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Characteristics of the ECMWF model

¢ Hydrostatic shallow-atmosphere approximation
¢ Pressure-based hybrid vertical coordinate

¢ Two-time-level semi-Lagrangian semi-implicit time
integration scheme

¢ Spectral horizontal representation (spherical harmonics)
¢ Pseudo-spectral (finite-element) vertical representation

¢ Transform method for computing non-linear terms using
non-staggered grid

¢ Fourth order horizontal diffusion
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Vertical coordinate
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Model equations

¢ Momentum pressure-gradient

dV, = = Discretized in vector form

h _

71‘ = —ﬂC X Vh — Vh(l) - Rd]:;Vh In P+ PV + KV to avoid pole problems
¢ Thermodynamics I7h :horizontal wind vector

dT e Tv o T :virtual temperature

7 — (51 + PT + K T V, :"horizontal" gradient
! ( T ( B )q)p @ :p—coordinate vertical velocity

‘ HYd rOStatiC LS= Rd /de ’ 5 = va /de

P, P;: physical parameterization

n
0
¢ — ¢s — j RdTv % (ln )% ) d n K,, K, : horizontal diffusion
1
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Model equations (cont)

¢ Continuity equation
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Vertical integration of the continuity equation

d dB © dB
—(Inp,)= j(——(lnps>+—V -Vin p,)dn
dt dn
H_J
9,
where aanps)——p—sgv <Va )dn

~ Op = Needed for the energy-conversion
o= __[ V-V, -)dn+V,-Vp term in the thermodynamic eq.

.0p _ Op Needed for the semi-Lagrangian
n—=—— — |V (V )d | .
trajectory computation
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Vertical integration (finite elements)

F(n) = [ f(x)dx

can be approximated as

and, applying the Galerkin method: Basis sets
K, 1 M, 1 X
Z Cijtj (x)d (x)dx = Z cij[tj (x)jei(y) dy] dx for N, < j< N,
=K, 0 i=M, 0 0
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Cubic B-splines
for the vertical
discretization

Basis elements
for the represen-_
tation of the
function to
be integrated
(integrand)

/

Basis elements
for the

; : <« |representation
; | of the integral
F
N-2
N-1 AN
N dy

n=1 - surface
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Advantages of the finite-element scheme
in the vertical

¢ 8t order accuracy using cubic basis functions

=» Very accurate computation of the pressure-gradient
term in conjunction with the spectral computation of
horizontal derivatives

=» More accurate vertical velocity for the semi-Lagrangian
trajectory computation

¢ Improved ozone conservation

¢ Reduced vertical noise in stratosphere

¢ Smaller error in the computation of the integrals than using

the finite-element scheme in differential form OF
(Private communication by Staniforth & Wood) /= %
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The spectral horizontal representation

N ; ;
N N Triangular truncation

XA, p,m,t) = Z Z X", )Y (A, ) (isotropic)

m=—N n=|m|
l \“ Spherical harmonics

1 2n
X0 = [ [XChn0B (e Dy

-10
Fourier functions
Legendre polynomials
FFT using

NF > 2N+1
points (linear grid)
(3N+1 if quadratic grid)

Legendre transform
by Gaussian quadrature

using NL > (2N+1)/2
“Gaussian’ latitudes (linear grid)
((3N+1)/2 if quadratic grid)

No “fast” algorithm available
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Advantages of the spectral method

¢ Spherical harmonics are eigenfunctions of the Laplace

operator: n(n+1)

a2

Ynm

=» The solution of a Helmholtz equation is straightforward
=» The application of a high-order diffusion is very easy
¢ Horizontal derivatives are computed analytically

=» The computation of the pressure-gradient term is very
accurate

¢ But:

=» The computational cost of the Legendre transforms
increases more rapidly with resolution than the rest of
the model
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The full and the reduced Gaussian grids




Semi-implicit time integration

Define A, X=05(X"+X )-X'

- v Linearized pressure-gradient
— — —~ using a reference temperature
CZ—V — RHSV uE Att {'thT + RdT;Vh (]n D, )} T, and a reference surface pressure
t ~ (ps)r
d
dT X), = Inp.)dn
E:RHST +Att(;:D) (1), dn’( p,)dn
dp,
d B (1X), =T, ( j X
E(1n p,)=RHS, +A,(vD) r ), ! n
- vX = L iy,
— (1+13Vi)D+ =D (p), o dn
v L'=yt+R, 1V

Vertically coupled set of Helmholtz equations

ECMWF £3>



Semi-Lagrangian advection (1)

1D advection equation without RHS:

dp 7 @(x;,t+ A1) —@(x.,1) 0 In the Lagrangian point of view,

E — V= At - time 1s the only independent
variable (position should be
consistent with time)

P(x,,t+Al) = p(x.,1)

Stability analysis:
absolutely stable if the value of /7(x.,¢) is computed
by interpolation using the surrounding grid points.

