Distributed Data Management at DKRZ

Wolfgang Sell Deutsches Klimarechenzentrum GmbH sell@dkrz.de

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

Table of Contents

- DKRZ a German HPC Center
- HPC Systemarchitecture
 - suited for Earth System Modeling
 - The HLRE Implementation at DKRZ
 - Some Results
- Some Lessons Learnt
- Summary

DKRZ - a German HPCC

- Mission of DKRZ
- DKRZ and its Organization
- DKRZ Services
- DKRZ Restructuring

Mission of DKRZ

In 1987 DKRZ was founded with the Mission to

- Provide state-of-the-art supercomputing and data service to the German scientific community to conduct top of the line Earth System and Climate Modelling.
- Provide associated services including high level visualization.

DKRZ and its Organization (1)

Deutsches KlimaRechenZentrum = DKRZ German Climate Computer Center

- organised under private law (GmbH) with 4 shareholders
- investments funded by federal government, operations funded by shareholders

DKRZ and its Organization (2)

DKRZ internal Structure

- 3 departments for
 - systems and networks
 - visualisation and consulting
 - administration
- 20 staff in total
- until restructuring end of 1999 a fourth department supported climate model applications and climate data management

DKRZ Services

• operations center: **DKRZ**

- technical organization of computational ressources (compute-, data- and network-services, infrastructure)
- advanced visualisation
- assistance for parallel architectures (consulting and training)

Model & Data Services

Application center: Model & Data

- professional handling of community models
- specific scenario runs, e.g. IPCC
- scientific data handling

Model & Data Group external to DKRZ, administered by MPI for Meteorology, funded by BMBF HPC Systemarchitecture suited for Earth System Modeling

- Principal HPC System Configuration
- Configuration Variants
- Links between Different Services
- The Data Problem
- Pros and Cons of Shared Filesystems

Generic HPC System Configuration

Variants of System Configuration (1)

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

Page 11

Variants of System Configuration (2)

Link between Compute Power and Non-Computing Services

- Functionality and Performance Requirements for Data Service
 - Transparent Access to Migrated Data
 - High Bandwidth for Data Transfer
 - Shared Filesystem
- Possibility for Adaptation in Upgrade Steps due to Changes in Usage Profile
- Balance between Computational and Data Management Capabilities

Evolution of Computing Power at DKRZ

Adaptation Problem for Data Server

Pros of Shared Filesystem Coupling

- High Bandwidth between the Coupled Servers
- Scalability supported by Operating System
- No Needs for Multiple Copies
- Record Level Access to Data with High Performance
- Minimized Data Transfers

Cons of Shared Filesystem Coupling

- Proprietary Software needed
- Standardisation still missing
- Limited Number of Systems that can be connected

HLRE Implementation at DKRZ

- HöchstLeistungsRechnersystem für die Erdsystemforschung = HLRE High Performance Computer System for Earth System Research
 - Principal HLRE System Configuration
 - Requirements and Constraints
 - Links between Different Services
 - Option for Systemoperation

Principal HLRE System Configuration

Hardware at DKRZ (October 2004)

- 24 SX-6 Nodes (192 Vector CPUs, 1,5 TByte CM and 1,5 Tflops peak)
- IXS Crossbar switch (24 x 24, 2*8*24 GByte/s cross section bandwidth)
- 10 NEC AsAmA Nodes (132 Itanium-2, 1,0 and 1,5 GHz, Linux)
- 1 NEC AzusA (8 Itanium-1; 800 MHz; Linux)
- 4 STK Silos (total capacity ca. 3.5 PetaByte)
- 4 SUN Fire 4800 (Oracle Appl. Service)

DKRZ Hardware Current Configuration

Some Results

- Point of Operation in CS-DS-Space
- Growth of the Data Archive
- Growth of Transferrate
- Variability of Transferrates

Point of Operation in CS-DS-Space

DS archive capacity (1)

DS transfer rates (1)

DS archive capacity (2001-2004)

DS archive capacity (2001-2004)

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

DS transfer rates (2001-2004)

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

DS transfer rates (2001-2004)

Tape transfer rates (2001-2004)

Tape transfer rates (2001-2004)

DS transfer requests (2001-2004)

DS archive capacity (2001-2004)

Some Lessons Learnt

- Current Implementation of Non-Computing Services needs Significant Amount of Local Disk Space, e.g.
 HSM and DBMS need their Own Cache
- Lack of Standardisation for Shared Filesystems Dependence on Co-operativeness, e.g. Graphics Server Integration Pre/Post-Processing Servers from Different Vendors
- Fail-over Solutions needed in Complex Distributed Systems

Some Lessons Learnt, cont.

- Server Scalability needed, but no Problem Client Scalability may be a Problem, e.g 128 LUN Limitation for Linux 2.4
- Distributed Servers may Generate Intriguing Dependencies, i.e. clearly Structured High Level Services do not Guarantee Ease of Performant Operation

Effect of Client/Server Interaction

Invocation Period and Lifetime of Dirty Pages for kupdated

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

Effect of Client/Server Interaction

Invocation Period and Lifetime of Dirty Pages for kupdated

27-Oct-2004

11. HPC Workshop at ECMWF, Reading, WFS

Page 38

Summary

- DKRZ provides Computing Resources for Climate Research in Germany on an competitive international level
- The HLRE System Architecture is suited to cope with a compute- and data-intensive Usage Profile
- Shared Filesystems today are operational in Heterogenous System Environments
- Standardisation-Efforts for Shared Filesystems needed

