

MARINE ENVIRONMENT AND SECURITY FOR THE EUROPEAN AREA Ocean and Marine Applications for GMES

Development of a European system for operational monitoring and forecasting of the ocean physics, biogeochemistry, and ecosystems, on global and regional scales

MERSEA Integrated Project

R&D project funded under 6th FP of the European Commission

- Thematic priority : SPACE GMES (Global Monitoring for Environment and Security)
- Ocean and Marine Applications

Four-year project (2004 – 2008)

38 contractors, 16 countries (or Int. Org.)

Coordination : IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer), France

MERSEA Participants

<u>Canada</u> :	DFO	Greece :	HCMR	<u>Turkey</u> :	IMS
<u>Cyprus</u> :	FDMR	International :	ECMWF	<u>UK</u> :	NERC-SOC Ocean Numerics
Denmark :	DMI	Ireland :	Techworks		PML NERSC-POL The Met Office Univ. Reading
<u>E.U.</u> :	JRC	<u>Italy</u> :	CNR-ISAC CNR-ISSIA		
<u>Finland</u> :	U-HEL		CoNISMA ENEA		Univ. Southampton
France :	ASP BOOST CLS		INGV OGS		
	CNRS IFREMER MERCATOR	<u>Netherlands</u> :	MARIS Univ. Utrecht		
	Météo France	Norway :	met no NERSC		
Germany :	: AWI GeoB IFM/Univ. Kiel IFM/Univ. Hamburg	<u>Spain</u> :	CSIC IEO		

GMES : ocean applications

• MERSEA objective :

develop the global ocean component of GMES :

- Climate change, CO², seasonal forecasting
- Ecosystems, fisheries,
- Marine safety, traffic, pollution (crisis management)
- Offshore activities
- Coast guards and Navy applications
- From global to coastal ocean (coastal management)
- Scientific research

MERSEA IP objectives

- Development of a European system for operational monitoring and forecasting of the ocean physics, biogeochemistry and ecosystems
 - A global system
 - Support for shelf sea systems
 - Connection to coastal systems

Nowcasts, forecasts, hindcasts

- It will build the Ocean component of GMES (2008)
- Mersea federates European contribution to GODAE

Basic components

- Input
 - Remote sensed data : sea surface height, SST, ocean colour, sea ice
 - Forcing fields : from NWF, and scatterometre winds
 - In situ : profiles (ARGO, XBT, ..), surface (ships, drifters), moorings (time series)
- High resolution models with data assimilation
 - Analysis, forecasting
 - Downscaling to regional or to coastal
- Product development, information delivery

Initial situation

- Four Global systems, with different caracteristics
 - MERCATOR (France)
 - TOPAZ (NERSC, Norvège)
 - FOAM (Met Office, UK)
 - MFS (Med. Forecasting System, INGV, Italie)
- Great diversity of regional / coastal systems
 - Arctic, North and Baltic seas
 - NW European shelves (UK)
 - Bay of Biscay
 - Mediterranean + Cataluñia, Ligurian, Adriatic, Aegean
 - Etc ...
- Services, applications, formats, pratices are very diverse

Current Architecture

MERSEA Global to Regional coverage

HALO Workshop, Reading,, Nov 16-17, 2004

http://www.mersea.eu.org

Global to regional, downscaling

- From Global (resolution $1/12^\circ = 8$ km) to :
 - Arctic
 - NE Atlantic shelf
 - Mediterranean
- From NE Atlantic shelf to
 - North and Baltic Sea
- From North Atlantic and Arctic to
 - Greenland and Newfoundland shelf

The target Mersea system

- A global system, high resolution model,
 - with biogeochemistry and sea ice
 - Pooling of resources for development and expertise
- A co-ordinated network of regional systems over european seas
 - Commom modelling framework
 - Support for coastal systems
- Improve and facilitate access to data, products, and services
- Full <u>validation</u>, inter-operability, developement of standards and best practices.
- Develop user-oriented applications

Experiments - applications - products

- Biogeochemical variability in regional and shelf seas (Atlantic margin and Med Sea)
 - Global carbon cycle
 - Coastal ecosystems, algal blooms, eutrophication, water quality
 - Improve, validate, integrate into operational systems

Experiments - applications - products

- Seasonal forecasting
 - Provide initial conditions to coupled global (or local) models
 - Determine statistics of ocean variability (covariances)

HALO Workshop, Reading,, Nov 16-17, 2004

Experiments - applications - products

- User products :
 - offshore oil exploration and production
 - (relocatable high resolution models)
 - wave forecasts and ship routing
 - wave-current interaction, sea ice
 - oil drift fate prediction

http://www.mersea.eu.org

Basic components

- 8 ThEmatic Portals (TEP)
 - 3 DATA TEP (Satellite, In Situ, Forcings)
 - 5 ASSIMILATION TEP (Global, Arctic, Med, Baltic, NWShelves)
- There is a general portal (MIM portal), connecting to the MERSEA information sources through 8 TEP

Mersea system logical breakdown : 1st level

Data network logical breakdown

Assimilation network logical breakdown

Interacting components

- Land : river run-off, aerosols (via atmosphere)
- Atmosphere : <u>Wind</u>
 - fluxes (momentum, heat, moisture, gas exchange),
 - Waves
 - Wind driven currents
 - Clouds : incoming solar radiation
 - E**-**P
- Global :
 - fluxes, re-analysis (ERA40, NCEP)
- Regional, coastal :
 - High resolution (HIRLAM, ALADIN, ...)

Interacting components

Meteorological agencies provide GMES services (by default?) for which MERSEA inputs are necessary :

- Oil spill response, search and rescue, drifting objects
- Wave forecasts
- Hurricane and seasonal forcasts
- Ice drift

Other feedbacks :

- Sea ice (albedo, fluxes)
- Atmospheric pressure for altimeter correction (IB)
- Aerosols for ocean colour, iron input

Ocean – Atmosphere Interactions : fluxes

Conclusions

- Weak coupling between land and ocean
 - Except River run-off
- Strong interactions with atmosphere, mostly physical
 - Two way interactions
- CO² :
 - Physical pump
 - Biological pump : more prospective ?
- Several links already in place to exchange data in realtime

Remarks

- Distinguish project from the system to be delivered
 Architecture
- Re-analyses are important
 - CO2,
 - validation of fluxes
- Ocean component depends more on standard NWP than chemistry (GEMS)