Finding the departure point x. in the linear case:

?:U():xf;x* =y, == X =x, —UAt
[ [
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Semi-Lagrangian advection (2)

Three time level scheme with RHS :

A D,
M 2At
D

Disadvantages of three-time-level schemes:
* Less efficient than two-time-level schemes
» Computational mode
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Two time level second order accurate schemes :

P U+ A) =" () _ pu
At

Forecast 200 hPa T
from 1997/01/04
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Stable extrapolation two-time-level semi-Lagrangian (SETTLS):

ﬂtw)wl)(r)w-(d@j RC) .(dzwj

&) 2 \d),
where (d_(ﬁj _ RD(t) and (@j :(ﬁj zRA (-R°(t-N)
a 4 dt AV dt AV N

o' (t+At) =" (1) + %-(RA(t) +{2R(t)— R(t—Ar)}")

Forecast 200 hPa T
from 1997/01/04
using SETTLS
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Spherical geometry in the semi-
Lagrangian advection

j
j j
> Y |
A i
D i M .

Tangent plane projection
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Interpolations in the semi-Lagrangian (1)

quasi-monotone Lagrange quasi-cubic interpolation

4
4 | [&=x)
P(x) = ZCZ-(X)(D,- with the weights  G;(x) =&
i=1
1 1G=x)

k#i

>
»
>
>

>
>
e
>

ninterpolated cubically

x: grid points

Quasi-monotone 7
procedure: Mpin === mmmm o m N X: Interpolation point

Quasi-monotone interpolation is used in the horizontal for all variables and in the vertical for q and r;
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Modified continuity & thermodynamic equations

Continuity equation i(ln py) = i(l " +1')=[RHS]
dt dt
where [ =- ¢S_ = al =[RHS+ 1_ V.-V,
R,T dt R,T

Reduces mass loss: D+10 Ap, from 0.59 hPa to 0.02 hPa at T106L31

d(T-T,)
dt

. 0T,
=[RHS], - (V, -VT;)—na—;

Thermodynamic equation

Reduces noise over orography.
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Interpolations in the semi-Lagrangian (2)

 Linear and smoothing interpolations:

Linear interpolation is applied to the velocities needed in the trajectory
computation and to the RHS of the forecast equations.

Smoothing interpolation is applied to the vertical velocity in the
stratosphere.
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Divergence at model
10 hPa Geopotential Level 11 (~5 hPa)

= 1040}

Linear interpolation
in the computation
of the semi-
Lagrangian
trajectory

As above but
using smoothing
interpolation for
the vertical
velocity

S 2 i

|

12 hour forecast from initial data of 2002-12-28 at 12
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Treatment of the Coriolis term

* Advective treatment:

fhxV, = 2Q><d—R d—V+jk><V —>—(V +2QxR)

dt dt

 Implicit treatment :
280 78

=—fkx0.5(0V, + V) +..
A S x0.5( )

Physical parameterizations

Coupled with the semi-Lagrangian scheme
(details in talk by A. Beljaars)
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- - - X .
Horizontal diffusion %:_KV X

* Implicit solution in spectral space

X (t+AD)-X (t i
At ’ a ’
== Xn,m (t + At) = Xn,m (t) 1 2
1+KA¢(”(”2+1)j
a

 Analytical solution 1n spectral space

_KAt(n(nH)jz

a2

oX n(n+1))
at’ =—K( (a2 )j X,y = X, t+At)y=X, (t)e
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Summary of the numerics in the ECMWF
atmospheric model

¢ Two-time-level semi-Lagrangian advection
¢ SETTLS scheme
¢ Quasi-monotone quasi-cubic interpolation
¢ Linear and smoothing interpolation for trajectories
¢ Modified continuity & thermodynamic equations
¢ Semi-implicit treatment of linearized adjustment terms
¢ Cubic finite elements for the vertical integrals
¢ Spectral horizontal Helmholtz solver (and derivative comp.)
¢ Linear reduced Gaussian grid

¢ Semi-Lagrangian coupling of physics and dynamics
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Future developments

¢ Non-hydrostatic version of the model
¢ Improve semi-Lagrangian interpolation
¢ Spectral representation by double Fourier series
¢ Improve conservation of advected quantities
¢ Study the influence of boundary conditions
¢ for the semi-Lagrangian advection
¢ for the vertical finite-element representation

¢ Investigate noise on vorticity over orography (aliasing?)

THANK YOU for your attention !
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