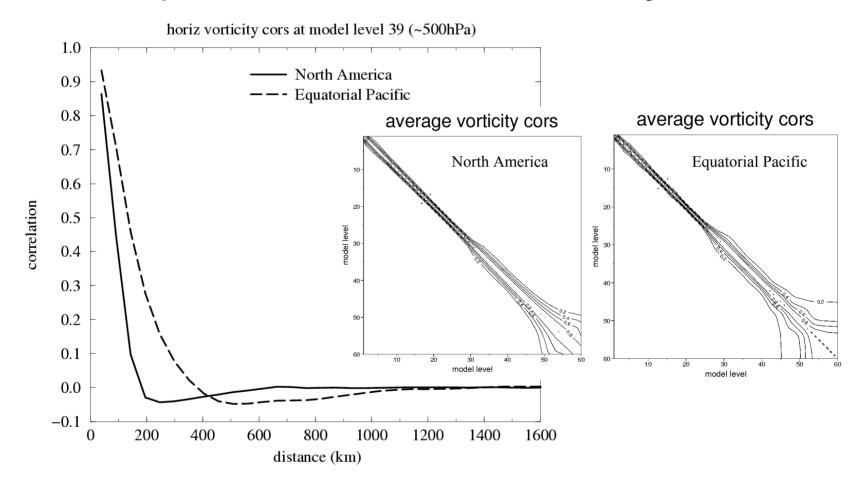
• E-W cross-sections for a different choice of spectral bands (0,1,3,6,10,16,25,39,60,91,138,208,313,471,511):



- We demonstrated Wavelet J_b by producing structure functions of a given analytic form.
- However, a significant advantage of Wavelet J_b over other approaches to covariance modelling on the sphere (digital filters, diffusion operators, etc.) is that we can calculate the coefficients of the covariance model directly from data.
- The covariance model is: $\mathbf{x} \mathbf{x}_b = \sum_j \hat{\Psi}_j \otimes \mathbf{\Sigma}_j \mathbf{\chi}_j$
- The transform property gives us: $\Sigma_{j}\chi_{j} = \hat{\Psi}_{j} \otimes (\mathbf{x} \mathbf{x}_{b})$
- But χ_j has covariance matrix = I, so (in 2d), Σ_j is simply the matrix of gridpoint standard deviations of $\hat{\Psi}_j \otimes (\mathbf{X} \mathbf{X}_b)$
- This is easily generated, given a sample of bg errors.

- Extension of Wavelet J_b to 3 spatial dimensions is straightforward.
- In 2 dimensions, we have: $\mathbf{x} \mathbf{x}_b = \sum_j \hat{\Psi}_j \otimes \mathbf{\Sigma}_j \chi_j$
 - where Σ_j is diagonal. The diagonal elements are standard deviations.
- In 3 dimensions, Σ_j becomes block-diagonal, with blocks of dimension NLEVS×NLEVS. The diagonal blocks are symmetric square-roots of vertical covariance matrices.
- This is not fully general, but is sufficient to capture the variation of vertical correlation with horizontal scale, and with location.

Example: Horizontal and vertical Vorticity Correlations.



Wavelet J_b – Memory and Cost

- At first sight, the memory requirements for Wavelet J_b appear high.
- However, if $\hat{\Psi}_j(n) = 0$ for $n > N_{j+p}$ then the χ_j are strictly band-limited, and may be represented on Gaussian grids of appropriate resolution.
- If we arrange for: $N_j \le \frac{N_{j+1}}{\sqrt{2}}$

then the memory requirement for the control vector is at most p+2 full model grids, where p is the order of the B-splines.

 Only p+1 full-resolution spherical transforms are required.

Wavelet J_b – Memory and Cost

- Storage for the vertical covariance matrices is potentially enormous. But, can be reduced to manageable levels by reducing their spatial resolution (e.g. one matrix for every 10 gridpoints).
- The main CPU requirement is in handling the increasedlength control vector.
- The bottom line is that Wavelet J_b adds about 5% to the cost of a 4d-Var analysis.
- I think it's worth it!

Summary

- Tight frames provide a useful mathematical construct.
- They share many of the desirable properties of orthogonal bases, but allow considerable flexibility.
- Using tight frames, a flexible family of wavelets may be defined on the sphere.
- Unlike grid-based wavelets, there is no pole problem.
- There is a lot of scope for tuning of the spectral and spatial resolution. (This remains to be explored.)
- Wavelet J_b is expected to be implemented operationally in the ECMWF 4d-Var system by the end of this year.