
Seminar 2004: Numerics of parametrization 1

Numerics of the Physics and the Physics of 
Numerics 

Anton Beljaars
(ECMWF)

With contributions from: Peter Bechtold, Martin Koehler, 
Adrian Tompkins, Nils Wedi and Pedro Viterbo

1. Introduction
2. Time integration
3. Processes in the ECMWF model
4. Conclusions
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Introduction

General considerations:
Parametrization packages have some level of modularity
Explicit time integration is the preferred option; implicit 

schemes are used if necessary for stability
Times steps can be large (in the IFS, 15 minutes for T511 

and 1 hour for the seasonal forecasts at T95)
Vertical resolution is often not sufficient to resolve 

relevant processes (e.g. sharp inversions, layered clouds)
Scheme has to be compatible with dynamics; IFS uses 2 

time level time integration
Accuracy of the numerics of parametrization is often 

ignored and parametrizations are sometimes optimized for a 
given vertical resolution and time step 
A high level of modularity (i.e. different process are 

handled independently) is desirable from code maintenance 
point of view, but not always desirable from numerical point 
of view
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Time stepping

Requirements for time stepping:

1. Stability (requires implicit solution 
for some processes)

2. Balance (correct steady state for 
long time steps)

3. Modularity of code
4. Accuracy

Papers on time stepping of equations with multiple time scales (stiff equations):  
Beljaars(1991): Numerical schemes for parametrization (ECMWF seminar)
Browning (1994): Splitting methods for problems with different time scales 
Caya et al. (1998): Splitting methods
McDonald (1998): Numerical methods for atmospheric models (ECMWF seminar)
Wedi(1999): Physics dynamics coupling
Sportisse (2000): Operator splitting for stiff problems
Williamson (2002): Sequential-Split versus Parallel-split in the NCAR model
Cullen and Salmand (2003): Predictor-corrector for parametrization
Ropp et al (2003): Time integration of reaction-diffusion equations
Dubal et al. (2004): Parallel versus sequential splitting

T511- L60, HPCD, CY28R2, 
Radiation 3-hourly at T255 Dynamics

SL interp
Physics
Radiation
Comms
FFT
LT
Barrier
Spectral
Other
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Time stepping: Process split / Parallel split
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Advantage of process split: Processes can be handled independently!
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Time stepping: Time split / Sequential split / Fractional step
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- Implicit process has to be last
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Example with sequential split: condensation
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• Assume saturated air
• D is negative e.g. large scale lifting
• q-tendency only from condensation 
• Condensation time constant is very small
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Traditional procedure: 
1. Compute T* (after dynamics)
2. Assume 
3. Set 
4. Use
5. Iterate towards solution
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Note: Iterative procedure towards 
saturation has to be last process; without 
applying D, condensation will not occur 
(or only in the next time step)
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Parallel split

Example with splitting 
of dynamics and 
vertical diffusion. 

Errors in 10m wind 
speed (with respect 
to 5 min time step). 

Time step: 60 min
Date: 20020115
Resolution: T159
Forecast: 24 hours 

Sequential split

Sequential split 
guarantees balance 
between Coriolis 
term, pressure 
gradient and 
turbulent stress 
divergence. 
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Sequential split K at time level *

Example with splitting 
of dynamics and 
vertical diffusion. 

Errors in 10m wind 
speed (with respect 
to 5 min time step). 

Time step: 60 min
Date: 20020114
Resolution: T159
Forecast: 24 hours 

Sequential split, K at full time level

Evaluation of 
diffusion coefficient 
at “in between time 
level” lowers wind 
speed by 0.2 m/s
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Parallel split versus sequential split: summary

Some form of splitting is necessary with current 
parametrizations; “fully unified physics packages” do not 
exist. 
Parallel split allows for maximum code modularity but 

steady state solutions are time step dependent if time 
step is not small compared to time scale of process. 
Sequential split is preferred option
Order of processes is important: 

1.First: slow explicit processes
2.Last: fast implicit processes (in principle only one 
implicit process is allowed)
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Towards 2nd order accuracy
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Compute physics as 
an average between 
departure and arrival 
points of semi-
Lagrangian trajectory 

However, some processes are 
evaluated “implicitly” on the 
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Wedi(1999): The numerical coupling of the physical parametrization to the 
“dynamical” equations in a forecast model, ECMWF Tech Memo, No 274. 
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Leads to big wind errors compared to short time step integrations (60 versus 5 minutes)
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Towards 2nd order accuracy in the IFS
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In the IFS  (CY28R1), “updated” profiles are supplied sequentially 
to the physics schemes: 
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Comments:
RAD does not include guess from previous time level (technically difficult 

because radiation is computed on a low resolution grid)
VDF+SGORO does not have guess from CNV+CLD (including these gives 

unrealistic boundary layers)
CNV+CLD has only half of the tendency from the previous step (empirical 

choice to maintain sufficient convective activity)
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2nd order physics reduces time truncation errors

RMS difference of tendencies (cnv, vdf, sgoro) between integration 
with 60 minute time step and with 5 minute time step. CONTROL  
uses standard time integration; SLAVEPP uses the 28R1 2nd order 
physics.  
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28R1 (no 2nd order physics)

2nd order physics 
reduces time 

truncation errors

Wind speed (10 m) 
difference between 
integration with 60 
minute time step 
and with 5 minute 
time step. 

28R1 (with 2nd order physics)
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Towards 2nd order accuracy in the IFS
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Modification in CY28R3 upgrade (the cloud scheme is also called 
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Comments:
The extra call to the cloud scheme before the convection, provides more 

instability and therefore makes the convection scheme more active
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Improvement from CY28R3 time stepping compared to CY28R1

His togram Precipitation rates
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Effect of calling clouds before convection.
Effect of calling 
clouds before 
convection. 

Errors in 10m wind 
speed (with respect 
to 5 min time step). 

Time step: 60 min
Date: 20020114
Resolution: T159
Forecast: 24 hours 

CY28R1

CY28R3, CLD before CNV

Calling clouds as a 
“first guess” before 
convection reduces 
wind errors in the 
tropics
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Process tendencies averaged between 20S and 20N over a 5-day forecasts
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Summary of time stepping procedures for long time steps

Balance is a important consideration
Ideal is to do explicit (slow) processes first and 

to have one implicit solver to take care of the 
remaining (fast) processes in a time (sequential) 
split way, i.e. the implicit solver takes the explicit 
term as part of the forcing

Convection and clouds have the character of fast 
(implicit) processes. 

2nd order time integration is still in its infancy 
Predictor corrector is an option but expensive 

(Cullen et al. 2002)



Seminar 2004: Numerics of parametrization 20

Processes in the IFS: Radiation

60-level model
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Explicit numerics
No update from dynamics (appropriate for 

explicit numerics)
Low resolution grid for economy (T255 in T511): 

This can lead to inconsistency between surface 
radiation and full resolution albedo field which can 
upset the surface scheme  
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Processes in the IFS: Radiation

Full radiation every 3 
hours in 28R1 and hourly in 
28R3
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Processes in the IFS: Vertical Diffusion
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Over-implicit numerics
Balance with dynamics and radiation
Specification of similarity profiles in the surface 

layer (exact finite differencing for a constant flux 
layer!)

In the ECMWF model 3 VDF steps are made for 
every model time step

Implicit coupling with surface tiles
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Processes in the IFS: Vertical Diffusion

Issues: 
Non-linear instability
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Comments:
Predictor-corrector does not always 

give the correct result
Different options exist, but a large 

implicitness factor is the  more popular 
and robust option (Kalnay and 
Kanamitsu, 1988) 

More complicated methods are more 
expensive (Hammerstrand, 1997)

Implicitness factor can be made flow 
dependent (Girard and Delage, 1990)

Single point diagnostics is not 
sufficient
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Processes in the IFS: Vertical Diffusion

Time stepping of vertical 
diffusion affects noise
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RMS(dU/dt)  (m/s/day) at 10 m level

Paralellel split

Sequential split
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Processes in the IFS: 
Vertical Diffusion

Issue: 
Vertical resolution 

Comments:
In spite of the low number of levels in 

the stable boundary layer the solution 
is surprisingly insensitive to resolution
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Processes in the IFS: 
Vertical Diffusion
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Inversion numerics

Figures by A. Lock: The numerical 
representation of entrainment in 
parametrizations of boundary layer turbulent 
mixing, MWR, 2001, 129, 1148-1163.
See also: 
Grenier and Bretherton (2001): MWR, 129, 
357-377.
Lenderink and Holtslag (2000): MWR, 
128,244-258.
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Processes in the IFS: Subgrid orography

Low level blocking + gravity wave drag 
Low level tendencies can be very large on isolated points
Good balance would benefit from simultaneous solution of 

vertical diffusion and subgrid orography with the same tri-
diagonal solver
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0° 0°

90°W

90°W 60°W

60°W 30°W

30°W 0°
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Saturday 4 S$pt$mb$r 2004 12UTC ECMWF  For$cast t+24 VT: Sunday 5 S$pt$mb$r 2004 12UTC Surfac$: grav wav$ str$ss
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Processes in the IFS: Convection
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Upwind differencing  in vertical 
Mass flux limiter to prevent instability
Shallow convection is closed by assuming balance of moist static

energy between dynamics, vertical diffusion and convection in 
subcloud layer i.e. the convection scheme needs surface fluxes from 
vertical diffusion as input

For deep convection cloud base mass flux is based on CAPE 
reduction over a specified relaxation time (1 hour for low resolution 
to 15 minutes at high resolution, which is close to the time step)

Subcloud layer fluxes are specified as a linear profile with zero at 
the surface 



Seminar 2004: Numerics of parametrization 30

Processes in the IFS: Convection

Issues: 
Mass flux limiter introduces time step dependency with high 

vertical resolution
Implicit formulation is desirable, but specification of linear 

flux profile below cloud base turns out to be essential to 
balance fluxes from vertical diffusion scheme 

Input profile is crucial for convection triggering and for 
CAPE diagnosis

Should convection be seen as a slow process that can be 
handled with explicit numerics or as a fast process that needs 
implicit numerics? 

Which are the critical processes that balance convection? 
(dynamics, radiation, vertical diffusion, clouds)
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500 hPa

Surface

850 hPa

15 minMass flux limiter in  
convection

T255 24-hour zonally averaged 
updraught mass flux (cnt. int.: 
400 kg/m2/day).  

45 min45 min 
3xCFL
shallow
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Processes in the IFS: Clouds
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with A,B,C,D from processes, e.g.  vertical motion, 
convective detrainment, precipitation, turbulence, 
cloud erosion. An exponential solution over single 
time step is used to integrate in time.    
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Processes in the IFS: Clouds
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Example of convective detrainment and 
ice fallout 

Comments:
Detrainment source term has to be part of the implicit time integration of ice 

fallout for proper balance (sequential splitting)
Ice fallout needs to be computed at full time level 
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Processes in the IFS: Land surface 
(TESSEL)
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Soil numerics: 
Implicit solution as vertical 

diffusion with implicitness factor 
equal to 1. 

Crude vertical discretization to 
cover time scale from hours to 
one year. 

Layer depths: 0.07, 0.21, 0.72 
and 1.89 m 

Non-linear diffusion equations 
for temperature and soil water:
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Processes in the IFS: Coupling of 
TESSEL to the atmosphere (Best 

coupler)1

Coupling includes skin layer with instantaneously 
responding skin temperature for each tile. 
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Eliminate Tsk by linearizing and using the surface 
energy balance equation (i.e. derive Penman /Monteith
equation): 
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Land surface tiles:
High vegetation
Low vegetation 
Wet surface
Bare ground
Exposed snow
Snow under vegetation

The result is two linear relations between lowest 
model level variables and fluxes with tile 
dependent coefficients D

1)Best et al. (2004): A proposed structure for coupling tiled surfaces 
with the planetary boundary layer, JHM
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Processes in the IFS: Coupling of TESSEL to the atmosphere 
(Best coupler)1

Averaging of fluxes over tiles, by averaging coefficients: 
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Atmospheric model

Combine with result of downward elimination of tri-
diagonal matrix for vertical diffusion:  

1)Best et al. (2004): A proposed structure for coupling tiled surfaces 
with the planetary boundary layer, JHM
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Comments:
The atmospheric surface layer is part of the LSM
All the tile dependent parameters are part of the LSM

Land surface model
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Conclusions

The physics of a process and its coupling to other processes is 
important from the numerical point of view

Splitting is major issue
Sequential split with slow process first and a single fast implicit 

process is preferred option
Unification of fast processes is desirable (e.g. BL, subgrid

orography and shallow convection) 
Balance is important 
2nd order physics in ECMWF model should be reformulated 

considering convection and clouds as implicit processes
Different processes have different problems e.g.: 

convection needs implicit numerics at high vertical resolution,
microphysics is fast and therefore difficult,
vertical diffusion is noisy.
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